Main content

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: A central characteristic of Bayesian statistics is the ability to consistently incorporate prior knowledge into various modeling processes. In this paper, we focus on translating domain expert knowledge into corresponding prior distributions over model parameters, a process known as prior elicitation. Expert knowledge can manifest itself in diverse formats, including information about raw data, summary statistics, or model parameters. A major challenge for existing elicitation methods is how to effectively utilize all of these different formats in order to formulate prior distributions that align with the expert's expectations, regardless of the model structure. To address these challenges, we develop a simulation-based elicitation method that can learn the hyperparameters of potentially any parametric prior distribution from a wide spectrum of expert knowledge using stochastic gradient descent. We validate the effectiveness and robustness of our elicitation method in four representative case studies covering linear models, generalized linear models, and hierarchical models. Our results support the claim that our method is largely independent of the underlying model structure and adaptable to various elicitation techniques, including quantile-based, moment-based, and histogram-based methods.

License: MIT License

Wiki

Add important information, links, or images here to describe your project.

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.