Loading wiki pages...

Wiki Version:
This notebook describes the formulation of an exemplar model of categorization, the Generalized Context Model. Full specification of the model itself can be found elsewhere ([Nosofsky 1984][1], [Minda & Smith 2001][2]) This model has been used in cognitive psychological research to make predictions about how participants will learn to classify objects and belonging to one or more category. The primary assumption of the exemplar model is that categories are represented in the mind by stored exemplar traces, rather that rules or prototypes. This document describes the development and use of an R script that reads in a text file of classification probabilities (usually obtained from behavioural testing), a text file that corresponds to the stimuli in the experiment, and a text file that corresponds to the exemplars of each category. The model then uses a hill-climbing algorithm to adjust the parameters and minimize the fitting error. The model will reports the best-fitting parameters, the fit index, and the prediction of the model. [1]: https://www.ncbi.nlm.nih.gov/pubmed/6242730 [2]: https://www.ncbi.nlm.nih.gov/pubmed/11394680
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.