Main content

Contributors:

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: The global antibacterial crisis requires urgent attention from environmental engineering and bioengineering. Here, unit operation efficiencies are assessed, in a novel water treatment train capable of remediating antibacterials, metals and DNA. This technological cycle relies on bioremediation, high temperature and pressure. The analyses used 14C-respirometry, spectrometry, and a set of molecular analyses. Multiresistant bacteria hold antibacterial resistance genes (ARGs); they were harnessed for bioremediation of pollutant mixtures. Treatment efficiencies were 25-71% for 8-days aerobic metal reduction and removal (CrVI: 255, Cd: 0.65, and Pb: 0.65 mg L-1 initial concentrations); 34.8% erythromycin (ERY) 20-days biodegradation (from 750 mg L-1). The anaerobic digestion (AD) bioremediated mixed antibacterials (65-73% in 60 days from initial 100 mg L-1). However, high concentrations of mixed antibacterials (SMX+ERY) induced stronger inhibition of enzymatic activity, higher sensitivity of bacteria and acetoclastic methanogens, and higher diversity of ARGs. ARGs justified complete DNA degradation (60°C at 5.8 kPa for 10 min). The suggested coupling sequence of operations was metal then antibacterial aerobic bioremediation (as pre-treatments to anaerobic digestion), anaerobic bioremediation (also yielding biomethane as heat source), recirculation of ARGs in situ, and thermal-barometric DNA degradation.

License: CC-By Attribution 4.0 International

Files

Files can now be accessed and managed under the Files tab.

Citation

Components

No components to display.

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.