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1 Abstract

Humans need to be on their toes when interacting with competitive others to avoid being duped.

Too much caution out of context can, however, be detrimental and produce false beliefs of intended

harm. Here, we offer a formal account of this phenomenon through the lens of Theory of Mind.

We simulate agents of different depths of mentalization within a simple game theoretic paradigm

and show how, if aligned well, deep recursive mentalization gives rise to both successful deception

as well as reasonable skepticism. However, we also show that if a self is mentalising too deeply -

hyper-mentalising - false beliefs arise that a partner is trying to trick them maliciously, resulting in

a material loss to the self. This theory offers a potential cognitive mechanism for suspiciousness,
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paranoia, and conspiratorial ideation. Rather than a deficit in Theory of Mind, paranoia may arise

from the application of overly strategic thinking to ingenuous behaviour.

2 Introduction

To be strategic, and thus sometimes also deceptive, we need to take into account the beliefs, desires

and intentions of others. The cognitive process underlying such behaviour is theory of mind (ToM)

- an agent’s ability to reason about latent characteristics of others; what they know, want or plan

(1; 2).

Signatures of ToM have captured the attention of computational scientists who have formalised

ToM as a collection of social processes that enable inference and representation about the dynamic

interaction between a self and other(s) (3; 4; 5; 6; 7; 8). At the most shallow level, an agent (’the self’)

simply considers the utility function (the desires) or beliefs of another agent (the ’other’) based on

their past behaviour (9; 10). This can be extended to deeper levels recursively: You can think about

what I think you think I think (what you think, etc.). Hierarchical ToM - the ability to hold nested

beliefs of ourselves and others (11; 12) - has been suggested as supporting the way that humans

choose what to say or teach to maximise interpretability (13; 14), and as underlying cognition in

social, competitive settings (15). It allows agents to hide information from others strategically,

and to use an opponent’s inference process against them in forms of deception, skepticism, and

strategies to overcome these (16; 17).

With ToM’s outsized role in human interaction (18), it is unsurprising that failures of ToM have

been suggested as being at least part of the basis of several psychiatric disorders (19), such as

autism (20; 21; 22), psychosis (23; 24; 25), and personality disorders (26; 27; 28; 29; 30; 31).

In patients with persecutory delusions and those with high paranoia, there is a tendency to

make personal, external attributions – that is, explaining the causes of negative events through

the malicious intentions of others (32). In borderline personality disorder (BPD), individuals are

theorised as attributing an excessively high level of intentionality to sparse social data (26). Here,

over-mentalising or hyper-mentalising is defined as “making excessively convoluted inferences

based on others’ social cues” and (33)) has been suggested as giving rise to paranoia in BPD (19),
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and was shown empirically to be related to early stages of disorder (28). In both psychosis and BPD,

and even more commonly in conspiratorial ideation (34), there is a higher risk of over-interpreting

behaviour as being more sophisticated, intentional, and malicious.

Nevertheless, the cognitive mechanisms of this approach to paranoia within persecutory delu-

sions and BPD have been hard to pin down and specify with the dynamic interaction and represen-

tation of social agents making mechanisms harder to examine (25; 35). There has been little work

examining the role of cognitive recursion applied to BPD, paranoia, and persecutory delusions,

aside from some notable exceptions (27; 36), which did not focus on false belief generation or

maintenance.

Here, we offer an example of the ramifications of being adaptively and maladaptively strategic

at different recursive levels. We use simulations based on Interactive Partially Observable Markov

Decision Processes (IPOMDPs; 37) to suggest how this can help explain social cognitive processes

that result in paranoia, suspiciousness, and/or conspiratorial ideation. We show how the degree of

reasoning about the intentions of others (2; 18; 38) can be a protective factor against exploitation.

However, we also demonstrate how this can go grossly awry: Selves that over-interpret actions

of others make misplaced inferences about the others’ strategic and deceptive intentions, with a

malign effect on the reward garnered by the self.

We begin by emphasizing the importance of hierarchical ToM in mixed-motive games. These

sequential social dilemmas (SSD) serve as a tractable testbed to observe the emergence of complex

behaviour (16), as agents need to balance their reputation with material gains and losses. This

work reinforces previous findings showing that agents with deep mental recursion, known as their

Depth of Mentalisation (DoM) can successfully manipulate the beliefs of those with one-step lower

DoM.

Next, we present the potential downside associated with maladaptively high DoM, i.e., hyper-

mentalising. This pitfall is illustrated through a sequence of interactions between agents with

mismatched DoM. We show that agents with maladaptively high DoM overestimate the com-

plexity of their counterparts and overreact to sincere agents. This overreaction yields detrimental

results. We then discuss how these results have the potential to explain some key aspects of
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psychopathology.

Our work offers lessons to several fields: To the computational cognitive science, and psychiatry

communities, we offer a computational account of a process contributing to paranoid beliefs

and behaviour, and a possible mechanism underlying excessive recursive belief formation in

general psychopathology. We show the AI community how ToM needs careful calibration to avoid

counterproductive inference, and hence loss of credence and reward between agents. As a result,

our work has key implications for AI safety and human-computer interaction.1

Figure 1: Task and Agent Summary: In the Ultimatum Game, a sender (orange) chooses how much
of an endowment to send to a receiver (blue). The receiver then has a chance to either accept or
reject this offer. If the receiver accepts, they both get to keep their portion of the endowment. If
the receiver rejects, neither gets anything. In our simulations, we included two types of sender
and two types of receiver. The first type of sender has a Depth of Mentalisation of -1 (DoM(−1))
- it possesses no Theory of Mind and is simply reactive to the receiver’s actions. In addition, we
introduce a random sender, sending uniformly distributed offers. The other type of sender and
both receivers are endowed with Theory of Mind along with DoM ∈ {0, 1, 2}. This enables these
agents to model their partners recursively, to a strictly limited extent. Both agents are characterized
by their DoM level and by a threshold, representing in principle the minimal reward they are
willing to accept

3 Paradigm and model

Mixed motive games offer a particularly useful test-bed to examine the rise of complex behaviour

and test the role of opponent perception in social interactions. Generally speaking, a mixed-motive

game is an interaction between two or more agents where there is mixed-desires in each agent’s

1The code for this paper is available here
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preferences over the outcome. One such game is the Prisoner’s Dilemma, where both parties gain

more from mutual cooperation than from mutual defection, while one side can gain an even higher

reward by defecting from a cooperating partner. In this work, we match agents with increasing

degrees of DoM in the Iterated Ultimatum game IUG (39)(Figure 1). This game is comprised

of T > 0 repetitions (here T = 12) of the following game: a sender, S, is endowed with a some

number of monetary units, set in this work to 1. They then offer the receiver, R, a partition of this

endowment: the receiver would get aS while the sender would get to keep 1− aS for themselves.

The receiver then decides whether to accept the offer (aR = 1) or to reject it (aR = 0). In the latter

case both parties get zero reward. The structure of the utilities makes the IUG a mixed-motive

game: the sender’s utility decreases with the offer size and so they are incentivised to offer the

receiver less. However, if the sender offers too little, they will end up with nothing. Hence the

sender has to balance their desires with those of the receiver to maximize their long-term utility.

We use the superscript t to denote the actions of both agents at trial t ∈ [1, T ]: atS , a
t
R. In turn,

we define the history at time t as the sequence of offers and responses: ht = ⟨a1S , a1R, . . . , atS , atR⟩.

Apart from a particularly simple, random, sender, each agent, i ∈ [R,S] is characterized by two

parameters: its utility function: uS , uR and its DoM level: k ∈ {−1, 0, 1, 2}. The utility is governed

by a threshold η, representing the minimal amount of money an agent is willing to receive. This

allows us a simple control for testing how DoM interacts with utility preferences. In addition,

thresholds serve as simple social orientation functions – those with higher thresholds are less likely

to make compromises compared to those with low (or zero) thresholds. This serves to introduce

diversity in the decision making process of the agents, representing in principle economic rational

agents (reward maximizing agents, who act solely to maximize their utility and do not gain utility

from other sources such as manipulation of others, social influence etc.). Other social orientation

functions are expected to yield a different behaviour. For example, the Fehr-Schmidt utility (40)

adds to the agent’s utility gain (loss) from inequality aversion. We keep this option for future

research.

In this work we consider two sender thresholds: ηS ∈ {0.1, 0.5} and two receiver thresholds:
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ηR ∈ {0.0, 0.35}. Formally, the utilities of agents with thresholds ηS , ηR are:

utS(ηS , a
t
S , a

t
R) = (1− atS − ηS) ∗ atR (1)

utR(ηR, a
t
S , a

t
R) = (atS − ηR) ∗ atR (2)

Both agents seek to maximize their discounted long-term reward:
∑T

t=1 u
t
ie

(t−1 log γ), with a discount

parameter γ > 0, here set to γ = 0.99.

Each agent (i) uses its DoM level (k) to compute the Q-values, Qi=k(a
t
i|ht−1, θi), which are used

for action sampling (policy), π. We assume that both parties play a SoftMax policy, with a known

temperature T (set in this work to T = 0.05):

P t
i=k(a

t
i|ht−1, θi) ∝ exp

Qi=k(a
t
i|ht−1, θi)

T
(3)

The action’s Q-value are computed as a function of the history and the agent’s DoM level as

described next.

We model the agents using the IPOMDP framework (37). This framework augments the POMDP

model to account for modeling others. These models, denoted by θ, include all aspects of the other

agent’s decision-making characteristics and beliefs. In this task, these aspects include the other

agent’s threshold, but it may also include the other’s agent’s beliefs, including the beliefs of others

about the self (i.e., nested beliefs). The level of recursion defines the agent’s DoM level. In this work,

we consider an iterated DoM level (41) - senders and receivers have odd- and even-numbered DoM

respectively.

At the core of this framework are the DoM(−1) agents, also known as subintentional agents.

These agents are characterized by lacking an opponent model, and are typically considered to be

model-free RL agents. In this task, we consider random and the threshold DoM(−1) senders. The

random sender makes offers uniformly random and does not adapt its behaviour to the receiver’s

response. We include this sender to examine the strategies used by senders and receivers to exploit

the possible existence of a random other, since agents may mistake randomness for intentional or

non-random behaviour.
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The threshold DoM(−1) senders follow a reactive and myopic policy. If their current offer is

accepted, they will offer less in the following iteration as they infer this acceptance as a sign that

the offer was “too generous”. On the other hand, if the offer is rejected, they will increase the next

offer. Formally, these agents maintain a lower and upper bound representing the range of offers to

consider:

Lt = Lt−1 · at−1
R + at−1

S · (1− at−1
R ) (4)

U t = U t−1 · (1− at−1
R ) + at−1

S · (at−1
R ) (5)

with L0 = 0 and U0 = 1. In turn, these senders’ Q-values are simply the utility from every action in

the range atS ∈ [Lt, U t]:

Qt
S=−1(a

t
S ; ηS) = utS(a

t
S , ηS) (6)

The DoM(0) receiver models the sender as a DoM(−1) sender. In turn, it forms a belief about

the type of the sender - either a random or a threshold sender: θ̂S=−1 ∈ {Random, 0.1, 0.5}. These

beliefs are updated using IRL (9) and the nested models. Upon observing an offer atS , the DoM(0)

receiver computes the likelihood of the offer for each possible sender type and reweights them

with its current beliefs:

btR=0(θ̂S=−1) = ptR=0(θ̂S=−1|ht−1, atS) ∝ P t
S=−1(a

t
S |ht−1, θ̂S=−1)b

t−1
R=0(θ̂S=−1) (7)

where, P t
S=−1(a

t
S |ht−1, θ̂) is computed using the DoM(0) receiver’s nested DoM(−1) sender model.

We assume that the prior beliefs are both common knowledge and flat, making the updated

belief common knowledge, as it is a deterministic function of the history, and the actions are fully

observed. The DoM(0) receiver’s Q-values are a combination of its immediate utility and the
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discounted expected utility, given that it played atR:

Qt
R=0(a

t
R; ηR, b

t
R=0(θS=−1)) = (8)

Eat+1
S ∼π∗

S=−1

[
utR(a

t
S , ηR) · atR + γmax

at+1
R

{Qt+1
R=0(a

t+1
R ; ηR, b

t+1
R=0(θS=−1))}

]
where Eat+1

S ∼π∗
S=−1

is the expected future offer, weighted by the current belief.

Interacting with the simple DoM(−1) sender, these agents solve the optimal policy computation

using the ExpectiMax algorithm (42). This planning algorithm computes the Q-value when playing

against a stochastic adversary, by averaging over its expected actions.

Playing with the DoM(0) receiver in mind, the DoM(1) sender’s belief includes inferences about

the receiver’s threshold and the receiver’s beliefs about the sender’s type. Due to the known priors

and full observability, these nested beliefs are known to the DoM(1), but we specify them here for

illustrative purposes:

btS=1(θ̂R=0, b
t−1
R=0(θ̂S=−1)) = (9)

ptS=1(θ̂R=0, b
t−1
R=0|h

t−1) ∝ P t
R=0(a

t−1
R |ht−2, at−1

S , θ̂R=0, b
t−1
R=0(θ̂S=−1))b

t−1
S=1(θ̂R=0, b

t−2
R=0(θ̂S=−1))

The DoM(1) Q-values follow the same structure as the DoM(0) Q-values (Equation 8), where the

expectation includes the updated beliefs of the DoM(0) receiver upon observing the offer:

Qt
S=1(a

t
S ; ηS , b

t
S=1(θ̂R=0, b

t−1
R=0)) = (10)

EatR∼π∗
R=0

[
utS(a

t
S , ηS) · atR + γmax

at+1
S

{Qt+1
S=1(a

t+1
S ; ηS , b

t+1
S=1(θ̂R=0, b

t
R=0))}

]
Much like the DoM(0) receiver, the DoM(1) sender also infers through simulation how its actions

affect the receiver’s future actions. However, while the DoM(0) receiver manipulates the bounds of

the DoM(−1) sender, the DoM(1) sender manipulates the beliefs of the DoM(0) receiver, in both

cases to their own favour.

We also consider a DoM(2) receiver. This agent models the threshold sender as a DoM(1)

sender and their belief update includes in addition to the type inference, the nested beliefs of
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the DoM(1). These are the beliefs the DoM(1) sender ascribes to the presumed DoM(0) receiver.

Notably, these receiver’s also consider the random sender in its model. The belief update and

Q-values computation follow the same formulation as in Equations (9, 10).

The DoM(1) and DoM(2) agents compute their Q-values using the IPOMCP planning algorithm

(41), an extension of the POMCP algorithm to IPOMDP. Using their nested opponent model, these

agents plan how to manipulate the policy of the DoM(0) receiver.

4 Results

We begin by analyzing the cases where the agents’ DoM levels are typically matched, i.e., where

one agent has DoM(k + 1) and the other DoM(k). These simulations establish a baseline of typical

strategic behaviour stemming from the higher DoM agent’s ability to manipulate its counterpart.

First, since savvy opponents should act deceptively, a high DoM agent can confuse naive

behaviour as arising instead from clever malevolence. We account for this by analyzing the counter-

deceptive reasoning applied by high DoM agents and show how this skepticism harms them when

matched with benign agents.

Second, high DoM agents believe themselves to be interacting with moderately high DoM

partners, and can believe that such moderately high DoM partners are strategically impervious to

the responses of what they assume to be their even lower DoM opponents. Thus, the high DoM

agents can exhibit a form of helplessness when playing low DoM partners, when in fact they would

be perfectly capable of exploiting them appropriately. We illustrate this by simulating the DoM(2)

receiver and the DoM(−1) sender. Due to the strictness of opponent reasoning of the cognitive

hierarchy, the DoM(2) models its counterpart as DoM(1), misinterpreting the behaviour of the

DoM(−1) sender.

From these simple reward-maximising mechanisms enacted in a competitive, interactive context,

we conclude that the combination of a deceptive opponent and a maladaptively high level of DoM

gives rise to over-mentalising and loss of reward.
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4.1 Baseline behaviour

Theory of Mind (ToM) is used for both inference and planning. For example, when the DoM(0)

receiver observes an offer by the sender, its belief update allows it to identify the type of sender by

inverting the offer to infer the sender’s characteristics. Here, the sender is assumed by the receiver

to have a DoM(−1) policy: it is unable to mentalise about the receiver and simply to hold to its

policy. The DoM(0) receiver can then use its model of the sender to simulate how each sender

type would respond to the receiver’s action, weighing the optimal response according to its beliefs.

Thus, it can manipulate the sender’s behaviour to its benefit, up to a irreducible uncertainty. This

example serves to show that those with higher DoM can theoretically gain an advantage over those

with lower DoM.

4.1.1 DoM(-1) sender and DoM(0) Receiver: Näive utility calculus

Figure 2: Illustration of DoM(0) IRL: (A,B) In interacting with the DoM(−1) sender (A), the
DoM(0) receiver makes inferences about the sender’s type (B). Notably, the first offer is usually
sufficient to tell the random sender from the threshold senders. When the receiver’s belief favours
the threshold sender, the receiver manipulates the sender by rejecting the offers until a desired offer
is met, according to the receiver’s threshold.

Following the properties of hierarchical mentalising, we begin with the first dyad of adaptively

aligned DoM levels - a DoM(−1) sender interacting with a DoM(0) receiver. The DoM(0) inference

about the DoM(−1) type is displayed in Figure 2(B). Crucially, the first offer here suffices to tell

the random sender from the threshold ones (since it is so high). After making this distinction, the

receiver adapts its policy. If the beliefs support the threshold sender, the optimal policy is to reject

the offers strategically, pushing the lower bound upward until a desired level is met. Figure 2(A)
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shows this manipulation as a function of the receiver’s threshold – the zero threshold receiver’s

acceptable offer is 0.5 (which is the maximal offer the DoM(−1) sender with η = 0.5 is willing to

make), while the 0.35 threshold receiver is “demanding” for a higher offer to maximize its long

term cumulative reward. On the other hand, if the DoM(0) receiver believes it is facing the random

sender, it accepts any offer that satisfies its threshold, as the random agent cannot be manipulated.

This is appropriate and adaptive to the context.

4.1.2 DoM(1) sender and DoM(0) Receiver: Deception through induced false beliefs

Figure 3: Dynamics of the DoM(1) manipulation: The DoM(1) offers are strategically aimed at
shifting the DoM(0) belief in favour of the random sender hypothesis. This strategy naturally arises
out of simple reward-maximising agents in a mixed motive setting. (A) The sender’s initial offer
”mimics” that of the random sender, before subsequently defecting. (B), The DoM(0) receiver beliefs
are completely hijacked by the DoM(1) deception. The DoM(1) offers are deliberately high, to be
classified by the DoM(0) beliefs as coming from a random sender. While the DoM(−1) sender’s
first offer is 0.0, the DoM(1) sends between 0.1 and 0.4.(C) The DoM(1) sender’s deception is
characterized by making a relatively high first offer. This offer is highly atypical for a DoM(−1)
threshold sender. (D) using the same IRL concept, the DoM(1) makes inferences about the DoM(0)
receiver’s type from its responses
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The DoM(1) sender uses its DoM(0) nested model for optimal policy computation. It emulates

the DoM(0) inference process, and consequently predicts its policy. Given the policies depicted in

Figure 2, the DoM(1) sender’s policy is to masquerade itself as a random DoM(−1) agent, causing

the DoM(0) to accept any offer (respecting the receiver’s threshold). Thus, the DoM(1) sender

could avoid the strategic rejection of the DoM(0) receiver. This is achieved by making offers that

are highly unlikely for a threshold sender (from the DoM(0) receiver’s perspective), illustrated

in Figure 3(C). Given the low SoftMax temperature, the DoM(1) correctly infers that the DoM(0)

receiver would infer any offer other than 0.0 as typical behaviour of the random sender, as the

DoM(−1) is expected to start offering nothing.

Following this ploy, the DoM(1) sender repeatedly sends the bare minimal offer (presented in

3(A)), to extract access wealth at the expense of the DoM(0). This deception utilizes a pitfall of

the DoM(0) inference process – the likelihood of any action is the same under the random sender

generative model hypothesis. Thus, the likelihood of a flat trajectory of offers is the same as the

likelihood of the “true” random offers - making the DoM(0) receiver unable to tell the true random

from the fake one as depicted in Figure 3(B).

4.1.3 DoM(1) sender and DoM(2) Receiver: Defying deception with deception

Being aware of this ploy, the DoM(2) receiver uses its nested model of the DoM(1) sender to

flag seemingly “random” offers as having been generated by a savvy adversary, identifying the

masquerader and reacting accordingly (Figure 4). Applying the same deceptive principles as the

DoM(1), the DoM(2) acts in a way that causes the DoM(1) to believe falsely that it is matched

with the higher η = 0.35 receiver, thus pressuring the sender to improve its offers. This yields a

higher reward compared to the limited-opponent modelling DoM(0) receiver. Notably, due to the

built-in advantage of the sender in this task (has to offer at most 0.4) the advantage of the DoM(2)

is manifested in the decrease of the reward ratio compared to the DoM(0).
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Figure 4: Dynamics of the DoM(2) counter-manipulation: (A) The DoM(2), masquerading as
the high threshold receiver, rejects low offers. This encourages the DoM(1) sender with a high
threshold to improve its offers, while having little effect on the already “generous” η = 0.1 DoM(1)
sender. (B), the DoM(2) receiver correctly reads the DoM(1) sender’s bluff, while manipulating the
latter’s beliefs (D). (C) Typically, the agent with the higher DoM gains a higher reward than the
lower DoM agent. The y-axis measures the ratio between the receiver and sender’s total reward.
Due to the asymmetric nature of the IUG, the DoM(2) receiver superiority is manifested in its
ability to lower the DoM(1) sender advantage.

We conclude that when appropriately matched, having DoM(k + 1) compared to a DoM(k)

counterpart is beneficial. These findings reinforce previous studies highlighting the advantages of

higher DoM in mixed-motive games. Figure 4(C) illustrates this supremacy - the total reward ratio

is always in favour of the higher DoM agent.

4.2 Skepticism and paranoia in DoM(2)

While benefiting its holder, DoM is a double-edged sword. A mismatched DoM agent may

misinterpret the actions of those with even lower DoM levels than they expect, misinterpreting

simplistic behaviour as the product of Machiavellian sophistication. Here, knowing that its DoM(1)

sender opponent would masquerade itself as a random sender, the DoM(2) receiver is susceptible

to interpreting random behaviour as having been generated by the DoM(1) sender. This leads to
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delayed detection of the random sender, as more ”random” behaviour is required to confirm that

the sender is genuinely random. The effect of the random-like ruse is that it takes, on average, 5

trials for the belief distribution of the DoM(2) receiver to converge to the random type compared to

the 2 trials it takes on average for the DoM(0).

Figure 5: Effects of maladaptive DoM: (A) The offers of the DoM(−1) sender lie outside the DoM(2)
opponent model and are viewed as coming from a random sender.(B) In turn, the receiver’s docile
policy means that they are willing to accept any offer, yielding them a low reward

While delayed random identification has a limited effect on the DoM(2) reward, the other type

of maladaptive DoM, over-mentalising, yields a more severly detrimental outcome.

Over-attribution of intentionality means that the DoM(2) receiver fails to model the DoM(−1)

sender properly. The low offers of the threshold DoM(−1) senders are atypical for the savvy,

random-pretending DoM(1). Thus, the DoM(2) receiver’s tendency to interpret the ”random”

behaviour of the DoM(1) as a sign of intentional strategy causes it to interpret any of the non-

random DoM(−1) actions as a sign of random behaviour as depicted in Figure 5(A).

Given that the best response to a truly random sender is just to accept anything above one’s

threshold, the trapped DoM(2) receiver accepts most of the threshold DoM(−1) sender offers.

However, these simplistic senders will improve their offers only if rejected, otherwise, they continue

to make the same low offer. The detriment to the receiver is evident in Figure 5(B). In effect, the

DoM(2) never acts to cause the DoM(−1) to show itself to be able to be changed, and so never

encounters evidence against its own beliefs.
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While the DoM(2) falls for the same ploy applied by the DoM(1) sender against the DoM(0)

receiver, the causal mechanism between the two differs. The DoM(2) is a victim of its sophistication,

and the incorrectly perceived sophistication of its partner, and not the victim of a truly savvy

opponent.

5 Discussion

This work shows that hierarchical mentalising is a double-edged sword. We analysed pairs of RL

agents endowed with ToM at different depths of mentalization in a mixed-motive game. When

agents correctly model their opponent’s degree of sophistication, they can protect themselves, acting

appropriately against deceptive partners. These simulations are aligned with the hypothesis that

ToM has evolved out of the need to survive and succeed in complex mixed-motive environments

(43; 44; 45). On the other hand, we also show how high DoM can be maladaptive when miscal-

ibrated: Agents thinking three steps into the cognitive hierarchy become sceptical against even

random behaviour and are trapped in a hypermentalised policy, believing they are surrounded by

sophisticated others that are out to trick them. This phenomenon, generated purely from two simple

reward-maximising agents in an interactive context, makes for a plausible explanation for the

generation and maintenance of psychopathological states, such as paranoia, where misperceiving

others’ negative intentions is a central feature and important source of disability.

Our work highlights how maladaptive DoM are functions of the agent’s own beliefs, its envi-

ronment and the beliefs of other agents. This is consistent with prior observations (46; 47; 48), and

is relevant for the maladaptive behaviour of machines (49). It also shows how complex phenomena

like scepticism can arise even from optimal Bayesian inference (16; 50) and how what an agent

might think of as optimal Bayesian inference can go awry given the confusion about the decision

problem or an unfortunate environment (48)

The over-attribution of negative social intentions is a central feature in paranoid delusions and

borderline personality disorder (32) and hyper-mentalising has been identified as an important

transdiagnostic feature in psychopathology more broadly (19; 26). Our work offers a computational

model of these phenomena, formalising a theory of how hierarchical, recursive social cognition
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gone awry may explain how paranoia can arise and be maintained in purely reward-maximising,

interactive agents, even with minor miscalibrations. This cognitive mechanism may play a crucial

role in the formation of persecutory delusions, along with inflexible priors about interaction

partners (51; 52; 53), noisy mental models of others (54; 55), social hypersensitivity (56), and biased

social values (57).

Our simulations rely on a well–established game, and relatively simplistic agents to focus

on exemplar emergent behaviours explaining the production of false beliefs around the strategic

and malicious nature of others, but this naturally introduces limitations. First, we use simple,

fixed thresholds to determine the utility type of the sender. Indeed, Fehr-Schmidt (FS) (40) or

FS-like utility functions are typically used to assess rejection in social contexts (e.g. (36; 57)),

although we opted to remove this to isolate the effect of DoM. Replacing these egocentric utilities

with social orientation utilities, like inequity aversion (58), may yield other non-trivial effects of

hypermentalising.

Second, our model assumes a strict k-level model. This means that an agent’s interpretation of

the opponent is bounded to a fixed level of DoM, making the higher DoM agents susceptible to

over-mentalisation and unable to assume otherwise. One remedy for this problem, which future

work may explore, is adopting a mixture model view of the cognitive hierarchy. In this version,

suggested by (11), a DoM(k) views the world as composed of different levels of DoM levels, ranging

from (k − 1) to (−1), distributed according to a truncated Poisson distribution. This model may

solve the problem of over-mentalisation, as the higher DoM agent no longer treats others as having

a fixed DoM(k − 1) but rather has having multiple (unknown) DoM levels. However, it comes with

an increase in the computational costs and complexity of the inference process. Nevertheless, from

a highly paranoid perspective, we would predict that higher, more sophisticated DoM levels would

be disproportionately inferred by those with BPD, persecutory delusions, or heightened paranoia

compared to those with low paranoia.

Another future direction for solving fixed over-mentalisation is to make the DoM level an

intentional, adaptive parameter. For example, after learning a partner is not attempting to deceive,

one’s own DoM might reduce to fit the context (although the potential sophistication of the agent

16



remains constant). A potential source and consequence of psychiatric symptoms might be a sloth

in making this reduction even when the costs are high in terms of both computation and utility.

Again, we predict that those with high vs low paranoia would enter into high DoM states much

faster and take longer to reduce to adopting a lower DoM when the environment is evidently less

competitive.

Another natural extension of our model may also incorporate sophistication detection: the

ability for an agent to recognise when it is up against a more sophisticated partner, even if it cannot

change its own DoM. This is relevant in several real-world scenarios and may offer a heuristic ’cheat’

to the k-level hierarchy rationale. For example, humans, particularly those who are paranoid, can

believe that they are being confronted with agents who are smarter than them and whose actions

lack a transparent rationale – one can sense a plot is afoot but not be able to fully conceptualise

it. Such an extension would allow an agent to make heuristic responses, such as threats to exit a

context if they could not out-manoeuvre their partner strategically by increasing their mentalisation

depth (36; 59). A necessity of this modification requires a metacognitive understanding of the

limitations of one’s social cognition. Such metacognition might also be employed to make other

decisions before drastic action, e.g., gathering more information about opponents (60).
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9 Appendix

9.1 IRL as ToM inference

As presented above, inference in ToM can be seen as an extension of inverse RL (IRL; 9). Bayesian

IRL (5; 61) requires an observer to make a Bayesian inference about the utility (reward) function of

an agent from a sequence of observed behaviour o0:T :

p(u|o0:T ) ∝ P (o0:T |u)p(u) (11)

The DoM(0) inference follows this principle, inferring about the DoM(−1)’s utility function

from its behaviour, using a nested model. This observation was made before (10), and framed as

the Näive utility calculus (62). Formally, this inference requires a commonly known behaviour of

the DoM(−1) (Equation 5). This behaviour is composed of the DoM(−1) Q-values (Equation 6) and

its policy (Equation 3). Plugging into Equation 7 give rise to the IRL process, effectively a posterior

distribution over the utility functions, as in Figure2B.

While following the same principles, namely inverting the behaviour to infer about the mech-

anism, higher DoM agents inference goes beyond utility inference. In this case, the inference

also includes the agent’s beliefs (Equation 9). Notably, if the common prior or action observ-

ability assumptions are revoked, the inference process yields a multi-dimensional distribution:

p(θ × b(·)) = p(θ) × p(b(·)). The first component is similar to the utility inference of the DoM(0)

agent, while the second one is a distribution over distributions (63). We refer the reader to (37) for a
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full introduction of belief update in this case.
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