[microresearch] Diamond Open Access

$\frac{x+y}{2}$ coupled logistic map

Open Mathematics Collaboration*† July 18, 2019

Abstract

I propose the discussion of one type of coupled logistic map and compare it with the usual logistic map in each iteration.

keywords: coupled logistic map, chaos, dynamical system, complex system

Introduction

- 1. The motivation for this work is to apply coupled logistic map to population with bounds, like in the XY chromosomes evolution [1–3].
- 2. This discussion started in a section of [4], in the context of searching for chaos in the Y chromosome degeneration.
- 3. Consider the logistic map, $x_{n+1} = rx_n(1-x_n)$, where r is the dimensionless population growth factor and x_n is the population of the nth generation [5,6].
- 4. From (3), we have $x_{n+1} = -rx_n^2 + rx_n$ [6].

^{*}All authors with their affiliations appear at the end of this paper.

[†]Corresponding author: mplobo@uft.edu.br | Join the Open Mathematics Collaboration

- 5. Doing $y = x_{n+1}$ and $x = x_n$, the parabola of the logistic map is given by $y = -rx^2 + rx$ [6].
- 6. Depending on the value of r, there is chaos in the logistic map [6,7].

Is the logistic map in y equals the logistic map in x for each iteration?

7. Consider the following coupled logistic maps representing X and Y populations:

$$x_{n+1} = rx_n(1-x_n);$$
 $y_{n+1} = r\left(\frac{x_n+y_n}{2}\right)\left[1-\left(\frac{x_n+y_n}{2}\right)\right].$

8. The next following steps are calculations on y_{n+1} .

9.
$$y_{n+1} = \frac{r}{2} \left\{ (x_n + y_n) \left[1 - \frac{1}{2} (x_n + y_n) \right] \right\}$$

10.
$$y_{n+1} = \frac{r}{2} \left\{ x_n \left[1 - \frac{1}{2} (x_n + y_n) \right] + y_n \left[1 - \frac{1}{2} (x_n + y_n) \right] \right\}.$$

11.
$$y_{n+1} = -\frac{1}{2}y_n^2 + (1 - x_n)y_n + (1 - \frac{x_n}{2})x_n$$
.

12. In (11), we define:
$$a = -\frac{1}{2}$$
, $b = 1 - x_n$, $c = \left(1 - \frac{x_n}{2}\right)x_n$.

- 13. Note that in (12), we did not include the index n in the definitions of a, b, and c, because we are considering that it holds of every iteration, i.e., for every value of n.
- 14. Then, $y_{n+1} = ay_n^2 + by_n + c$.
- 15. Consider $y_{n+1} = y', y_n = x'$.
- 16. $y' = ax'^2 + bx' + c$.
- 17. Comparing (5) and (16), $y = -rx^2 + rx$ and $y' = ax'^2 + bx' + c$, we have -r = a, r = b, and c = 0.

- 18. From (12) and (17), $c = (1 \frac{x_n}{2}) x_n = 0$, which means $x_n = 0$ or $x_n = 2$.
- 19. Considering $x_n = 0$, from (12), we have b = 1, and from (17) r = 1.
- 20. Considering $x_n = 0$, from (12), we have $a = -\frac{1}{2}$, and from (17), -r = a leads to $r = \frac{1}{2}$.
- 21. From (19) and (20), we have a contradiction.
- 22. Considering $x_n = 2$, from (12), we have b = -1.
- 23. From (17) and (22), r = -1.
- 24. From (17) and (23), $r = \frac{1}{2}$.
- 25. (23) and (24) leads to a contradiction.
- 26. (21) and (25) shows that $x_n \neq 0$ and $x_n \neq 2$.
- 27. (26) means that the logistic map for y NEVER behaves like the logistic map for x in each iteration.

Final Remarks

28. One question still persists: Is there chaos in the y logistic map defined here?

Open Invitation

Please *review* this article, *add* content, and *join* the **Open Mathematics Collaboration**. Contact mplobo@uft.edu.br.

Ethical conduct of research

This original work was pre-registered under the OSF Preprints [8], please cite it accordingly [9]. This will ensure that researches are conducted with integrity and intellectual honesty at all times and by all means.

References

- [1] Lobo, M. P., and Roberto Nicolau Onody. "Degeneration of the Y chromosome in evolutionary aging models." *The European Physical Journal B-Condensed Matter and Complex Systems* 45.4 (2005): 533-537.
- [2] Lobo, M. P. "Mathematical glimpse on the Y chromosome degeneration." The European Physical Journal B-Condensed Matter and Complex Systems 50.4 (2006): 613-615.
- [3] Mackiewicz, Dorota, et al. "Role of recombination and faithfulness to partner in sex chromosome degeneration." *Scientific Reports* 8.1 (2018): 8978. https://www.nature.com/articles/s41598-018-27219-1.pdf
- [4] Lobo, Matheus P., et al. "Chaos in the Y-chromosome evolution?." arXiv preprint arXiv:1612.00463 (2016). https://arxiv.org/pdf/1612.00463
- [5] Wikipedia. Logistic map. https://en.wikipedia.org/wiki/Logistic_map
- [6] Lobo, Matheus P. "Chaotic Logistic Map, Parabola, and Gravity." OSF Preprints, 9 June 2019. https://doi.org/10.31219/osf.io/g75we
- [7] Groff, Jeffrey R. "Exploring dynamical systems and chaos using the logistic map model of population change." *American Journal of Physics* 81.10 (2013): 725-732.
- [8] OSF. Open Science Framework. https://osf.io

[9] Lobo, Matheus P. "(x+y)/2 Coupled Logistic Map." OSF Preprints, 10 June 2019. https://doi.org/10.31219/osf.io/rf6az

The Open Mathematics Collaboration

Matheus Pereira Lobo (lead author, mplobo@uft.edu.br)

Federal University of Tocantins (Brazil)