Main content

Estimating Between-Trial DDM Parameters  /

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: For many years the Diffusion Decision Model (DDM) has successfully accounted for behavioral data from a wide range of domains. Important contributors to the DDM’s success are the across-trial variability parameters, which allow the model to account for the various shapes of response time distributions encountered in practice. However, several researchers have pointed out that estimating the variability parameters can be a challenging task. Moreover, the numerous fitting methods for the DDM each come with their own associated problems and solutions. This often leaves users in a difficult position. In this collaborative project we invited researchers from the DDM community to apply their various fitting methods to simulated data and provide advice and expert guidance on estimating the DDM’s between-trial variability parameters using these methods. Our study establishes a comprehensive reference resource and describes methods that can help to overcome the challenges associated with estimating the DDM’s across-trial variability parameters.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.