Main content
Good Advice is Beyond All Price, but What if it Comes from a Machine?
Date created: | Last Updated:
: DOI | ARK
Creating DOI. Please wait...
Category: Project
Description: As nonhuman agents become integrated into the workforce, the question becomes whether humans are willing to consider their advice, and to what extent advice-seeking depends on the perceived agent-task fit. To examine this, participants performed social and analytical tasks and received advice from human, robot, and computer agents in two conditions: in the Agent First condition, participants were first asked to choose advisors and were then informed which task to perform; in the Task First condition, they were first informed about the task and then asked to choose advisors. In the Agent First condition, we expected participants to prefer human to non-human advisors, and to subsequently trust their advice more if they were assigned the social as opposed to the analytical task. In the Task First condition, we expected advisor choices to be guided by stereotypical assumptions regarding the agents’ expertise for the tasks, accompanied by higher trust in their suggestions. The findings indicate that in the Agent First condition, the human was chosen significantly more often than the machines, while in the Task First condition advisor choices were calibrated based on perceived agent-task fit. Trust was higher in the social task, but only showed variations with the human partner.