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Abstract— We present our latest results for advanced applications of optical Kerr frequency microcombs, including an optical 

convolutional accelerator operating at 11 Tera-OPS, as well as real-time video signal processing at a speed of 17 Terabits/s. 
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Integrated optical microcombs have become a hugely successful field in the past 15 years. [1- 4] Here, we present our work on 

ultrahigh bandwidth applications of Kerr microcombs, [5-24] including optical neural networks, [5,6] optical fiber data transmission, 

[7] and an optical real-time video digital signal processor operating at 18 Terabits/s. [8, 9] 

Optical neural networks (ONNs) [5] are promising next-generation neuromorphic computers for ultra-high computing speeds 

enabled by the >10 THz wide telecom band. While Significant progress has been made in highly parallel, high-speed and trainable 

ONNs, processing large-scale data, needed for computer vision tasks, remains challenging because ONNs are fully connected 

structures with their input scale determined by hardware parallelism. This leads to tradeoffs in network scale and footprint. By 

interleaving wavelength, temporal, and spatial dimensions with an integrated Kerr microcomb, we demonstrate an optical 

convolution accelerator at 11.322 Tera-OPS/s (TOPS) and use it to process 250,000 pixel images with 10 convolution kernels at 3.8 

TOPs. Our convolution accelerator (CA) is dynamically reconfigurable and scalable, serving as both a CA front-end as well as an 

optically deep CNN with fully connected neurons, with the same hardware. We use the deep CNN to achieve recognition of the full 

ten handwritten digits (0-9) with an accuracy of 88%. Our accelerator is stand alone and universal — fully compatible with electrical 
and optical interfaces, as a universal ultrahigh bandwidth data compressing front end for neuromorphic hardware bringing massive-

data machine learning for real-time ultrahigh bandwidth data within reach.   

We also demonstrate an optical real-time signal processor [8, 9] for digital video images that is reconfigurable, is based on 

components that are either integrated or compatible with integration, and operates at ultra-high bandwidths of 17-18 Terabits/s. This 

is sufficient to process almost 400,000 (399,061) video signals concurrently and in real-time, with up to 34 functions simultaneously. 

The system is equivalent to electrical digital signal processing (DSP) systems but performs at multi-terabit/s bandwidths, enabled 

by massively parallel processing. It is also very general, flexible, and highly reconfigurable – able to perform a wide range of 

functions without requiring any change in hardware. We perform multiple image processing functions in real-time, which is essential 

for machine vision and microscopy for tasks such as object recognition or identification, feature capture, and data compression. 

These functions include edge enhancement, edge detection, and motion blur correction. Edge enhancement and detection are key 

approaches to object recognition that rely on the detection of edges, or discontinuities in image brightness, texture, colour, or other 
properties. The processes that we employ to perform these functions include Hilbert transforms and differentiation for object edge 

enhancement and detection, and include both integral order and a continuous range of fractional order transforms, as well as image 

integration for motion blur. We demonstrate operation with 34 different functions, although the range of different functions is in 

fact unlimited given that the system can process a continuous range of arbitrary order functions, including fractional-order to high 

order differentiation. Our system uses an integrated Kerr microcomb source that generates 95 discrete taps, or wavelengths as the 

 
Figure 1 | Tera-OPS photonic convolution accelerator. 

EOM: electro-optical Mach-Zehnder modulator. SMF: 

standard single mode fibre. PD: photodetector.  

 

 

Figure 2 | Experimental and theoretical results for image recognition. 

Upper figures are sampled intensities of ten output neurons of the fully 

connected layer; lower figures are the confusion matrices.  
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basis for massively parallel processing, with single channel rates at 64 GigaBaud (pixels/s). The experimental results agree well 

with the theory, demonstrating that the processor is a powerful approach for ultrahigh-speed video image processing for robotic 

vision, machine learning, and many other emerging applications. 

Figure 1 shows the operation principle of the photonic matrix convolutional accelerator (CA). The input data vector X is encoded 

as the intensity of temporal symbols in a serial electrical waveform at a symbol rate 1/τ (baud), where τ is the symbol period. The 
convolution kernel is represented by a weight vector W of length R that is encoded in the optical power of the microcomb lines 

through spectral shaping performed by a Waveshaper. The temporal waveform X is multi-cast onto the kernel wavelength channels 

via electro-optical modulation, generating replicas weighted by W. Next the optical waveform is transmitted through a dispersive 

delay with a delay step (between wavelengths) equal to the symbol duration of X, achieving time and wavelength interleaving. 

Finally, the delayed and weighted replicas are summed via high speed photodetection so that each time slot yields a convolution 

between X and W for a given convolution window, or receptive field. The convolution window effectively slides at the modulation 

speed matching the baud rate of X. Each output symbol is the result of R multiply-and-accumulate operations, with the computing 

speed given by 2R/τ OPS. Since the speed of this process scales with both the baud rate and number of wavelengths, it can be 

dramatically boosted into the TOP regime with the massively parallel wavelength channels of the microcomb source. The length of 

the input data X is unlimited so that the convolution accelerator can process data with an arbitrarily large scale—the only limitation 

being the capability of the external electronics and the number of wavelengths (for speed). The optical CNN fully connected layer 

had ten neurons, each corresponding to one of the ten categories of handwritten digits from 0 to 9, with the synaptic weights 

represented by a 72×10 weight matrix WFC
(l)

 (ie., ten 72×1 column vectors) for the lth neuron (l ∈ [1, 10]) –  with the number of 

comb lines (72) matching the length of the flattened feature map vector XFC. The shaped optical spectrum at the lth port had an 

optical power distribution proportional to the weight vector WFC
(l), thus serving as the equivalent optical input of the lth neuron. 

After being multicast onto the 72 wavelengths and progressively delayed, the optical signal was weighted and demultiplexed with 

a single Waveshaper into 10 spatial output ports — each corresponding to a neuron. The final output of the optical CNN was 

represented by the intensities of the output neurons, where the highest intensity for each tested image corresponded to the predicted 

category. Supervised network training was performed offline electronically. We tested 500 8-bit 30 × 30 resolution images of the 

handwritten digit dataset with the deep optical CNN, achieving an accuracy of 88%. Figure 2 shows the resulting confusion matrices 

(theoretical and experimental). We present different architectures both to increase the speed to the PetaOP regime as well as increase 

the network size to more than 25,000 synapses in order to tackle larger challenges and to increase the accuracy to be closer to that 

of electronic chips – greater than 99%.   

In summary, we demonstrate advanced applications of optical Kerr microcombs including an optical convolutional accelerator 

operating at 11.3 TOPS, an optical convolutional neural network to achieve recognition of handwritten digit images, and a real-time 

video image signal processor operating at 17 Terabits/s.  
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