Loading wiki pages...

Wiki Version:
<p>This paper discusses the design and implementation of the ‘Ike Wai Hawai‘i Groundwater Recharge Tool, an application for providing data and analyses of the impacts of land-cover and climate modifications on groundwater-recharge rates for the island of O‘ahu. This application uses simulation data based on a set of 29 land-cover types and two rainfall scenarios to provide users with real-time recharge calculations for interactively defined land-cover modifications. Two visualizations, representing the land cover for the island and the resultant groundwater-recharge rates, and a set of metrics indicating the changes to groundwater recharge for relevant areas of the map are provided to present a set of easily interpreted outcomes based on the user-defined simulations. Tools are provided to give users varying degrees of control over the granularity of data input and output, allowing for the quick production of a roughly defined simulation, or more precise land-cover models that can be exported for further analysis. Heuristics are used to provide a responsive user interface and performant integration with the database containing the full set of simulation data. This tool is designed to provide user-friendly access to the information on the impacts of land-cover and climate changes on groundwater-recharge rates needed to make data-driven decisions.</p>
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.