Main content

Parsimonious Estimation of SDT Models from Confidence Ratings  /

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Signal Detection Theory (SDT) is used to quantify people’s ability and bias in discriminating stimuli. The ability to detect a stimulus is often measured through confidence ratings. In SDT models, the use of confidence ratings necessitates the estimation of confidence category thresholds, a requirement that can easily result in models that are overly complex. As a parsimonious alternative, we propose a threshold SDT model that estimates these category thresholds using only two parameters. We fit the model to data from Pratte, Rouder, and Morey (2010) and illustrate its benefits over previous threshold SDT models.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.