Loading wiki pages...

Wiki Version:
<p>Continuous probability forecasts are useful for making expected value calculations and informing decisions. This study provides tools for estimating continuous probability distributions given discrete probabilistic forecasts. We show that these continuous distributions can be aggregated to yield consensus distributions that consistently outperform the average forecaster. Modeled continuous distributions performed equivalently to explicit forecasts at the individual level. We evaluated different methods for aggregating continuous distributions. The best methods achieved increases in performance accuracy similar to the benefits of aggregating discrete forecasts. This result suggests the potential to apply many of the known techniques for aggregating and weighting discrete forecasts to the continuous domain. This experiment clearly demonstrates that even with diverse forecasting topics and response quality, consensus methods can efficiently extract signal from the crowd noise and produce useful forecasts of probability distributions.</p>
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.