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Fig. 1. Top: GenoREC maps data and task specifications (A) to appropriate visualizations. In this figure, the knowledge-based
recommendation (B) shows the component-wise model of GenoREC and the subsequent decisions made at each step. Based
on the recommendation model, GenoREC generates and recommends an appropriate visualization to the user (C). Through the
recommendation, GenoREC allows the user to avoid a wide range of similar but sub-optimal visualization options (D) given the data
and task. Bottom: An overview of GenoREC’s system components and their interactions to generate output visualizations.

Abstract—Interpretation of genomics data is critically reliant on the application of a wide range of visualization tools. A large number of
visualization techniques for genomics data and different analysis tasks pose a significant challenge for analysts: which visualization
technique is most likely to help them generate insights into their data? Since genomics analysts typically have limited training in data
visualization, their choices are often based on trial and error or guided by technical details, such as data formats that a specific tool can
load. This approach prevents them from making effective visualization choices for the many combinations of data types and analysis
questions they encounter in their work. Visualization recommendation systems assist non-experts in creating data visualization by
recommending appropriate visualizations based on the data and task characteristics. However, existing visualization recommendation
systems are not designed to handle domain-specific problems. To address these challenges, we designed GenoREC, a novel visualization
recommendation system for genomics. GenoREC enables genomics analysts to select effective visualizations based on a description
of their data and analysis tasks. Here, we present the recommendation model that uses a knowledge-based method for choosing
appropriate visualizations and a web application that enables analysts to input their requirements, explore recommended visualizations,
and export them for their usage. Furthermore, we present the results of two user studies demonstrating that GenoREC recommends
visualizations that are both accepted by domain experts and suited to address the given genomics analysis problem. All supplemental
materials are available at https://osf.io/y73pt/.

Index Terms—genomics, visualization, recommendation systems, data, tasks

1 INTRODUCTION

The almost ubiquitous availability of genomic data has revolutionized
research in biology and medicine. By interpreting genomic and
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epigenomic data, researchers can improve our understanding of
the genetic causes and mechanisms that underlie common and rare
diseases. Visualization, as an efficient approach for data exploration
and knowledge communication, plays a central role in the analysis of
genomic data. A large number of visualization techniques and tools
have been developed over the years to meet the wide variety of analysis
requirements in the field of genomics [38].

To succeed in the visual analysis of genomics data, a genomics analyst
or a domain user who may not be trained in data visualization, must
carefully select suitable visualizations based on data characteristics and
analysis tasks. Currently, genomics analysts use visualizations based on
their prior experience or use out-of-the-box visualizations generated by
popular genome browsers [19, 24]. In many cases, these visualizations
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do not consider appropriate visualization best practices, results from
empirical studies, or theoretical guidance. For example, a widely used vi-
sualization technique in genomics, Circos [23], uses a radial layout with
length or position channels that represent quantitative features, which is
found to be inaccurate and inefficient in data interpretation [54]. Another
example is the lack of effective multi-scale designs (e.g., overviews
and detail views) in commonly used genome browser tools as survey
results on genomics tools show [27]. These all can result in ineffective
and, in many cases, wrong visual design [12, 52]. These and many other
limitations of common, as well as specialized visualization approaches
in genomics, indicate a need for better visualization guidance.

Given the importance of choosing suitable visualizations,
visualization researchers have contributed many visualization
recommendation systems, spanning general to domain-specific
systems [11, 16, 25, 31, 37, 45, 56, 57]. Existing visualization recommen-
dation systems suggest a data visualization primarily based on the data,
and in very few cases, they also consider the user’s tasks [45]. These
systems allow data analysts who are not experts in visualization design to
focus on the analysis of data and offload the work of visualization design
to an algorithm. While these systems have demonstrated success, they
are typically designed only for common visualization types, such as bar
charts, line charts, and scatter plots, and cannot be applied to scenarios
which require complex or domain-specific visual encodings. Genomics
visualization is unique and challenging for a number of reasons: First,
the design space of genomics visualizations [38] is different from a taxon-
omy of general visualization [4], including some unique combinations of
visualizations that are rarely used in other fields, such as radial overview
visualizations and complex glyph encodings for gene structures. Second,
analyzing large-scale genomic data requires multiple coordinated views,
but existing visualization recommendation systems focus on single-view
visualizations. Finally, the analysis tasks in genomics are domain-
specific and not considered in other visualization recommendations.

To address these issues, we designed and developed GenoREC, a
novel recommendation system for interactive genomic data visualiza-
tions based on specifications about data and tasks. The core contribution
of GenoREC is a knowledge-based recommendation model, consisting
of a set of decision rules that we summarized based on empirical knowl-
edge and published visualization practices. As shown in Figure 1B, the
recommendation of individual visualizations is decomposed into six
design components based on the taxonomy proposed by Nusrat et al. [38].
For each component, we enumerate the design space and craft rules to
describe the design decisions. In addition to the recommendation model,
we contribute a web application that allows genomics data analysts to
describe their data and task specifications and explore the corresponding
recommended visualizations. The output of GenoREC is a specification
for Gosling [29], a grammar-based genomics visualization toolkit. The
specification can be used by genomics analysts to customize the rec-
ommended visualization for the further use. In this work, we primarily
focus on the evaluation of GenoREC’s recommendation model. The
results of our user study demonstrate that GenoREC’s recommendations
are helpful for analysts working in the space of genomics data analysis.

2 RELATED WORK

Visualization Recommendation System Types: Kaur and
Owonibi [18] found that visualization recommendation systems
are designed to take into account four considerations: data characteris-
tics, task orientation, domain knowledge, and user preference. (1) Data
Characteristics deals with the identification of visual encoding corre-
sponding to the data type of attributes. Mackinlay’s APT system [30]
was one of the first systems that implemented automatic mapping from
data characteristics to 2D graphics or charts. Polaris (i.e., the research
prototype of Tabealu) [50] used APT’s mapping of data characteristics
to visual encoding to facilitate the recommendation of visualization.
The concept of automatic mapping of data variables to visualization was
further extended by the Sage system [44] which included support for
more types of visual encoding. More recently, systems like Voyager [56]
and Draco [35] were also developed to facilitate data-based visualization
recommendations. Draco contributes a technique to learn recommen-
dation knowledge from existing empirical studies. (2) Task Oriented

recommendations factor in a user’s intentions behind visualizing data
as the main criteria for recommending visualizations. The current
task-oriented recommendation systems support domain-independent
low-level analytical tasks, such as compare and summarize [5, 45, 48].
(3) Domain Knowledge imposes further restrictions on the results of the
recommendation system as the domain expert may prefer a visualization
that is more familiar or widely accepted within their domain. GEViT-
Rec [10] focuses on the domain of epidemiology and recommends a
visually coherent combination of charts by inferring a data source graph
and mapping that to a set of view templates. (4) User Preference relates
to factoring end users’ preference in the recommendation system output.
For example, Draco [35] has a method to factor user preference in the
form of user-defined constraints. GenoREC factors in data, task, and
domain-specific guidelines for recommending visualizations.

Visualization Recommendation Methods: Visualization recommen-
dation systems can be categorized based on their recommendation
method: data-driven and knowledge-based. Data-driven systems recom-
mend visualizations for the given input data by learning from a large num-
ber of visualization examples. A variety of machine learning models have
been employed to learn from a collection of examples, including neural
networks [11, 16], reinforcement learning [62], and decision trees [25].
For example, VizML [16] uses a neural network to learn visualization
design choices from a large corpus (106) of datasets paired with visual-
izations. Table2charts [62] employs a reinforcement learning framework
to learn step-by-step visualization constructions from a large corpus of
tables paired with charts. Knowledge-based systems, on the other hand,
recommend visualizations by following a set of expert-defined rules and
constraints, making the rules more interpretable compared to data-driven
approaches [58]. These rules are usually formalized based on the proper-
ties of data (e.g., trends or outliers) and the effectiveness of visual encod-
ings [31,34,56,57]. For example, the “Show Me” feature of Tableau [31]
provides automatic mark selection based on the data properties type,
role, and interpretation. Voyager [56] and Voyager2 [57] rank encodings
based on a set of perceptual effectiveness metrics. The multivariate
network (MVN) wizard [37] recommends visualizations based on a rank-
ing generated by visualization experts. Beyond the recommendation of
visual representations, there is also work on the recommendation of lay-
outs for multi-view visualizations. For example, Kristiansen et al. [22]
present an approach that allows semantic alignment of multiple views
based on the content of visualizations, such as visual channels used.

Even though data-driven recommendation systems have demonstrated
reasonable performance, they usually require many high-quality exam-
ples, which are generally not available for domain-specific problems.
Knowledge-based recommendation systems can remedy this problem
as it is possible to develop a recommendation model by using existing
knowledge and best practices from the information visualization field
and domain theory. GenoREC uses a knowledge-based visualization rec-
ommendation model based on a survey of genomics visualizations [38]
combined with design principles in visualization literature [9,30,33,36].

Genomic Data Visualization Resources: There are several resources
that can assist genomics analysts in choosing an appropriate visualiza-
tion technique. Nusrat et al. [38] surveyed over a hundred genomics
visualization tools and proposed a taxonomy for genomic visualization
based on datasets, visual encodings, and tasks. The paper [38] serves as
a theoretical resource for analysts to decide an appropriate visualization
technique. GenoCAT [13] and awesome-genome-visualization [3] are
databases of existing genomic data visualization tools and techniques.
They are valuable resources for analysts who want to identify relevant
techniques to visualize data. However, these galleries are exploratory
and do not prescribe or suggest visualization designs to the users. In
the case of genomics, exploratory tools may have limited use because
the experts often lack formal training to judge if the suggested options
are adequate visualizations. The proposed GenoREC system overcomes
this challenge by recommending visualization designs that are accurate
from a visualization theory standpoint and appropriate for the given data
and task requirements.
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Fig. 2. Visual overview of a genome and genomic features: point,
segment, sparse, and contiguous.

3 GENOME-MAPPED DATA AND TASKS

This section provides an overview of the genome-mapped datasets [53]
and tasks with abstractions to support discussions throughout the paper.

Nomenclature of Genome-Mapped Data: The human genome is a
hierarchical structure. As illustrated in Fig. 2, a genome consists of one
or multiple chromosomes. For functional purposes, chromosomes are
subdivided into smaller regions. These regions are called genes (feature
sets or features). At the lowest level of hierarchy, genomes are composed
of building blocks called nucleotides (A, C, G, and T). The hierarchical
structure makes it possible to measure data at different granularities
(extent). Data can be recorded at the individual nucleotide level. This
granularity is commonly known as the point granularity (e.g., single
nucleotide polymorphisms, or SNP, that covers only one nucleotide).
In other cases, data can be measured at a gene level, which leads to
a segment granularity dataset (e.g., genes whose protein-coding
regions cover more than one nucleotide). In addition to granularity, the
density of information also varies for genomes. In some experiments,
data is recorded for each nucleotide, thus leading to a contiguous
data density (e.g., DNA conservation scores, which are generally
available for each position in of a genome). While in other cases, the
data may be sparse (e.g., genes that only cover a relatively small
proportion of the genome), leading to empty and missing values. One
of the most distinctive features of genome datasets is that they can also
include network-based data and spatially mapped data. Network data
in genomes generally represent connectivity between distant regions
of a genome (e.g., physical interactions between different locations
in the folded genome), or it may represent connectivity between two
different genomes (e.g., synteny [33]). The type of data recorded
for genome, also called expression levels, can be three main abstract
types: quantitative , categorical and text . In genomics, textual
annotations (e.g., “BRCA2” gene) are important, and therefore they
are distinguished from categorical data and are visualized as textual
representations. More information on parallels between features in
genomics data and other domain data (e.g., geospatial data) can be found
in a survey paper [38].

Visual Analytics Tasks for Genome-Mapped Data: Genomics
researchers perform analytical tasks with data visualizations to explore
genomic features and answer critical domain questions. A review of
genomics visualization tasks can be found in the survey by Nusrat et
al. [38]. Through a thematic analysis of the tasks in the survey using the
multi-level task typology of Brehmer & Munzner [6], we categorized
genomics analysis tasks into three low-level query tasks. (1) Identify:
Analysts are interested in analyzing features in a genomic region of
interest to read a specific feature value. For example, navigate to a gene
A and check its expression level. (2) Compare: In this task, analysts
want to compare features located in multiple genomic regions. For
example, compare the gene expression level between gene A and gene
B. (3) Overview: In this task, analysts want to look at a larger genomic
region or a whole genome to get an overview of the attributes of a feature
set and look for interesting patterns such as outliers, clusters or trends
to identify regions for further exploration. For example, analysts want
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Fig. 3. Progression of GenoREC’s recommendation. In A, user has
specified a BED file and a VCF file with categorical data and GenoREC
recommends linear and circular layouts. In B, user adds a BIGWIG file
with quantitative data and GenoREC switches to a linear recommendation.

to identify regions with many mutations. The tasks and data introduced
in this section play a critical role in design of the GenoREC system.

4 USE-CASE SCENARIO

In this section, we present a use-case scenario to illustrate how GenoREC
enables analysts to find appropriate visualization recommendations.
This scenario is also presented in the supplementary video.

Ada is a genomics researcher working at a cancer research institute.
Ada wants to develop a visualization that can help her analyze genetic
data obtained from three different files [53]: a BED (Browser Extensible
Data) file, a VCF (Variant Call Format) file, and a BIGWIG (Big
Wiggle) file. The BED1 file stores the location of genes that are linked
with certain diseases. The VCF1 file stores structural variant events of
a cancer patient. The BIGWIG1 file, stores protein interactions with
DNA. Ada wants to compare the quantitative values of the BIGWIG
file between different regions and try to understand if there are specific
genetic features in BED1 and VCF1 tracks that are contributing to the
measurement of the BIGWIG file.

Ada first tries to visualize the data with conventional genomics
visualization tools, such as UCSC Genome Browser [19], IGV
Browser [43], and WashU Epigenome Browser [24]. Although these
tools can create visuals for specific data types, she is unable to use
a single tool to look at all her data and, most importantly, easily
combine different file types to perform an integrated analysis. Ada
consequently needs to spend a lot of time working across tools and
make compromises on her analyses. Moreover, these tools are tightly
coupled with the default visualization technique, and Ada would like
to explore alternatives and easily customize her visualizations. Finally,
the tools do not take Ada’s task into consideration, so there is a great
burden on her to be familiar with design guidelines to identify the best
encoding. Without guidance on tasks, Ada can choose a misleading
visualization [52]. Given these limitations of existing tools, Ada decides
to instead try GenoREC to get a recommendation for a visualization
that supports her requirements and steers her towards the final plots.
1. Describing Data and Exploring Recommendations: When Ada
launches the GenoREC application, she is presented with a data and task
specification panel, as shown in Fig. 4 (Left). The data description panel
allows Ada to specify the type of data she wants to analyze by using
six standard genomics file formats (i.e., BIGWIG, BED, BEDPE, SEG,
VCF, and COOLER) [53] (Fig. 4A). Based on her requirements, Ada se-
lects a BED and a VCF file. GenoREC adds two cards (i.e., “BED1” and
“VCF1”) to the user interface (Fig. 4B). Next, for each file, Ada configures
the input fields based on data characteristics of the input files. For exam-
ple, for “BED1” file, she selects “1 Categorical.” The remaining input
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Fig. 4. User Interface of GenoREC. The interface consists of two main panels. Left : a domain-centric data and task elicitation interface. The data
and task specification panel contains two parts data description and tasks. Right : a visualization gallery that displays recommends visualizations.

options for the “BED1” file, such as “Feature Extent,” “Feature Density,”
and “Connection,” are automatically defined by the system based on the
file format. After the selection, Ada notices that the system recommends
her two tracks stacked in a linear and circular layout (Fig. 3A). The
recommended visualizations allow Ada to see an overview of the genetic
features from the two files. These features are visually aligned in the same
genomic axis to help her analyze the features concurrently. Next, Ada
adds a BIGWIG file description. The updated recommendation removes
the circular layout recommendation and shows two linear tracks. The
first option uses a bar mark for the quantitative data and the second option
uses a line mark for the same data (Fig. 3B). Ada finds both visualizations
useful because they support looking up high and low values of the BIG-
WIG file and analyzing genes in the corresponding BED and VCF tracks.

2. Choosing the Task Description: In addition to data, Ada also
chooses her analysis task. GenoREC supports three tasks: “Analyze a
Region of Interest in the Genome” (Identify), “Compare Data Between
Two Genomic Regions” (Compare), and “Explore the Genomic Build”
(Overview) (see Sect. 3). Ada selects the comparison task based on the
sample task example shown in Fig. 4C.

3. Analyzing the Final Recommendation: Based on the data and task
description of Ada, GenoREC recommends a set of visualization options.
Ada also notices that the recommended visualizations are distinct from
the previous stage shown in Fig. 3B. The updated recommendation takes
into consideration the tasks. Therefore, the genome track is split into
two views, and there is a track that supports the selection of a genomic
region in the views, as shown in Fig. 4D. Ada appreciates the split view
because she can compare two regions to each other without manually
navigating between them.

4. Exporting and Customizing the Recommendation: After
analyzing the visualization output, Ada decides to export the second
option as a Gosling spec. Ada prefers the line chart over the bar
chart because it provides a familiar representation of contiguous
quantitative data. Ada uses the spec file and customizes the color scale
in Gosling [29] and uses this final visualization for further analysis.

5 GENOREC DESIGN GOALS

GenoREC was developed through an iterative design process. We first
analyzed existing literature in recommendation systems and genomics
visualization, including genomics visualization tasks (Sect. 3), to
identify an initial set of system design goals. Next, we conducted a
formative study with five domain experts and solicited feedback from
the experts on the recommendation output, user interface, and system
workflow (Sect. 7.1). During these studies, we also interviewed the
experts to understand their genomics visualization authoring process
and current challenges. None of these experts are authors of this paper.
Combining the input from experts and using common design suggestions
from prior work for general recommender systems [2, 42, 51] and
visualization recommendation systems [37, 56, 57], we identified the
following goals to guide further development of GenoREC.

G1 Recommend Domain-Specific Visualizations: The recom-
mended visualization should be familiar to users in the genomics field.
Swearingen and Sinha [51] found that familiar output increases trust
within the recommendation model. During the interviews, the experts
also emphasized that recommendations should be familiar and easy
to understand. Genomics visualizations have unique characteristics
that differentiate them from common visualizations outside genomics.
For instance, it is a general practice to arrange data attributes available
in genomics datasets as parallel tracks. Experts noted that it might
require additional effort to understand and communicate the results of
an unfamiliar visualization technique or design.

G2 Use Visualization Best Practices and Domain-Knowledge: The
system should consider best practices from visualization design and the
domain to recommend the visualization. A core principle for existing
visualization recommendation systems is mapping the data and, in some
cases, task requirements to effective visualization designs [35,37,45,56].
Therefore, the system should leverage the knowledge generated by the
visualization community through empirical and theoretical research to
build rules that guide the recommendation of visualizations. In addition
to the general visualization guidelines, the system should also consider
domain-specific knowledge for the recommendation. For example,
heatmaps are common in genomics [20, 41, 43], but, it is known that
the color channel is not optimal for displaying quantitative values [9].
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Therefore, the system should ensure that domain practices are not
eliminated from the recommendation.

G3 Support Common File Formats and Tasks for Recommenda-
tion: The system should support common file formats and tasks that
are used for the analysis of genomics data. We discuss the BED, VCF
and BIGWIG file formats in Sect. 4. Experts noted that the ability to
specify data requirements in file formats they are familiar with could
reduce the learning curve associated with the system. Therefore, the
system should support file formats that support the common data types
and structure available in genomics.

G4 Encourage Fine-Tuning and Iteration of the Recommendation:
The recommendation system should enable users to steer the recommen-
dation progressively. Users may come to a recommendation system when
they are not sure what they want, and they need assistance to find an
item of interest [42]. Therefore, they may need methods to interact with
recommendation inputs in a flexible way and update them until they find
an item of interest. To support flexible updates, we also need the interface
to support a quick turnaround time in showing the recommended outputs.
Therefore, the design of the system should take into account that users
will change between different data and task inputs and analyze the change
in the visualization recommendation output based on the inputs [57].

G5 Recommend Design Variations: Alternative designs of the same
data should be recommended to analysts. The design space of genomics
visualization is large, and often users may only have familiarity with a
small subset of visualizations within the larger design space. Therefore,
we see it as an opportunity for the system to recommend design alter-
natives to users whenever it is possible. Options can improve the trust
in the system and may also lead to serendipitous discoveries, which may
also lead to a positive attitude towards a recommendation system [21].

6 GENOREC
We contribute GenoREC, a novel visualization recommendation system
for the analysis of genomics data. A summary of the GenoREC system
design and overview of the recommendation workflow is presented in
Fig. 1 (Bottom). GenoREC consists of a front-end user interface which
allows users to specify their input requirements to the system and browse
the recommended visualizations. The system also contains a back-end
recommendation model that generates visualization recommendations
(“GenoREC Model”). The back-end recommendation model of the
GenoREC system generates design configurations for appropriate
visualizations given the user input. The two compiler modules: “Input
Compiler” and “Output Compiler” of the system are responsible
for orchestrating the exchange of information between the front-end
and back-end. A key design aspect of GenoREC is its modular
architecture. This ensures that individual components are easy to
update without affecting other system modules.

GenoREC’s user interface is implemented in JavaScript, HTML, and
CSS. The back-end recommendation model is published as a standalone
JavaScript library on NPM. For rendering recommendation, GenoREC
uses Gosling, a grammar-based visualization toolkit for genomics [29].

6.1 GenoREC’s Recommendation Model
GenoREC’s knowledge-based recommendation model [2] recommends
domain-specific visualizations (G1) based on visualization theory and
best practices from the genomics domain (G2). The model is built
on guidelines which map domain-specific input requirements to an
appropriate output visualization. In this section, we first present the
input and output space of GenoREC’s model. Next, we present the
recommendation knowledge used by GenoREC. Finally, we describe
the algorithm which allows the system to use the recommendation
knowledge to generate the visualizations.

6.1.1 Recommendation Input and Output Space
Input: The data input into GenoREC Fig. 1A is divided into four
categories: the assembly build, data type (quantitative, categorical, and
text), feature set (feature extent and density), and connection. In addition,
the recommendation model also expects the tasks (identify, compare,
overview) as inputs. The data and task input are discussed in Sect. 3.

Output: GenoREC’s model breaks down the recommendation task
into six intermediate steps: Encoding, Alignment, Layout, Partition,
Arrangement, and Interactivity. Each of these six components contains
a set of possible output options as shown in Fig. 1B. One of the main
contributions of GenoREC is the use of sequential order to better
reflect the dependencies between these components. To determine the
current order of components, we reviewed the genomics visualization
taxonomy [38]. For each part of the taxonomy, we determined precursor
steps. For example, we noticed that it was not possible to recommend
an orthogonal “Arrangement”, if the “Layout” of the tracks were
circular . This exercise allowed us to develop the sequence and led
to the creation of the sequential model. The sequential order of com-
ponents ensures that the GenoREC system can accurately recommend
visualizations. Here, we provide an overview of each component in the
order GenoREC’s recommendation model determines them:
C1: Encoding: The encoding component identifies the visual mark and
channel pair to encode attributes in a genomics dataset. In genomics
visualizations, there are four visual marks: point, line, rectangle (“rect”),
and text. There are also four channels: position, length, saturation, and
hue [36]. The full list of combinations of marks and channels supported
in GenoREC are visually depicted in Fig. 1B.
C2: Alignment: The alignment component identifies if the encodings
from the Encoding component (C1) can be stacked or overlayed .
Stacked alignment applies encodings to individual tracks and then
vertically stacks them. Here, a track refers to a unit visualization that
corresponds to common visualization types [4]. We use this as the
default option since this is the most frequent alignment in genomics
visualizations [27]. Fig. 3A shows an example of stacked alignment
where BED1 and VCF1 files are shown as two separate tracks that are
vertically stacked. The overlayed alignment, on the other hand, merges
encodings into a single track.
C3: Layout: This component selects the layout to display a track in
the genomics visualization. GenoREC supports three layouts: linear ,
circular , and space-filling (e.g., the Hilbert curve [14]).
C4: Partition: The partition component decides whether the
chromosomes should be displayed in a contiguous track, where
chromosomes are placed end-to-end, or in a segregated manner,
where each chromosome is independently displayed as a separate track.
Partition happens at a track level, so if a visualization has multiple
tracks, GenoREC determines the division of each track.
C5: Arrangement: This component is responsible for selecting the ar-
rangement of multiple “views”. In this paper, a view refers to a combina-
tion of one or multiple tracks. For example, Fig 3B represents two views,
each of which consists of two tracks from two data files. The main differ-
ence between arrangement and partition is that arrangement is applied
between views instead of between tracks. In GenoREC, views that have
linear tracks (C3) can be arranged as parallel , adjacent , or orthog-
onal . The orthogonal arrangement allows the creation of adjacency
matrices for visualizing genomics data with a complete network con-
nection between two sequences. Whereas, if views have circular layout
(C3), GenoREC only permits parallel and adjacent arrangements.
C6: Interactivity: This component is responsible for identifying proper
interaction patterns for genomics visualization. GenoREC supports
two interaction patterns: coordinated interaction and focus+context,
as shown in Fig. 1B. In the coordinated interaction pattern, all the tracks
within a view have coordinated zooming and panning interactions. The
focus+context pattern allows users to focus on a specific portion of the
genome while maintaining the context of the genome location.

6.1.2 Recommendation Knowledge
This section presents the main design guidelines that shape the recom-
mendation for GenoREC. Additionally, we also discuss how GenoREC
uses best practices and domain-knowledge in combination (G2).
R1: Identify Effective Channels Given the Data and Tasks: The
selection of channels depends on the attribute types, and low-level an-
alytical tasks users want to perform with the visualization. The results of
experimental studies by Clevland & McGill [9] and Heer & Bostock [15]
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led to a ranking of visual channels in terms of their accuracy to identify
and compare quantitative data. Based on the results, GenoREC maps
quantitative values using position and length channels. Additionally,
GenoREC also allows mapping quantitative values of color saturation
channel for an overview task. In overview tasks, users are looking for
patterns, not individual values, and color saturation can show variation
in data for pattern search. For categorical attributes, GenoREC uses cate-
gorical color schemes based on the ranking proposed by Mackinlay [30].
R2: Choose Alignment Based on File Type and Encoding:
GenoREC supports overlayed alignments for genomics visualizations
with multiple tracks only if the tracks are from the same file. They must
be from the same file because overlaying tracks from different files
can lead to occlusion due to the superposition of multiple marks at the
same location [28]. Even if the tracks are from the same file, GenoREC
only supports overlaying position and color channels because they can
co-exist without causing occlusion. Based on this rule, if a visualization
has two tracks with position channels and one track with a color channel,
GenoREC will combine the first position channel with the color channel,
which will lead to stacked and overlayed tracks.
R3: Select Layout Based on Encoding and Tasks: In GenoREC,
layouts are selected based on the input data and task descriptions, and
the visual encoding set in the encoding component. In a comparative
study with both linear and circular layouts, Waldner et al. [54] found
that length and position channels make it easier to identify and compare
visual representations in linear layouts. This study recommends linear
layouts when length and position are used in the encoding component
for identifying and comparing tasks. In overview tasks, where the user’s
goal is to look for trends and patterns, GenoREC recommends both
circular layouts and linear layouts.
R4: Decide Arrangement Based on Layout and Inter-Connectivity
Data: For inter-connectivity data, GenoREC suggests parallel or or-
thogonal arrangements in linear layouts. Selection between parallel
and orthogonal arrangements depends on the type of network data. For
dense networks, GenoREC recommends orthogonal arrangements, and
in other cases, GenoREC recommends parallel arrangements. For circu-
lar layouts, GenoREC recommends adjacent arrangements when there is
a network connection, which is one of the most common use cases with
circular layouts in the domain [23, 33]. Meyer et al. [33] used a circular
adjacent layout for visualizing interconnection between different parts of
a sequence. The adjacent circular arrangement allows the analyst to look
at overall connections between sequences in a space-efficient manner.

GenoREC gives preference to empirically backed design guidelines.
However, when there is a lack of empirical results, GenoREC factors
the genomics-specific knowledge for the recommendation (G2.). For
example, GenoREC recommends color saturation (R1) encoding used
for commonly used heatmap visualizations [20, 41, 43], for overview
task because there is no conclusive evidence that negates the use of color
saturation encoding for overview.

6.1.3 Recommendation Algorithm

Representation of Recommendation Knowledge: The knowledge for
recommendation is represented and stored as a decision matrix [47] in
GenoREC’s model. For each component (C1–C6) in Sect. 6.1.1 there is
a distinct decision matrix. In Fig. 5, we show the decision matrix for the
Encoding component (C1). The rows in the matrix represent all the pos-
sible output options. The columns in the matrix represent input factors
that affect the output selection. Finally, the cells in the matrix represent if
the corresponding output (row) can support the corresponding input item
(column). GenoREC encodes the relationship between input and output
as a binary value. A cell with a dark circle (i.e., ) represents a value 1
which means the output is supported by the corresponding input column,
and vice versa. For example, in the “Quant.” column (Fig. 5), all the
cells corresponding to position (e.g., “Point”), length (e.g., “Rect”), and
saturation (i.e., “Saturation”) have a value of 1. However, since the hue
channel is not used to represent quantitative data, all cells corresponding
to the hue channel have a value of −1 (i.e., empty cells). Representing
recommendation knowledge as binary-valued features allows GenoREC
to use a similarity computation technique to rank the output of each

Quant. Text Sparse

ABCXYZ
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Rect

Rect +
Saturation

Rect +
Hue

Rect +
Interval

Rect +
Interval +
Saturation

Text

Rect +
Hue +
Interval

Categorical Contiguous Point Segment Compare

Point

Fig. 5. Decision Matrix for the Encoding component (C1). Rows represent
the visual encodings, and the columns represent the factors that affect
the encoding selection. A cell in the matrix represents a value 1, which
means the encoding supports the factor, and an empty cell represents
a value -1, which means the factor is not supported.

component (C1–C6) and use the ranking for recommendation.

Similarity Computation: GenoREC computes the similarity between
the input and all the output items in the product matrix using a cosine
similarity metric [8]. The cosine similarity score expects two vectors
of equal size and generates a score in the range of [−1,1]. GenoREC’s
algorithm generates an input vector for each recommendation
component based on the features given in the column headers of the
decision matrix. Next, it scores the similarity of this input vector with
all rows of the decision matrix. A higher cosine similarity score closer
to 1 means that the two vectors are more similar while a lower score
closer to −1 means the two vectors are dissimilar. These scores are used
for ranking in our recommendation system, i.e., GenoREC recommends
the output item with the highest score.

Recommendation walk through: In Fig. 6, we show the steps in
GenoREC’s recommendation algorithm with the help of data and
analysis task discussed in Sect. 4.
C1: Encoding: GenoREC visually encodes each data attribute in the
input data. For example, in Fig. 6A, GenoREC recommends “Rect +
Interval” with a hue channel for the “BED1” file because the feature
set is a segment and the data attribute is categorical. GenoREC assigns
a consistent colorblind-safe color palette for each categorical attribute.
For the “BIGWIG1” file, GenoREC recommends both a bar chart (i.e.,
“Rect”) and a line chart (i.e., “Line”) based on the decision matrix since
the file stores point-based contiguous quantitative values (i.e., “Point,”
“Contiguous,” and “Quant.”) (Fig. 5). The recommendation of multiple
outputs at each component allows GenoREC to recommend design
variations to satisfy the design goal (G5). After the recommendation,
GenoREC uses Cartesian product to determine all the possible output
options using the top scored recommendation.
C2: Alignment: GenoREC uses the visual encoding and file type
information to determine the alignment of the encodings. Due to the
cartesian product, this component has two sets of visualization options
in Fig. 6B. In this example, all the visual encodings come from different
sources and have different features. Therefore, GenoREC recommends
a “Stacked” alignment of visual encodings. The stacking order of visual
encoding is consistent to the order of selected files. Fig. 6 illustrates a
case where the user selects the “BED” file first and then “VCF,” followed
by “BIGWIG”. Therefore, the BED file is placed on the top and others
are below it. All the tracks in this component are aligned automatically
based on reference genomes.
C3: Layout: GenoREC determines the layout based on the encoding,
alignment, and tasks. The space-filling (e.g., the Hilbert curve [14])
layout can only show a single track. The circular layout is not conducive
for comparing quantitative data in the BIGWIG file [54]. Therefore,
GenoREC recommends only the linear layout (Fig. 6C).
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Fig. 6. GenoREC’s recommendation creation process: Each component in the model identifies the most suitable output option based on the
previous stage and the underlying recommendation model. Output for components (A–F) are explained in Sect. 6.1.3 (Recommendation walk through).

C4: Partition: GenoREC determines the partition primarily based on
the user’s task. In this example, to facilitate comparison, GenoREC rec-
ommends the “Contiguous” partition, which means that chromosomes
are positioned end-to-end in the visualization.
C5: Arrangement: GenoREC identifies arrangement based on the
existence of network data, layout (C3), and tasks. In the current example,
GenoREC’s decision is based on the comparison task. A single-view
visualization can be difficult to compare two regions in the genomes,
especially if they are distant, e.g., Chromosome 1 and Chromosome
18. To reduce the need for manual panning and zooming interaction,
GenoREC recommends two windows to compare any two regions
within the genome.
C6: Interactivity: GenoREC currently recommends interaction based
on the visualization arrangement and tasks. In this example, GenoREC
suggests “Focus+Context” interaction because it allows users to see a
focused region in the genome, which is vital for local comparison tasks.

6.2 GenoREC User Interface
GenoREC’s user interface is divided into two panels: data and task
descriptions (Fig.4 Left) and recommendation (Fig. 4 Right).
Data Description and Tasks: In line with the domain goal G3,
GenoREC’s UI allows users to specify domain-specific data (BIGWIG,
BED, BEDPE, SEG, VCF, and COOLER) [1, 53] and tasks [38] to the
system. The data and tasks are introduced and discussed in Sect. 3. Each
data description card (Fig. 4B) in GenoREC has six input fields: Assem-
bly Build (coordinate system 1), Assembly Build (coordinate system 2),
Quantitative, Categorical, Text (number and type of data attributes), Fea-
ture Extent (point or segment feature set), Feature Density (sparse or con-
tiguous feature set), and Connection (the connection between sequences).
GenoREC’s abstract data description technique provides a flexible way
for users to configure their data input. Through this interface, analysts
can try many different combinations of data input and see the recommen-
dations without going through the data collection and processing pipeline.
To ensure analysts choose the tasks correctly, GenoREC includes an
example task that communicates to the user when they should choose the
particular task and a visual description for additional feedback (Fig. 4C).
Recommendation: The recommended visualizations are shown as a
gallery in the visualization panel of the GenoREC interface (Fig. 4
Right). The gallery-based interface supports easy comparison of the rec-
ommended options [26]. The recommended visualizations are updated
when users add or modify the data or task specifications which enables
quick inspection of many different visualization options (G4). Addition-
ally, users can export a Gosling [29] JSON specification and directly
load its online editor to customize the visualization further if desired.

7 GENOREC EVALUATION

GenoREC was evaluated in a two-phase user study. First, we
gathered qualitative feedback from domain experts (i.e., people
who have experience in genomics and visualization) to validate the
recommendation output and the user interface design. Second, we

conducted a quantitative evaluation where we measured the utility
of GenoREC’s recommendation given a set of data and analysis task
combinations. The Harvard Institutional Review Board determined that
these studies did not require research approval under federal regulations.
All participants were volunteers, and they were recruited through
advertisements on various Slack teams in the computational biology and
genomics communities and Twitter. Study materials from both studies,
including the stimuli, tasks, and data analysis code, are included in the
Supplemental Material and on OSF (https://osf.io/y73pt/).

7.1 Formative Study with Domain Experts
In this preliminary qualitative study, we sought to answer the question:
“Does the output from the recommendation system match experts’
expectations?” A clear answer to this question is important because
it validates the recommendation rules applied by GenoREC, and its
subsequent implementation is valid. This feedback helped us refine
GenoREC’s design goals (Sect. 5) and improve the user interface and
the system’s overall workflow.

Participants and Procedure: For the formative study, we recruited
five domain experts. The participants had worked at the intersection
of genomics and visualization with experience ranging from 8–20 years.
The study was designed as a semi-structured interview and it lasted an
hour. In the study, we presented participants with three different data
analysis scenarios in the form of a short paragraph of text. For example,
“given a set of BED files with human and mouse genome, identify regions
where the data is highly conserved”. Participants were asked to describe
an appropriate visualization for each scenario. Then, they were asked
to use GenoREC and comment on the accuracy of the recommended
visualization. As the last part of the study at the end of the interview,
participants were encouraged to provide feedback on the user interface.

Findings: All responses were analyzed by open coding and thematic
analysis. From this analysis of participants’ responses, we learned that
most participants found GenoREC’s recommendations accurate and
only required minor modifications for the scenarios included in the study.
This feedback led to the export feature in GenoREC’s user interface.
One participant expected the visualizations to include additional
biological contexts such as gene annotation track and ideogram plots
that provide a summary of chromosomes coupled with genomic
location information [40]. Therefore, we added an option to add a
gene annotation track and ideograms to the visualization in GenoREC.
Another participant asked for an additional interactive component as
a tabular view in the GenoREC interface that enables a faster lookup
of gene location. Since we mainly focused on the recommendation
of visual representations in the GenoREC interface, it is not included.
However, we plan to add the feature to further enable effective visual
exploration of genomics data. Finally, GenoREC’s user interface was
well-received, and participants understood the data and task descriptions.
One participant stated that it is possible to further abstract the
domain-specific file inputs. But, we decided to keep data descriptions in
domain-specific terminology because other participants found it helpful.
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Fig. 7. Utility ratings for GenoREC and Alternate stimulus across all
participants and scenarios. Scenarios where GenoREC’s responses
were significantly higher than the alternate stimulus, are marked with *.

7.2 Quantitative Evaluation with Genomics Analysts

In the second part of the study, executed after feedback from the
qualitative study, we conducted a controlled within-subject quantitative
study to measure the difference in utility between GenoREC’s
top-ranked visualizations and mid-ranked visualizations for a given
set of datasets and analysis tasks. While the qualitative study gave us
feedback on the accuracy of the recommendation, we still wanted to
evaluate if the recommendation would be useful for a broader group
of people working in genomics. Since GenoREC’s recommendation
model considers best practices from visualization research and domain
knowledge based on common data features and tasks, we hypothesized
that participants will find GenoREC’s top-ranked recommendation to
be more useful than a mid-ranked visualization.

We collected datasets from multiple sources that lead to diverse data
descriptions in the study. For contiguous quantitative values, we used
multiple samples of ChiP-seq data [61]. For sparse quantitative and
nominal values, we used various datasets including GWAS catalog [7],
gene annotations [17], and somatic structural variants [49]. We also
used the structural variants data to represent connectivity information
within genomic locations.

This experimental design was chosen instead of a direct comparison to
another recommendation system as there is no other system available for
direct comparison. For example, existing generalized recommendation
algorithms evaluated by Zeng et al. [60] do not consider domain-specific
aspects such as layout and arrangement. The autoplot feature of
ggBio [59], which is the closest alternative to GenoREC, does not
support interactive visualizations or task-based recommendations.

We developed a separate web application for this study because
some features of the GenoREC app, such as the task description (e.g.,
Fig. 4C), could have revealed the expected output and affected the
results. Participants were shown one visualization at a time. To compare
responses across tasks and participants, we used a Likert scale-based
response format.

Participants: We recruited 13 participants (P1–P13) with three

participants who identified as female and ten who identified as male.
Anyone who had experience with genomics data analysis was qualified
to participate in the study. Participant experience in genomics ranged
from 6 months to 18 years, with an average experience of 4 years.

Evaluation Scenarios and Stimuli: There were a total of nine data and
task scenarios (Scenario 1–9) in the study. The scenarios are designed to
provide a comprehensive coverage of three factors: features, attributes,
and tasks. For example, in Scenario 1, the feature combinations are
point and sparse with no connection, the attribute used is categorical,
and it is an identify task. We ensured that the scenarios cover all feature
types (point, segment, contiguous, sparse, and network) and attributes
(quantitative, categorical, and text) at least once. Finally, we ensured
that tasks were balanced among identify, compare, and overview.

To create the stimuli for the study, we used GenoREC to generate
and score all possible visualizations that can be rendered by Gosling
for the data and tasks of a given scenario. From that list, we selected
the visualization with the top score (“GenoREC stimulus”) and the
visualization that is assigned with the score closest to the median of
the score distribution (“alternate stimulus”). If GenoREC recommends
multiple top and median ranked visualizations with the same score, we
randomly select one of them as a stimulus.

Procedure: The study was conducted synchronously online. We
arranged a 30-minute evaluation session with each participant via
Zoom. The sessions were not recorded. In the first ∼5 minutes of the
session, the interviewer asked participants about their experience with
genomics data and explained the study setup by demonstrating the web
application. After the introduction and demonstration of the application,
the interviewer requested the participant to open the web app and share
their screen so that the interviewer could follow the progress and answer
any questions. Each scenario in the study had a data and task description.
Example data and task description for Scenario 1 is the following:

Data: File Format: VCF, Attributes: 1 Categorical, Extent: Point,
Density: Sparse, Connection: No

Task: Navigate to the window chr19: 20,000,000–chr19: 80,000,000
and characterize the distribution of the categorical variable, i.e. similar
values or distinct values.

Along with the description, the participant saw one of the two
visualization options at a time. In each scenario, the data and
task description remained the same for both visualization options.
Participants were asked to perform the task with the visualization and
then answer the following question: “I would use this visualization for
the analysis of the data given the task description.” The responses were
recorded on a 1–5 scale as shown in Fig. 7. The stimuli shown in the
scenarios were randomized to account for any learning effect. During
the study, participants were not required to provide feedback, but many
participants followed a think-aloud method where they explained the
reason behind their ratings. We recorded this feedback as transcribed
notes and used it for further analysis of the responses.

Data Analysis and Results: To summarize participants’ rating
responses, we plot the combined and scenario-wise distribution of re-
sponses for both GenoREC and alternate stimuli using box plots (Fig. 7).
We find that the median score is higher for GenoREC’s combined
responses (median = 4) than for the alternate stimuli (median = 3).
Additionally, the interquartile range (IQR = 1; Q1 = 4, Q3 = 5) of
GenoREC is less dispersed than the alternate stimuli’s interquartile
range (IQR = 2; Q1 = 2, Q3 = 4). The median and interquartile
responses for all participants combined are shown in Fig. 7. We conclude
that (1) participants found GenoREC’s top recommendation more useful
than an alternate stimulus in most cases and (2) participants are less
confident with the rating of the alternate stimulus, which led to a more
dispersed interquartile range (IQR= 2; Q1= 2, Q3= 4). We used the
non-parametric the Wilcoxon signed-rank test [55] to measure if the
scenario-wise median difference in responses varies between GenoREC
and alternate stimulus. To handle multiple comparisons, we used a
Bonferroni corrected p-value of 0.0055. As illustrated in Fig. 7, for
Scenarios 1, 2, 6, and 8, GenoREC’s responses are significantly higher
than alternate stimulus responses with p<0.0055 for the Wilcoxon test.
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Scenarios for which GenoREC’s recommendation performed
better: Scenario 1 (p=0.0018) and Scenario 8 (p=0.0021) have the
strongest signal for GenoREC’s stimuli among all the scenarios. We
used the qualitative feedback from the participants to understand why
did GenoREC perform better than the alternate stimulus? In Scenario
1, we compared a linear layout with a focus+context (GenoREC) to
a circular layout (alternate) in an identify task (as described in the
“Procedure” description). We learned that some analysts did not like the
circular layout from the participant feedback. Multiple participants (P5,
P6, P7, and P10) explicitly noted that they do not prefer to use circular
layouts. P7 mentioned that they generally avoid using circular layouts
for their genomics visualization. An additional reason for preferring
GenoREC’s recommendation was the focus+context interaction. The
focus+context interaction simplified the task of navigating to a specific
genome region. For Scenario 8, GenoREC recommended a visualization
stacked alignment, and the alternate recommendation overlayed the
tracks into a single view. Participants found the overlayed tracks
overwhelming and did not add any benefits to the stacked layout.

Scenarios for which GenoREC’s recommendation did not perform
better: For Scenario 3 (p=0.08) and Scenario 7 (p=0.35), we did not
find a large difference between the GenoREC and the alternate stimuli.
For Scenario 3, we observed that participants found both GenoREC
(median = 5) and alternate stimulus (median = 4) useful. In this sce-
nario, participants were asked to perform an overview task (look for
patterns) using a linear track with contiguous partition (GenoREC’s
stimulus) and a circular track with segregated partition, i.e., one circle
per chromosome (alternate stimulus). P2 mentioned that a circular seg-
regated layout allowed them to see more granular data, which supported
them in searching visual patterns. The most surprising results came from
scenario 7, where the interquartile range of GenoREC (IQR=2, Q1=2,
Q3=4) was less than the alternate stimulus (IQR=2, Q1=3, Q3=5)
based on the summary. In this scenario, GenoREC presented two circular
tracks stacked (similar to Fig. 3A Option 2), and participants had to per-
form a correlation task. We expected participants would use an overview
strategy. However, they preferred to interact with the tracks and zoom
into specific regions of the circular tracks. As discussed in the feedback
from Scenario 1, circular tracks are not effective for tasks in which users
have to focus on a local region. Based on this result, we learned that
users could solve correlation tasks through an overview or a region-based
focus approach. Therefore, GenoREC’s model should provide users with
features that allow them to focus on specific regions for correlation tasks.

Summary: The results from the quantitative evaluation show that
GenoREC’s recommendations are rated higher than the alternate recom-
mendation. The qualitative feedback indicated that circular layouts do
not work well with tasks requiring navigation with zooming and panning.
Additionally, users liked the focus+context recommendation because it
simplifies navigation to specific regions in the genome. Since our goal
was to execute a study of reasonable duration for participation (∼30 min-
utes), we could not exhaustively evaluate all the possible data and task
combinations. A small sample size of 13 participants is a limitation of the
study. However, due to the specialized nature of the domain, it is a chal-
lenge to conduct the study with a larger number of participants. Finally,
since we mainly used subjective responses from participants, additional
follow-up studies would be required to validate objective aspects of the
recommendation model (e.g., validating actual coverage of the design
space). However, given the lack of ground truth data and the unavailabil-
ity of comparable recommendation systems or algorithms, our evaluation
methodology of using subjective responses from domain users presents a
practical way of assessing visualization recommendations for genomics.

8 DISCUSSION

Generalizability of GenoREC’s Recommendation Model: We
present a sequential recommendation model for genomics visualization.
To develop the sequential model, we broke down visualization techniques
in genomics into multiple components (e.g., encoding, layout) and added
order to them (Sect. 6.1.1). We believe the sequential method can be
applied in other domains and visualization techniques. For example,
tree visualizations can be decomposed into three components based on

a visualization taxonomy [46]: “Representation” (explicit, implicit, hy-
brid), “Alignment” (parallel, radial, free), and “Dimensionality” (2D,3D,
hybrid). To apply the sequential model, tree visualization experts can
determine the dependencies between components, such as whether “Rep-
resentation” of tree visualizations should be determined before “Dimen-
sionality”. After ordering the components, domain experts can systemat-
ically curate recommendation knowledge for each component and create
a sequential recommendation model for tree visualizations. However, the
sequential model may not apply universally across all domains and visu-
alization techniques. For instance, applying this method to infographics
can be challenging because they offer a lot of design freedom that it is
challenging to identify its design space. This makes it difficult to decom-
pose visualization into smaller components, restricting the use of the se-
quential model. Despite its application limitations, we believe using a se-
quential model can simplify the process of designing a knowledge-based
recommendation model for domains and visualization techniques where
it is possible to break down visualization into components and apply or-
der to them. Therefore, we anticipate to see it adopted more in the future.

Updating and Extending GenoREC’s Recommendation Model:
We can update GenoREC’s recommendation model by changing
each component’s output items and decision factors. For example, to
introduce a new glyph encoding in the Encoding component (C1), we
need to add a new row to the decision matrix (Fig. 5). Adding additional
decision factors is also trivial and requires the addition of a new column
to the decision matrix of each component. For instance, if we want to
factor in user preferences for recommended encodings, we can add a new
column in the decision matrix, which stores the relationship between
encoding output and the user-preference factor. Component-level
changes in GenoREC are straightforward as they do not affect other
aspects of the model. However, extending the recommendation model
to handle a new component could be challenging. Adding a new
component requires careful analysis of its dependencies with all the other
components, which can be a complex if done post-hoc. Therefore, we
recommend that researchers err on the side of inclusion when identifying
the components to be used with GenoREC’s recommendation approach.

Future Work: Currently, GenoREC’s model is accessible through
the user interface. In the future, we plan to package the model into
a library that can be accessed programmatically and embedded into
tools like Gos [32] that enables the generation of Gosling specifications
through Python, e.g., in Jupyter Notebooks. In this context, it will also
be possible to generate visualizations based on actual data files rather
than descriptions of the files. Furthermore, with the ability to read data,
many additional features can be included, such as optimal color scale
based on data, or coordinating color scales across similar attributes
in separate tracks as recommended by Qu and Hullman [39]. Another
interesting direction of future work would be to consider user preference
in GenoREC’s recommendation model. Currently, we do not have user
preference data for genomics visualizations. However, with the adoption
of GenoREC, we can get more information on visualizations that users
prefer, which can be used in the recommendation model for ranking the
output. Finally, in the future, we intend to explain the recommendation
to the users. Through explanation, we would justify the reason behind
a recommendation to answer questions the domain users may have, i.e.
“Why was a linear layout recommended over a circular layout?”

9 CONCLUSION

Analysis of genomics data continues to be the backbone for many
critical biomedical inventions and discoveries. Genomics data analysts
heavily rely on visualization techniques for data interpretation, which
will be made more efficient through the support provided by GenoREC
in constructing appropriate interactive visualizations. Our design and
algorithm can be extended to create other domain-specific visualization
recommendations, where the visualization and task taxonomy have
been well defined. Ultimately, our work offers critical guidance for
visualization researchers who want to develop similar recommendation
systems in other domains.
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