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Figure 1: Designers use guidelines empirically tested on adults [48] to create visualizations for children. Our study takes a
step towards ensuring those guidelines apply to all ages by comparing graphical perception in children ages 8–12 with adults.
Cleveland & McGill results image credit: Tamara Munzner, CC-BY 4.0.

ABSTRACT
Data visualization is pervasive in the lives of children as they en-
counter graphs and charts in early education and online media.
In spite of this prevalence, our guidelines and understanding of
how children perceive graphs stem primarily from studies con-
ducted with adults. Previous psychology and education research
indicates that children’s cognitive abilities are different from adults.
Therefore, we conducted a classic graphical perception study on a
population of children aged 8–12 enrolled in the Ivy After School
Program in Boston, MA and adult computer science students en-
rolled in Northeastern University to determine how accurately
participants judge differences in particular graphical encodings.
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We record the accuracy of participants’ answers for five encodings
most commonly used with quantitative data. The results of our
controlled experiment show that children have remarkably similar
graphical perception to adults, but are consistently less accurate
at interpreting the visual encodings. We found similar effective-
ness rankings, relative differences in error between the different
encodings, and patterns of bias across encoding types. Based on our
findings, we provide design guidelines and recommendations for
creating visualizations for children. This paper and all supplemental
materials are available at https://osf.io/ygrdv.
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1 INTRODUCTION
Every year millions of children put on their backpacks, get on a bus,
and head to school. They open textbooks containing different types
of visualizations explaining math, science, or humanities concepts.
The design of these visualizations will affect how well students
grasp foundational skills and knowledge [46]. Ineffective visualiza-
tions may have far-reaching consequences and cause students to
miss important concepts or lose interest in the material [31, 39, 61].
Despite these potential consequences, visualization researchers
have conducted relatively few studies with children [2, 13, 31, 39].
While teachers believe that the visualizations they teach are intu-
itive for children to read [2, 13, 24], the design guidelines the visu-
alization community has published for practitioners—like textbook
authors—are based on conclusions drawn from adult populations.
We have little actual evidence about children’s graphical perception.
We need more studies with children to develop age-appropriate
visualization design guidelines.

Prior work has focused on how to teach visualizations and cogni-
tive strategies related to proportional reasoning [2, 24, 64]. Likewise,
educational research has made headways into both studying visual-
ization design for children and designing curriculum to introduce
the concepts [24, 60]. Developmental psychologists have also stud-
ied how children interpret visualizations to better understand their
proportional reasoning skills [66]. But these studies do not question
the assumptions of basic visualization design guidelines or provide
empirical support for how to design visualizations for children.

To begin creating empirical guidelines for children, the study
of graphical perception—the visual decoding of the quantitative
and qualitative information encoded in visualizations [14, 15]—is
a good place to start. The seminal work on graphical perception
by Cleveland & McGill [14] deconstructed visualizations into their
elementary visual encodings and tested adult users’ accuracy when
using them. Their results led to ranking these encodings forming
the foundation of empirically-supported visualization design guide-
lines [14], which are widely taught in visualization classes. See, for
example, fig. 2. Still, the field has not investigated how graphical per-
ception varies with people’s age and what perceptual and cognitive
processes are involved [12, 14, 54]. Moreover, research in cognitive
development shows that children and adults have different visual
perception and proportional reasoning skills—two cornerstones of
graphical perception [8, 29, 49, 66].

Our study focuses on comparing graphical perception between
children aged 8–12 enrolled in the Ivy After School Program pro-
gram in Boston, MA and adult computer science students enrolled
in Northeastern University. By studying children’s graphical per-
ception ability, we can start gathering empirical evidence to answer
such questions as: What are the elementary visual encoding rank-
ings for children? How accurate are children in their judgements
using these encodings? Do children have perceptual biases we need
to account for? And how do these results differ from adults? In-
vestigating these questions may help both educators and designers
better teach and create visualizations for children by illuminating
how children perceive them.

The results of our controlled experiment show that children
have remarkably similar graphical perception to adults, but are
consistently less accurate at interpreting the visual encodings.
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Figure 2: The efficacy ranking of encodings for showing
quantitative information in Munzner’s book [48], which is
used inmany visualization courses. Encodings that aremore
effective generally lead to less error on graphical perception
tasks. Image credit: Tamara Munzner, CC-BY 4.0.

In particular, we contribute:
• An empirically-determined effectiveness ranking for the ba-
sic visual channels designers can use to build visualizations
for children,

• A discussion of the similarities and differences of graphical
perception task accuracy between children and adults,

• An understanding of the biases children present when con-
ducting graphical perception tasks, and

• A set of design recommendations for creating visualizations
for children.

This paper and all supplemental materials—including study pre-
registration, stimuli, experiment code, collected data, and analysis
code—are freely available at https://osf.io/ygrdv.

2 RELATEDWORK
2.1 Children’s Use of Data Visualization
The research community broadly accepts that adult data visualiza-
tion and visualization literacy skills are important [6]. Most user
studies and research have also focused their efforts on creating novel
or improved guidelines and techniques for adults [5, 26, 27]. Less
research has addressed visualization for children and how improved
visualization strategies may impact their lives. The relative lack of
research is disproportionate to the widespread use and importance
of visualization in young students’ lives and education [56].

Researchers have examined and quantified the pervasiveness
and importance of visualizations during children’s early education.
Students most frequently encounter visualizations in school when
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looking at textbooks and other teaching materials. In their review
of elementary school textbooks, Alpers et al. found about half of the
pages in grade K–4 textbooks contained data-driven graphics [2].
From a survey with teachers, they found around 25% of teaching
materials used in the classroom were inherently visual. Visualiza-
tions are particularly common throughout educational material
related to STEM and are used to reinforce new concepts [13, 37].

In textbooks and other educational materials, visualization has
the potential to help students understand concepts in physics, chem-
istry, earth science, or biology and can teach principles such as
collecting and organizing data [37]. Other research has shown that
children are better at retaining, learning, and transferring knowl-
edge when shown images rather than just words [71]. Skills, such
as the ability to understand fractions, can be supported by fostering
children’s ability to visualize proportions [46]. Government agen-
cies have taken notice of these findings and have made teaching
and learning visualization techniques a key component of national
standards for both mathematics and science [6].

Not only are children seeing visualizations in school, they are
increasingly exposed to a wide variety online. As of 2019, children
ages 8–12 were consuming nearly 5 hours of screen media per day
[57], and they often see the same media as adults. News organiza-
tions such as the New York Times have taken note and introduced
educational practices such as “What’s Going On In This Picture”
to help improve children’s visual literacy [69]. Other authors have
published books of infographics to help illustrate concepts such as
the human body or animals of the Earth [55].

Though elementary and middle school children often encounter
visualizations in their schoolwork and media, the development
of these skills is often overlooked. In a survey of 16 teachers of
grades K–4, Chevalier et al. found that teachers do not believe
enough time is spent on visualization skills [13]. The challenges in
teaching visualization literacy can be attributed to many factors.
Teachers may not have the necessary resources, or they believe that
visualizations are intuitive and do not need to be taught [13, 53].
The result is that students are rarely taught the graphing skills
they need for science and struggle to understand more than simple
visualizations [41].

Students’ lack of skill, in combination with visualizations in text-
books that are not effectively designed, results in students being
turned away from the material presented [61]. Kenney et al. [39]
and Grammel et al. [26] found that participants became frustrated
when they could not understand visualizations and either ignored
the content or switched to a different task. When the visualization
was clear or participants felt that their skill was enough to under-
stand the visualization, they experienced positive emotions and
wanted to engage with the material [39]. Therefore, depending on
the quality of the visualization, students may be turned away or
choose to dive deeper into the educational material presented. Due
to the broad impact visualizations can make on children’s educa-
tional development, it is important that designers present them
with effective, understandable visualizations.

2.2 Children’s Graphical Understanding
Though there is more work to do, the last few years has seen a
surge of interest in children’s visual literacy [24, 25, 34]. There are

now pedagogical guidelines and instructional implications drawn
from assessing student visualization comprehension and partnering
with education researchers [60]. Visualization has also been used to
understand cognitive and visual developments in children [45, 46].

Research on children’s graphical comprehension has largely em-
phasized whether students have sufficient skill and are taught the
necessary lessons to extract information from standard visualiza-
tion formats. This has been measured through multiple-choice ex-
ams of standard visualizations and through assessing visualization
construction [20, 52, 72]. Other exams, such as national numeracy
exams, have prompted students to answer questions based on in-
formation presented in visualizations [43]. These studies examined
a wide range of attributes of both visualizations and the students
using them, providing educators with progressions for teaching
students visualization and guidelines for introducing new topics
[24, 60]. However, these pedagogical approaches to understanding
visualization literacy and comprehension lack empirical evidence
for how children perceive the basic building blocks of visualizations.

Many of the recent studies investigating children’s graphical
understanding have been related to visual literacy, defined by Boy
et al. as “the ability to use well-established data visualizations (e.g.
line graphs) to handle information in an effective, efficient, and
confident manner” [7]. This research has taken a variety of forms
primarily focused on designing creative ways to improve children’s
visual literacy [44]. Researchers have tried various approaches from
running workshops with tangible objects to creating games [34,
58]. The games and tools created to teach visual literacy draw on
a variety of strategies, from constructionist approaches to role
playing [2, 4, 25]. This raises an important issue in visualization
literacy, which is how to best teach students about visualization.
To do so, teachers and researchers must first be equipped with the
information they need—an understanding of how children actually
think and decode information from visualizations.

2.3 Visualization Design Guidelines for
Children and Adults

Another way of making visualizations more understandable, out-
side of pedagogical approaches, is by designing visualizations that
are likely to be more effective for their intended audience. In one of
the seminal works on visualization comprehension, Friel et al. say
that graph comprehension may be improved by controlling percep-
tual demands [24]. Other pedagogical advice presented by Shah et
al. [60] states that when educators both construct visualizations and
teach visualization construction to children they should “Use the
‘best’ visual dimensions to convey metric information whenever
possible.” When putting together pedagogical advice for visualiza-
tion instructors, both Friel et al. and Shah et al. reference the design
guidelines generated from Cleveland &McGill’s [15] study. Though
the rankings put forth by Cleveland & McGill have proved more
effective than other common design principles (e.g. “Data-to-Ink”)
[10] and have been replicated with larger samples [30], they were
studied in adult populations and therefore may not apply to chil-
dren. Therefore, as guidelines stemming from graphical perception
tests are a proven and effective way to design visualizations and
improve visualization comprehension, it is important to ensure that
they are accurate for both children and adults [10].
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Graphical perception is a combination of several other percep-
tual and cognitive tasks—in which performance is likely to vary
as a function of cognitive maturity and graphical experience. Two
of the major components that compose graphical perception are
proportional reasoning and visual perception [17, 66]. Numerous
studies on both have shown that children and adults differ in their
abilities and perception in a variety of ways [36, 51], including ex-
hibiting various biases of over- and underestimation in proportional
reasoning [33, 46]. Hollands & Dyre [32] generalize these biases
and demonstrate that children have larger biases when making
proportion judgements. Additional work by Jones & Dekker [36]
investigated how children perceived and calculated the middle of
a point cloud. They found that children were not simply worse at
using the strategies adults employed, but instead children chose
different but still sensible strategies. This would likely play a role
in them performing differently than adults on graphical perception
studies questions, as the middle of each encoding is an important
reference point. Finally, evidence reveals the acuity of magnitude
judgments (such as those for line length or surface area) follow
distinct developmental trajectories across childhood, such that chil-
dren reach adult levels of perceptual acuity in area discrimination
earlier than they do for length discrimination [51]. As such, it is
conceivable that children may perform relatively better on area
compared to length encodings—a finding which would not align
with adult rankings.

Beyond perceptual differences, children’s error patterns may
also differ due to strategic differences. While Cleveland & McGill
found in their experiment with high schoolers [16, 17] that the
error rate did not depend on technical experience or age, their
participants were at the end or near the end of their primary school-
ing. Adults have significantly more experience with graphs than
elementary-aged children—experience that allows for the develop-
ment of efficient strategies on how to interpret graphs. Children—
being graphical novices—may attempt to interpret graphical infor-
mation using inefficient or entirely inaccurate strategies. There is
ample evidence that children initially make robust errors when
first dealing with novel representations of quantity. For example, in
proportion judgment tasks, children consistently ignore relational
information and instead focus on absolute amounts, judging that,
e.g., a game spinner with 3 blue and 8 red pieces is more likely to
land on blue than one with 2 blue and 2 red pieces because 3 is
more than 2 [33, 35]. Moreover, even in the domain of graphical
perception, there is some evidence that children’s strategies may be
different from those of adults. Spence & Krizel [66] found children
under the age of 12 or 13 were more likely to interpret pie charts
by judging the area or volume of the chart, whereas older children
and adults were more likely to focus on the more reliable cues of
angle or arc length. Thus, it would not be surprising if children’s
lack of expertise in interpreting visualizations may lead to distinct
encoding rankings. If children’s rankings do not align with adults,
this would suggest that current guidelines for the development of
graphical visualizations for children should be modified in order to
promote graphical literacy in early graph learners.

These possibilities, along with research indicating that design
guidelines used for adults do not always translate to children [38],
prompt us to examine if graphical perception guidelines remain
consistent for different age groups.

3 HYPOTHESES
Our experiment, detailed in section 4, has been designed to better
understand children’s graphical perception and how it compares
to adults’ graphical perception. Our study examines what are the
encoding rankings, accuracy when perceiving each encoding type,
and patterns of bias in decoding graphical stimuli. We focus on
children ages 8–12, because in this age range their cognitive abilities
are mature enough to complete the study, they are less likely to
make biased errors due to lack of numerical understanding [64],
and it is the primary age for many visualizations to be introduced
in their curriculum in the United States [68]. (See section 4.3 for
further discussion.)

Our hypotheses are presented here:
Hypothesis 1: Children have varying perceptual accuracy

with different visual encodings. As adults have varying percep-
tual accuracy with different encodings (see, e.g., [14, 15, 30, 48]),
we expect that children will also have varying accuracy. Moreover,
in section 2.3 we discussed how graphical perception performance
is likely to vary as children mature and gain experience using
visualization—and, importantly, that this variation with age is not
even across encodings. Children reach adult-level performance ear-
lier in some tasks than others [51]. Children also may have less
practice using specific charts, such as pie or bubble charts [68].
Concurrently, the math curriculum before this point in a child’s
education is unlikely to have focused much on concepts like angles
[68]. Given how little we know about how children decode different
charts, we want to verify that different encodings will indeed have
different effectiveness for them. A broad comparison between the
encodings can give us direction when creating design guidelines
specifically catered to children.

Hypothesis 2: Children’s overall elementary perceptual
task accuracy will be lower than adults’. Results from prior
studies with children (see section 2.3) guide us to expect that chil-
dren will have larger errors than adults on graphical perception
tasks. We believe this because children’s proportional reasoning
skills are still maturing [8, 46], their graphical perception skill is
tied to numerous other cognitive abilities that may mature with
more schooling [42], and they use different and sometimes less
effective strategies than adults [36]. Our best indicator of a differ-
ence between children and adults is the work done by Spence &
Krizel [65, 66], which found consistently larger errors for children
on proportional reasoning tasks. While these studies compare chil-
dren and adult accuracy on common visual encodings, they study
proportional reasoning—i.e. ab = c

d—as opposed to the graphical
perception tasks we focus on which are of the form a

b [8]. From
Spence & Krizel’s results [65, 66] , as well as the other studies we
cite in section 2.3, we expect that the children will have larger
errors than adults but do not yet know by how much they differ.
Comparing adults to children for each encoding may give us a first
glimpse into how children process these encodings differently from
adults.

Hypothesis 3: Children will exhibit patterns of bias in er-
rors whenmaking graphical perception judgements. Do chil-
dren have patterns of over- and underestimation in their answers
to graphical perception questions? Previous studies of biases in
proportional reasoning [32, 33, 46] indicate that the answer is likely
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Figure 3: Bias models used to test if patterns of error are present when making graphical perception judgements (section 5.4).
The models and their equations were specified by Hollands & Dyre [32]. The curves represent patterns of over- and underesti-
mation of the guessed value compared to the true value in our data. The b value represents the magnitude of the bias, i.e., the
farther the b value is from 1, the less accurate the individuals responses are. The center line represents no error.

yes. It is unclear, however, what bias model best describes these
errors for general graphical perception tasks. If we can discover
how children decode information and where their mistakes are,
we can provide design aids that help mitigate cognitive effort and
improve accuracy [66]. The foundational work on bias models by
Spence & Krizel [66] demonstrated how people leverage certain
reference points (endpoints, midpoints, quarters) to make numeri-
cal estimates. Hollands & Dyre [32] formalized this theory into the
models we use in our analysis, several of which are demonstrated
in fig. 3. These models have proved effective in predicting the errors
children and adults make on other proportional reasoning tasks
[32, 63]. Because of the similarity in nature of our tasks with this
prior work, we believe that our participants will also use certain
reference points as anchors for their judgements.

4 EXPERIMENTAL DESIGN & METHODS
Our goal in this study is to empirically test the accuracy of individu-
als on graphical perception tasks and compare the accuracy between
age groups. The experiment followed many of the same procedures
of previous graphical perception tests, which we describe in detail
in section 4.4. We borrowed elements from developmental psychol-
ogists studying proportional reasoning to further curate our study
for children (8–12 years old). The stimuli and wording of the ques-
tions were chosen from existing literature and refined through pilot
studies (see fig. 4, section 4.1). To make a valid comparison between
the two populations, both adults and children were tested with
identical stimuli and question prompts. The independent variables
tested were age, elementary perceptual task, and proportion. The
dependent variable is the accuracy for each question.

The evaluation was administered to the child participants by an
educator theywere comfortable workingwith, while the adults com-
pleted the study remotely and asynchronously. Pilot testing verified
that our study length, question difficulty, and feedback mechanism
were appropriate for the younger population (see section 4.1).

All supplemental materials required to reproduce and replicate
the study—including the stimuli, experiment code, collected data,
and analysis code—are freely available at https://osf.io/ygrdv. To
avoid issues stemming from postdiction such as hindsight bias,

overconfidence in post hoc explanations, and underestimating un-
certainty, we preregistered our study on the Open Science Frame-
work (OSF) before running the experiment [50]. Our preregistered
study design and analysis code is available at https://osf.io/crj2z.

4.1 Stimuli
The stimuli used in our study, illustrated in fig. 4, most closely
resemble the stimuli presented in Cleveland & McGill’s 1986 pa-
per [16] since they are closest to the perceptual building blocks
Cleveland & McGill refer to when initially proposing graphical
perception studies [14]. Since we do not know the effect of distrac-
tors (additional graphical elements outside of the two tested) or
how people use the different encodings in traditional charts (people
decode pie charts using area, arc length, and angle), we use the
most basic elements we can test [40, 67]. Additionally, the stimuli
chosen closely resemble the encoding rankings seen in popular
visualization textbooks [16, 48].

The stimuli chosen are rarely seen in such a simple format “in
the wild.” What they do represent are the basic encodings and
building blocks for many types of visualizations. Our goal is to
empirically test these encodings and enable other researchers and
designers to determine how the encodings come together to create
various visualizations. If we tested specific visualization types, i.e.,
bar charts or pie charts, our results would only be applicable to the
visualizations tested. By testing the basic encodings, our results can
be better extended to many types of visualizations.

The general premise is that each stimulus is a simple chart show-
ing two data points with a single visual element each. One datum
will be the integer 100 and the other datum will be ?, a question
mark. The participants will be asked what is the size of the smaller,
knowing that the larger one is 100. For example, when asked about

Position Along a Common Axis, the question would be: “The
one marked with a 100 is 100 blocks high. How high is the one
marked with a ?. Type your answer below.” The question is phrased
in this way because the child participants may not not have expe-
rience with fractions yet [68]. This format rephrases the question
seen in previous graphical perception studies to not bias the results
of children who may lack a strong command of fractions. Pilot

https://osf.io/ygrdv
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Figure 4: Illustrated versions of the stimuli we used. See https://osf.io/cbf28/ for the 95 actual stimuli (5 encodings × 19 ques-
tions). These encodings are commonly used to present quantitative data and ranked as most effective for the task [48]. The
ordering of the stimuli and size of the stimuli were randomly generated. Each participant saw the same exact stimuli but in a
different order.

testing and speaking with an educator who works closely with
the children confirmed the children easily understood this format.
One datum in each question was larger than the other, and the
order in which the two associated visual elements were placed was
randomly set. The stimuli for ? were created as a proportion of
the size of the one marked with 100. Since previous studies have
found that participants tend to answer in multiples of 5 or 10 [67],
the proportions presented were [.05, .95] with steps of .05—thus 19
stimuli per encoding.

4.2 Encoding Types
In our study, we tested the judgements for five different encodings—
(1) Position Along a Common Axis, (2) Position Along an
Unaligned Axis, (3) Length, (4) Angle, and (5) Area. These
are illustrated in fig. 4. Due to the age of the children, questions
related to color hue or luminence would be difficult to explain in an
understandable manner, so we did not include these encodings in
the study. For further information about the creation of the stimuli,
images of all the stimuli used, and exact details on how to recreate
them, please refer to the Stimuli section of our preregistration at
https://osf.io/crj2z.

4.2.1 Position Along a Common Axis (POCA). The position
along a common axis stimuli resembles a dot or scatter plot with a
vertical axis for the quantitative data in question. We chose this en-
coding rather than a bar chart as it may help reduce any perception
of length as well.

4.2.2 Position Along an Unaligned Axis (POUA). We want the
only major difference between this stimuli and the previous one
to be the position of the vertical axis. This encoding is commonly
seen in small multiples of scatterplots [70]. The heights of the
visualizations are smaller than in the Position Along a Common
Axis stimuli to ensure it fits on screen.

4.2.3 Length. The length judgement resembles a stacked bar
chart, but only shows a pair of associated middle segments of the
overall bar. The two bars cannot start or end near each other, so
the encoding remains length and not position along a common axis.

The labels are placed to the left and right of the bars’ midpoints to
try to maintain the encoding as length.

4.2.4 Angle. The stimuli used are pure angles rather than pie
charts. In a pie chart, participants use other methods beyond angle
to find proportions [40]. We want to keep in line with our previous
stimuli of trying to test the graphical element alone with no other
elements mixed in. The angles are randomly rotated by some ran-
dom amount between 0–360°. When the angles all started at 0°, pilot
participants were confused since they had difficulty breaking down
the mental barrier of abstracting 100 to a 90° angle. Rotating the
angle more closely resembles the random direction comparisons
that may happen in pie or radial charts.

4.2.5 Area. For our area judgements we compared the area
of two circles. We chose circles as the stimuli, as they are often
seen as an encoding in node-link visualizations and bubble charts.
The results from Cleveland & McGill’s 1986 paper show blobs and
circles were found to have very similar degrees of accuracy from
the participants [16]. The area of the circle scaled linearly with the
datum shown, rather than a naïve quadratic radius scaling.

4.3 Participants
After obtaining IRB approval for our study, we recruited from two
different populations: children (µaдe = 9.91 years, range = 8–12; 19
male, 14 female) attending the Ivy After School Program and adult
(µaдe = 24, range = 19–29; 13 male, 11 female) computer science
students from Northeastern University, both located in the United
States. Both groups were recruited via a flyer sent by email. Due to
working with only one after-school program we had a connection
to, the child participants were mostly second-generation Chinese-
American students and from low income families receiving state-
issued childcare vouchers. The age of the children ranged from 8–12
and they attended grades 3–5. The adult participants reflect a similar
population to the three graphical perception studies conducted by
Cleveland & McGill [14–16].

We chose our particular age range for the children based on
multiple conversations with a developmental psychologist and the

https://osf.io/cbf28/
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educators at the after-school program. The experts expressed con-
cern that, younger than age 8, the children would not have the
attention span nor cognitive abilities to complete the study. Ad-
ditionally, until age 8, children often make logarithmically-biased
errors on number-line estimation tasks [64]. This could bias errors
not due to perception but due to a lack of numerical understanding
[64]. Furthermore, the “common core” standards in education begin
to introduce simple visualizations around Grade 2 [68]. By starting
at Grade 3, we can assume that each student would have been in-
troduced to the concept of a visualization and would likely be able
to complete our study. We limited maximum age of children in our
study to 12 for two reasons. First, 12 is generally considered the
maximum age where a child could still be considered an elementary
school student. Second, the after-school program only enrolls stu-
dents 12 and younger. Sampling outside of the after-school program
would have added additional complications to the study.

Since we are studying children, there are several factors that we
must account for: attention span, knowledge level, and ability to
understand directions. These factors dictated many of our design
decisions for the study.

4.3.1 Attention Span. It is well known that children have a shorter
attention span than adults. The coordinator of the after-school
program stated that we could expect the attention span of the
children to be approximately 30–45 minutes. We therefore limited
the length of the study to less than 45 minutes. In work done by
Mohring et al., it took around 10 minutes for children to answer
32 questions involving proportional reasoning in visualizations
[46], and, in work conducted by Spence & Krizel, it took around 6
seconds per visualization [66]. With our proposed 95 visualizations
to be shown to children, Mohring et al’s timing implies a test 32
minutes long and Spence & Krizel’s implies 10 minutes. During
pilot testing and the actual study, all students were able to complete
the study in under 45 minutes with delays and breaks included.

4.3.2 Knowledge level/Ability to understand directions. Students
between the ages of 8–12 vary greatly in their cognitive abilities
and skills they have learned and know [68]. With children we
cannot assume that they will understand the directions or grasp
the concepts being provided. Since they may have different ability
levels when it comes to understanding the material, we provided
practice questions with an alternate visual explanation to help the
children understand the question. Additionally, we conducted the
experiment synchronously with an educator in the room. Having
a person familiar with the children and their behaviors helped
assess if the students were comfortable and ready to move on to
the data-gathering portion of the study.

4.4 Procedure
The study followed a similar format with children and adults. Both
groups had a demographic questionnaire, practice questions, then
the actual study. For the children, informed consent was obtained
from each child’s guardian and assent was obtained from the child
themselves before starting the study. The study involved a practice
section and then the actual experiment. In the practice section, the
participant saw a total of 20 questions, 4 in each of 5 encoding types.
In the data-gathering portion of the experiment, each participant

saw at total of 95 questions, 19 in each of the 5 encoding types. A
study website (code at https://osf.io/y5vsz/) was set up for both
children and adults to collect the data. The stimuli presented and
format of the studywas identical for both children and adults during
the data gathering portion of the study.

For the child study, a consent form was sent home asking for
the parent or guardian’s approval. Once the consent form was
returned to the school, study sessions were set up between our
educator collaborator and the students. The study was conducted
one-on-one in person using the educator’s computers.

COVID-19 safety statement: This study was run during
August 2021 in the United States, in a county that the
Center for Disease Control rated as having a substan-
tial community transmission level (50–99 cumulative
cases per 100k population or a cumulative NAAT vi-
ral test positivity result between 8.0–9.9% in the past
7 days) [11]. As the children were already attending
the after-school program in person and the experiment
was conducted by only their customary educator, our
institution’s Institutional Review Board assessed that
participating in our study posed no additional risks to
the children.

The children’s portion was conducted in person since it allowed
for the child to feel comfortable and ask questions, as well as for
the experimenter to gauge whether the participant understood the
questions. The educator then walked the participant through an
example question, building up the question one part at a time to not
overwhelm them. The educator then manually clicked through the
practice questions with the participant and asked them verbally for
their answers. If a participant did not understand the first question
in any given encoding type, the educator would display an alternate
visual explanation of the question to clarify what was being asked.
Every participant that began the study was able to complete the
practice questions and the data gathering portion. Upon completion,
each participant was awarded a $20 dollar Tango Card which could
be redeemed at a store of their choice.

The adults completed their study asynchronously and remotely.
The type of device they used and speed at which they completed
the study could not be controlled for. A study website was sent to
them that included a demographic survey, practice questions, and
data-gathering portion. Like the children, each adult participant
was awarded a $20 dollar Tango Card.

The data-gathering portion of the study was broken down into
blocks with each block assessing one encoding type and contain-
ing 19 questions. In between each section, the participants were
presented with a screen informing them that they had finished a
section and could take a break. The encoding types and proportions
were randomized using a counterbalanced Latin square design [74].
The sequence of the encoding types and the order of the propor-
tions presented for each encoding type was assigned based on the
participant number. This allowed each participant to see the exact
same stimuli but in a different order, reducing any complications
that could arise from ordering effects. At the end of the study, a
final screen showed the participant their individualized ranking of
encodings by effectiveness.

https://osf.io/y5vsz/
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5 ANALYSIS
Our analysis plan and code was preregistered at https://osf.io/crj2z
before we collected any data. All data and code used in the final
analysis is available at https://osf.io/ygrdv.

5.1 Data preparation
5.1.1 Exclusion Criteria. We ensured that there were no outlier
points and no outlier participants that could negatively affect the
quality of our statistical analyses. To check that participants un-
derstood the questions, we checked to see if the data of correct
values and answered values was highly positively correlated. Each
task was checked for each individual. The Pearson’s R correlation
needed to be greater than .7 for the individual’s data to be included.
Any correlation above a .7 signifies a “High Positive Correlation,”
as stated by Mukaka [47], which is what we expect to see. Any
participant who has a correlation less than .7 in any tasks was re-
moved from the analysis for the study to remain a within subjects
study. This cutoff is admittedly dichotomous but reduces errors
introduced by human judgement in the analysis.

We also removed all outliers that may have been caused by a mis-
interpretation of the question. Absolute errors (|actual−guessed|)
greater than 50 were removed. An error greater than 50 should not
occur due to participant’s regular judgement errors. An error of
this size would mean a proportion of 20 was judged as 70, or vice
versa. An error of 50 puts the participant severely over the halfway
proportion reference point.

5.1.2 Distribution Testing. After the data were cleaned and pre-
pared for the statistical analysis, we tested for normality. For each
question, the absolute error between guessed and actual value was
recorded. The children’s data were aggregated by encoding type
and tested for normal distributions. We visually tested for normality
visually using Q-Q plots and quantitatively using the Shapiro-Wilk
test [62]. From both visual inspection and p-values of the Shapiro
Wilks test, the data was found to not come from a normal distribu-
tion for each encoding type. Therefore, nonparametric statistical
tests were used in further analyses.

5.2 Hypothesis 1 Analysis
Hypothesis 1: Children have varying perceptual accuracy with differ-
ent visual encodings.

Since the child data (1) is continuous, (2) has three or more tasks
to compare, (3) is not normally distributed, and (4) comes from a
single group, we use the Friedman test to determine if there are
differences in error between encoding types. The Friedman test
checks if the median absolute error is the same or different for each.

• H0: Participants will have no difference in median absolute
errors.

• H1: The medians are not all equal, which we expect from
prior studies on visual encoding rankings.

Since the Friedman test states only if all the medians are equal
or if at least one median is different, we will also need to conduct a
post-hoc analysis.Wewill use the Connover test to determinewhich
encoding types have different absolute errors (|actual−guessed|).
We will correct the p-values of the Connover test for multiple hy-
pothesis testing with the Benjamini-Hochberg procedure [3, 18].

Since using p-values as a binary threshold for claiming a scientific
finding or statistical significance used in isolation can lead to er-
roneous beliefs and poor decision making [28, 73], we augment
the null hypothesis significance testing with interval estimation of
effect sizes [19, 21]. We construct 95% confidence intervals using
the mean of the absolute errors for each encoding type. We use
the bias-corrected and accelerated (BCa) bootstrapping method for
computing them [23]. By visually inspecting the confidence inter-
vals in conjunction with the post-hoc Connover test, the rankings
for the different tasks will be apparent.

5.3 Hypothesis 2 Analysis
Hypothesis 2: Children’s overall elementary perceptual task accuracy
will be lower than adults.

We want to compare the two independent populations of adults
and children to see if the dependent variable of absolute error for
each encoding type is the same or different. The data used for
the analysis is the mean absolute error for each participant for
each encoding type. The means are grouped by which population
and which encoding type they belong to. Our previous analysis
determined that the data is not normally distributed. We followed
this analysis by conducting an F test to test if the variances are
equal between the adult and child populations for each encoding
type. We tested a null hypothesis H0 that the data has an equal
variance at an alpha of .05 and corrected the p-values for multiple
hypothesis testing using the Benjamini-Hochberg procedure [3].
We found that there are unequal variances for each encoding type
for the adult and child populations.

Because we are testing if there is a difference in a continuous
dependent variable between two independent populations, we use
the Mann-Whitney U test, which is a measure of the number of
times a randomly chosen value from one group exceeds a randomly
chosen value from the other group. To interpret the results of the
analysis, we can use the language below:

• H0: the distribution of scores for the two groups are equal.
• With unequal variances, the alternate hypothesis H1 is that
the mean ranks of the two groups are not equal.

In addition to the Mann-Whitney test, we present 95% confidence
intervals to help indicate the range of plausible values. The confi-
dence intervals were created for the absolute error means for each
participant using bias-corrected and accelerated (BCa) bootstrapped
confidence intervals [23].

5.4 Hypothesis 3 Analysis
Hypothesis 3: Children will exhibit patterns of bias in errors when
making graphical perception judgements.

To test which bias model is best, we used the Akaike’s Informa-
tion Criterion (AIC) [1]. The AIC tests the amount of information
lost by a given model. The model with the lowest AIC score will be
considered the highest-quality model.

The rules to interpret the model scores are outlined below, as
per Burnham & Anderson [9]. The main test statistic is ∆i =AICi −
AICmin , whereAICi is the ith model andAICmin is the model with
the lowest score. The ∆i scores can be interpreted as:

• if ∆i < 2, then there is substantial support for the i-th model
or the evidence against it is marginal.

https://osf.io/crj2z
https://osf.io/ygrdv
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• if 2 < ∆i < 4, then there is less support for the i-th model.
• if 4 < ∆i < 7, then there is considerably less support for the
i-th model.

• if ∆i > 10, the model has essentially no support.

The larger ∆i is, the greater the information loss for that model.
Therefore, for our purposes, if the ∆i > 4 we can say that the
information loss for this model is great enough that a different
model better supports data gathered. After the bias models are
evaluated for the children, the same analysis is run for the adults
for comparison.

6 RESULTS
Per our preregistered exclusion criteria at https://osf.io/crj2z, we
removed data from four child and three adult participants be-
cause their data had low correlation between responses and actual
answers—defined as a Pearson’s correlation coefficient < 0.7 for at
least one of the tasks. We deviated from our preregistered plan in
several ways: (1) We corrected a bug for removing outlier points in
preregistration section 3.1, “Exclusion Criteria for Individuals,” to
ensure it matched the plan from section 1 of the preregistration. (2)
Because of a mistake with the data collection code, 10 of the 25 adult
participants had the exact same ordering of the stimuli presented,
which should have been random. (3) Finally, the analysis of the bias
models was adjusted to represent the equations set forth by Hol-
lands & Dyre [32] as well as Slusser and Barth [63]. In the original
plan (section 1.5, “Bias Models”), a fixed scaling parameter a was
included in the single-cycle and two-cycle models. This caused the
bias models to have unequally spaced reference points, which runs
in contradiction to previous literature. The variable was changed
to be 100, and the analysis was run using the equally-spaced refer-
ence point models. The changes are annotated and described in the
analysis code found at https://osf.io/ygrdv.

6.1 Hypothesis 1
From the results of the Friedman test (Fr = 68.93, df = 5,32, p<.001)
and interval estimation of effect size in fig. 5A, there is strong
evidence that there is a meaningful difference in medians of the
absolute error between the encodings. There is strong evidence for
both children and adults that the accuracy is generally ranked as
follows (most accurate to least accurate): (1) Position Along a
Common Axis, (2) Length, (3) Position Along an Unaligned
Axis, and (4|5) Area and Angle. There was very little support
for there being a difference in accuracy between area and angle.

6.2 Hypothesis 2
For our second hypothesis, our evidence—p<.001 for each encoding
and the interval estimation of effect size in fig. 5C—strongly sup-
ports the claim that children are meaningfully less accurate than
adults with each encoding type.

6.3 Hypothesis 3
The results of our tests on the bias models are shown in fig. 6, as
per [63]. We have strong evidence that the linear model without
constants does not describe the data best for each chart type, with
the exception of Length. For Position Along a Common Axis

and Angle, no bias model conclusively describes the data best.
For Position Along an Unaligned Axis, there is strong evidence
that the exponential model describes the data best. Finally, for the

Area encoding, there is some evidence to support linear with
constants as the model to best support the data.

7 DISCUSSION
D1: Children and adults have similar patterns of graphical
perception for the different encodings. The most important of
our findings is the similarity in results between children and adults.
The effectiveness rankings, relative differences in error between the
different encodings, and the patterns of bias across encoding types
are markedly similar for both children and adults. The similarity
in effectiveness rankings strengthens Cleveland & McGill’s [15]
claim that the decoding of visualizations is a preattentive visual task.
However, since there are distinct biases across tasks for both groups,
researchers should not lump the perceptual processes involved
in each of these tasks into the same category. Furthermore, the
similarity in bias models and patterns of bias across ages suggests
these biases are consistent across development. This finding also
supports Spence & Krizel’s [66] conclusion that children and adults
make similar errors when decoding information from visualizations.
Thus, the combination of our findings and previous literature leads
us to believe that children and adults share the same cognitive
processes when decoding visual information.

D2: Children are less accurate than adults on graphical
perception tasks. Though there are abundant similarities between
the child and adult populations, there is also one clear difference:
children are less accurate when decoding visual information than
adults. For every task, children’s mean error was approximately 2.5
percentage points worse than the adults’. As children mature, they
are likely to encounter more visualizations and becomemore skilled
at estimating the sizes and computing ratios, leading to improved
graphical perception abilities.

D3: While children show a greater variety of individual
differences than adults, both populations show a diversity
in encoding rankings and overall accuracy. Aggregated data
from the children shows very similar patterns of error as with the
adults, but there are individual differences in the rankings. For the 33
child participants, the encodings were ranked in 22 different ways,
and for the 24 adult participants, the encodings were ranked in 8
different ways (fig. 5D). These rankings were determined by simply
using the mean absolute error aggregated for each task. There is
preliminary indication that children display a greater variability
on which tasks they are most accurate on. Thus, the aggregation of
data misses a larger diversity of thought and decoding that might
be present in children.

D4: Both adults and children consistently underestimate
values in Position Along an Unaligned Axis tasks. When
we examine the bias models for Hypothesis 3 (section 5.4), we can
reject our null hypothesis for each of the encodings except Po-
sition Along an Unaligned Axis for the children and for all the
encodings for adults. Looking at fig. 6B, we can see the tendency
for participants to underestimate the correct response. The expo-
nential model (red line) runs below the the linear model (dotted
line) indicating a pattern of underestimation. With all other models

https://osf.io/crj2z
https://osf.io/ygrdv
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Child—Mean Age: 9.91
Range 8–12, M: 19 F: 14
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Range 18–29, M: 13 F: 11
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 95% bias-corrected and accelerated (BCa) bootstrapped confidence intervals.
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rule of thumb for reading 95% CIs is that if two intervals overlap by less than 1/4 of their average length, then the comparison 
will have p < .05 [22].) The mean absolute error for each encoding is shown in A for children and B for adults. In C , the 
previous two charts are rearranged to compare children with adults. Children are clearly less accurate when using each of the 
encodings. The exploratory analysis included, D , shows the variation in encoding rankings among individual children (left) 
and adults (right). Each line represents an encoding, ranked left-to-right in increasing mean absolute error for each task. The 
grey rows are sized to represent the count of individuals with a shared ranking. E.g., the top row shows that 5 children ranked 
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of individual diferences in encoding rankings than adults. Finally, E shows more simply the overall rankings we found for 
adults and children. 

Figure 5: Summative results for Hypothesis 1 and 2 and an exploratory analysis of individual differences in encoding rankings.
In

                  

                   
                   

                        
                        

                    
                

                   
                       

                 
                  

                  
   

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Panavas, Worth, Crnovrsanin, Sathyamurthi, Cordes, Borkin, & Dunne 

Position Along a Common Axis

Position Along an Unaligned Axis Length

Angle

Area

Child—Mean Age: 9.91
Range 8–12, M: 19 F: 14
Adult—Mean Age: 24.00
Range 18–29, M: 13 F: 11

4.94

7.81

6.42

10.35

9.72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.87

5.75

4.00

7.91

7.86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4.94

2.87

7.81

5.76

6.42

4.00

10.34

7.91

9.72

7.86

Mean Error Per Task:
The absolute error |Actual – Guessed| value for each task. Error bars represent
 95% bias-corrected and accelerated (BCa) bootstrapped confidence intervals.

More Accurate Less Accurate More Accurate Less Accurate

1

1

1

1

1

1

1

1

1

5

4

3

2

2

1

1

1

1

1

1

1

1

7

6

3

3

2

1
1

1

A

B

D

C

E

More Accurate Less Accurate

Individual Differences

The chart represent the variety of individual
differences in the efficacy rankings of the

studied visual encodings.

More Accurate Less Accurate

Hypothesis 1
Participants have varying effectiveness

with different visual encodings.

Hypothesis 2
Children's will be less accurate in overall 
elementary perceptual task than adults.

Most Accurate

Least AccurateLeast Accurate

Rankings based on relative distances 
between most accurate and least accurate.

Most Accurate

Figure 5: Summative results for Hypothesis 1 and 2 and an exploratory analysis of individual diferences in encoding rankings. 
In A , B , and C the error bars show 95% bias-corrected and accelerated (BCa) bootstrapped confdence intervals [23]. (A rough 
rule of thumb for reading 95% CIs is that if two intervals overlap by less than 1/4 of their average length, then the comparison 
will have p < .05 [22].) The mean absolute error for each encoding is shown in A for children and B for adults. In C , the 
previous two charts are rearranged to compare children with adults. Children are clearly less accurate when using each of the 
encodings. The exploratory analysis included, D , shows the variation in encoding rankings among individual children (left) 
and adults (right). Each line represents an encoding, ranked left-to-right in increasing mean absolute error for each task. The 
grey rows are sized to represent the count of individuals with a shared ranking. E.g., the top row shows that 5 children ranked 

Position Along a Common Axis as most accurate, followed by Length, Position Along an Unaligned Axis, Angle, 
and lastly Area. The line-row intersections show the encoding ranking for that row. Children displayed a larger variety 
of individual diferences in encoding rankings than adults. Finally, E shows more simply the overall rankings we found for 
adults and children. 

,

                  

                   
                   

                        
                        

                    
                

                   
                       

                 
                  

                  
   

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Panavas, Worth, Crnovrsanin, Sathyamurthi, Cordes, Borkin, & Dunne 

Position Along a Common Axis

Position Along an Unaligned Axis Length

Angle

Area

Child—Mean Age: 9.91
Range 8–12, M: 19 F: 14
Adult—Mean Age: 24.00
Range 18–29, M: 13 F: 11

4.94

7.81

6.42

10.35

9.72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.87

5.75

4.00

7.91

7.86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4.94

2.87

7.81

5.76

6.42

4.00

10.34

7.91

9.72

7.86

Mean Error Per Task:
The absolute error |Actual – Guessed| value for each task. Error bars represent
 95% bias-corrected and accelerated (BCa) bootstrapped confidence intervals.

More Accurate Less Accurate More Accurate Less Accurate

1

1

1

1

1

1

1

1

1

5

4

3

2

2

1

1

1

1

1

1

1

1

7

6

3

3

2

1
1

1

A

B

D

C

E

More Accurate Less Accurate

Individual Differences

The chart represent the variety of individual
differences in the efficacy rankings of the

studied visual encodings.

More Accurate Less Accurate

Hypothesis 1
Participants have varying effectiveness

with different visual encodings.

Hypothesis 2
Children's will be less accurate in overall 
elementary perceptual task than adults.

Most Accurate

Least AccurateLeast Accurate

Rankings based on relative distances 
between most accurate and least accurate.

Most Accurate

Figure 5: Summative results for Hypothesis 1 and 2 and an exploratory analysis of individual diferences in encoding rankings. 
In A , B , and C the error bars show 95% bias-corrected and accelerated (BCa) bootstrapped confdence intervals [23]. (A rough 
rule of thumb for reading 95% CIs is that if two intervals overlap by less than 1/4 of their average length, then the comparison 
will have p < .05 [22].) The mean absolute error for each encoding is shown in A for children and B for adults. In C , the 
previous two charts are rearranged to compare children with adults. Children are clearly less accurate when using each of the 
encodings. The exploratory analysis included, D , shows the variation in encoding rankings among individual children (left) 
and adults (right). Each line represents an encoding, ranked left-to-right in increasing mean absolute error for each task. The 
grey rows are sized to represent the count of individuals with a shared ranking. E.g., the top row shows that 5 children ranked 

Position Along a Common Axis as most accurate, followed by Length, Position Along an Unaligned Axis, Angle, 
and lastly Area. The line-row intersections show the encoding ranking for that row. Children displayed a larger variety 
of individual diferences in encoding rankings than adults. Finally, E shows more simply the overall rankings we found for 
adults and children. 

, and

                  

                   
                   

                        
                        

                    
                

                   
                       

                 
                  

                  
   

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Panavas, Worth, Crnovrsanin, Sathyamurthi, Cordes, Borkin, & Dunne 

Position Along a Common Axis

Position Along an Unaligned Axis Length

Angle

Area

Child—Mean Age: 9.91
Range 8–12, M: 19 F: 14
Adult—Mean Age: 24.00
Range 18–29, M: 13 F: 11

4.94

7.81

6.42

10.35

9.72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.87

5.75

4.00

7.91

7.86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4.94

2.87

7.81

5.76

6.42

4.00

10.34

7.91

9.72

7.86

Mean Error Per Task:
The absolute error |Actual – Guessed| value for each task. Error bars represent
 95% bias-corrected and accelerated (BCa) bootstrapped confidence intervals.

More Accurate Less Accurate More Accurate Less Accurate

1

1

1

1

1

1

1

1

1

5

4

3

2

2

1

1

1

1

1

1

1

1

7

6

3

3

2

1
1

1

A

B

D

C

E

More Accurate Less Accurate

Individual Differences

The chart represent the variety of individual
differences in the efficacy rankings of the

studied visual encodings.

More Accurate Less Accurate

Hypothesis 1
Participants have varying effectiveness

with different visual encodings.

Hypothesis 2
Children's will be less accurate in overall 
elementary perceptual task than adults.

Most Accurate

Least AccurateLeast Accurate

Rankings based on relative distances 
between most accurate and least accurate.

Most Accurate

Figure 5: Summative results for Hypothesis 1 and 2 and an exploratory analysis of individual diferences in encoding rankings. 
In A , B , and C the error bars show 95% bias-corrected and accelerated (BCa) bootstrapped confdence intervals [23]. (A rough 
rule of thumb for reading 95% CIs is that if two intervals overlap by less than 1/4 of their average length, then the comparison 
will have p < .05 [22].) The mean absolute error for each encoding is shown in A for children and B for adults. In C , the 
previous two charts are rearranged to compare children with adults. Children are clearly less accurate when using each of the 
encodings. The exploratory analysis included, D , shows the variation in encoding rankings among individual children (left) 
and adults (right). Each line represents an encoding, ranked left-to-right in increasing mean absolute error for each task. The 
grey rows are sized to represent the count of individuals with a shared ranking. E.g., the top row shows that 5 children ranked 

Position Along a Common Axis as most accurate, followed by Length, Position Along an Unaligned Axis, Angle, 
and lastly Area. The line-row intersections show the encoding ranking for that row. Children displayed a larger variety 
of individual diferences in encoding rankings than adults. Finally, E shows more simply the overall rankings we found for 
adults and children. 

the error bars show 95% bias-corrected and accelerated (BCa) bootstrapped confidence intervals [23]. (A rough
rule of thumb for reading 95% CIs is that if two intervals overlap by less than 1/4 of their average length, then the comparison
will have p < .05 [22].) The mean absolute error for each encoding is shown in

                  

                   
                   

                        
                        

                    
                

                   
                       

                 
                  

                  
   

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Panavas, Worth, Crnovrsanin, Sathyamurthi, Cordes, Borkin, & Dunne 

Position Along a Common Axis

Position Along an Unaligned Axis Length

Angle

Area

Child—Mean Age: 9.91
Range 8–12, M: 19 F: 14
Adult—Mean Age: 24.00
Range 18–29, M: 13 F: 11

4.94

7.81

6.42

10.35

9.72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.87

5.75

4.00

7.91

7.86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4.94

2.87

7.81

5.76

6.42

4.00

10.34

7.91

9.72

7.86

Mean Error Per Task:
The absolute error |Actual – Guessed| value for each task. Error bars represent
 95% bias-corrected and accelerated (BCa) bootstrapped confidence intervals.

More Accurate Less Accurate More Accurate Less Accurate

1

1

1

1

1

1

1

1

1

5

4

3

2

2

1

1

1

1

1

1

1

1

7

6

3

3

2

1
1

1

A

B

D

C

E

More Accurate Less Accurate

Individual Differences

The chart represent the variety of individual
differences in the efficacy rankings of the

studied visual encodings.

More Accurate Less Accurate

Hypothesis 1
Participants have varying effectiveness

with different visual encodings.

Hypothesis 2
Children's will be less accurate in overall 
elementary perceptual task than adults.

Most Accurate

Least AccurateLeast Accurate

Rankings based on relative distances 
between most accurate and least accurate.

Most Accurate

Figure 5: Summative results for Hypothesis 1 and 2 and an exploratory analysis of individual diferences in encoding rankings. 
In A , B , and C the error bars show 95% bias-corrected and accelerated (BCa) bootstrapped confdence intervals [23]. (A rough 
rule of thumb for reading 95% CIs is that if two intervals overlap by less than 1/4 of their average length, then the comparison 
will have p < .05 [22].) The mean absolute error for each encoding is shown in A for children and B for adults. In C , the 
previous two charts are rearranged to compare children with adults. Children are clearly less accurate when using each of the 
encodings. The exploratory analysis included, D , shows the variation in encoding rankings among individual children (left) 
and adults (right). Each line represents an encoding, ranked left-to-right in increasing mean absolute error for each task. The 
grey rows are sized to represent the count of individuals with a shared ranking. E.g., the top row shows that 5 children ranked 

Position Along a Common Axis as most accurate, followed by Length, Position Along an Unaligned Axis, Angle, 
and lastly Area. The line-row intersections show the encoding ranking for that row. Children displayed a larger variety 
of individual diferences in encoding rankings than adults. Finally, E shows more simply the overall rankings we found for 
adults and children. 

for children and

                  

                   
                   

                        
                        

                    
                

                   
                       

                 
                  

                  
   

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Panavas, Worth, Crnovrsanin, Sathyamurthi, Cordes, Borkin, & Dunne 

Position Along a Common Axis

Position Along an Unaligned Axis Length

Angle

Area

Child—Mean Age: 9.91
Range 8–12, M: 19 F: 14
Adult—Mean Age: 24.00
Range 18–29, M: 13 F: 11

4.94

7.81

6.42

10.35

9.72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.87

5.75

4.00

7.91

7.86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4.94

2.87

7.81

5.76

6.42

4.00

10.34

7.91

9.72

7.86

Mean Error Per Task:
The absolute error |Actual – Guessed| value for each task. Error bars represent
 95% bias-corrected and accelerated (BCa) bootstrapped confidence intervals.

More Accurate Less Accurate More Accurate Less Accurate

1

1

1

1

1

1

1

1

1

5

4

3

2

2

1

1

1

1

1

1

1

1

7

6

3

3

2

1
1

1

A

B

D

C

E

More Accurate Less Accurate

Individual Differences

The chart represent the variety of individual
differences in the efficacy rankings of the

studied visual encodings.

More Accurate Less Accurate

Hypothesis 1
Participants have varying effectiveness

with different visual encodings.

Hypothesis 2
Children's will be less accurate in overall 
elementary perceptual task than adults.

Most Accurate

Least AccurateLeast Accurate

Rankings based on relative distances 
between most accurate and least accurate.

Most Accurate

Figure 5: Summative results for Hypothesis 1 and 2 and an exploratory analysis of individual diferences in encoding rankings. 
In A , B , and C the error bars show 95% bias-corrected and accelerated (BCa) bootstrapped confdence intervals [23]. (A rough 
rule of thumb for reading 95% CIs is that if two intervals overlap by less than 1/4 of their average length, then the comparison 
will have p < .05 [22].) The mean absolute error for each encoding is shown in A for children and B for adults. In C , the 
previous two charts are rearranged to compare children with adults. Children are clearly less accurate when using each of the 
encodings. The exploratory analysis included, D , shows the variation in encoding rankings among individual children (left) 
and adults (right). Each line represents an encoding, ranked left-to-right in increasing mean absolute error for each task. The 
grey rows are sized to represent the count of individuals with a shared ranking. E.g., the top row shows that 5 children ranked 

Position Along a Common Axis as most accurate, followed by Length, Position Along an Unaligned Axis, Angle, 
and lastly Area. The line-row intersections show the encoding ranking for that row. Children displayed a larger variety 
of individual diferences in encoding rankings than adults. Finally, E shows more simply the overall rankings we found for 
adults and children. 

for adults. In

                  

                   
                   

                        
                        

                    
                

                   
                       

                 
                  

                  
   

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Panavas, Worth, Crnovrsanin, Sathyamurthi, Cordes, Borkin, & Dunne 

Position Along a Common Axis

Position Along an Unaligned Axis Length

Angle

Area

Child—Mean Age: 9.91
Range 8–12, M: 19 F: 14
Adult—Mean Age: 24.00
Range 18–29, M: 13 F: 11

4.94

7.81

6.42

10.35

9.72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.87

5.75

4.00

7.91

7.86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4.94

2.87

7.81

5.76

6.42

4.00

10.34

7.91

9.72

7.86

Mean Error Per Task:
The absolute error |Actual – Guessed| value for each task. Error bars represent
 95% bias-corrected and accelerated (BCa) bootstrapped confidence intervals.

More Accurate Less Accurate More Accurate Less Accurate

1

1

1

1

1

1

1

1

1

5

4

3

2

2

1

1

1

1

1

1

1

1

7

6

3

3

2

1
1

1

A

B

D

C

E

More Accurate Less Accurate

Individual Differences

The chart represent the variety of individual
differences in the efficacy rankings of the

studied visual encodings.

More Accurate Less Accurate

Hypothesis 1
Participants have varying effectiveness

with different visual encodings.

Hypothesis 2
Children's will be less accurate in overall 
elementary perceptual task than adults.

Most Accurate

Least AccurateLeast Accurate

Rankings based on relative distances 
between most accurate and least accurate.

Most Accurate

Figure 5: Summative results for Hypothesis 1 and 2 and an exploratory analysis of individual diferences in encoding rankings. 
In A , B , and C the error bars show 95% bias-corrected and accelerated (BCa) bootstrapped confdence intervals [23]. (A rough 
rule of thumb for reading 95% CIs is that if two intervals overlap by less than 1/4 of their average length, then the comparison 
will have p < .05 [22].) The mean absolute error for each encoding is shown in A for children and B for adults. In C , the 
previous two charts are rearranged to compare children with adults. Children are clearly less accurate when using each of the 
encodings. The exploratory analysis included, D , shows the variation in encoding rankings among individual children (left) 
and adults (right). Each line represents an encoding, ranked left-to-right in increasing mean absolute error for each task. The 
grey rows are sized to represent the count of individuals with a shared ranking. E.g., the top row shows that 5 children ranked 

Position Along a Common Axis as most accurate, followed by Length, Position Along an Unaligned Axis, Angle, 
and lastly Area. The line-row intersections show the encoding ranking for that row. Children displayed a larger variety 
of individual diferences in encoding rankings than adults. Finally, E shows more simply the overall rankings we found for 
adults and children. 

, the
previous two charts are rearranged to compare children with adults. Children are clearly less accurate when using each of the
encodings. The exploratory analysis included,

                  

                   
                   

                        
                        

                    
                

                   
                       

                 
                  

                  
   

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Panavas, Worth, Crnovrsanin, Sathyamurthi, Cordes, Borkin, & Dunne 

Position Along a Common Axis

Position Along an Unaligned Axis Length

Angle

Area

Child—Mean Age: 9.91
Range 8–12, M: 19 F: 14
Adult—Mean Age: 24.00
Range 18–29, M: 13 F: 11

4.94

7.81

6.42

10.35

9.72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.87

5.75

4.00

7.91

7.86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4.94

2.87

7.81

5.76

6.42

4.00

10.34

7.91

9.72

7.86

Mean Error Per Task:
The absolute error |Actual – Guessed| value for each task. Error bars represent
 95% bias-corrected and accelerated (BCa) bootstrapped confidence intervals.

More Accurate Less Accurate More Accurate Less Accurate

1

1

1

1

1

1

1

1

1

5

4

3

2

2

1

1

1

1

1

1

1

1

7

6

3

3

2

1
1

1

A

B

D

C

E

More Accurate Less Accurate

Individual Differences

The chart represent the variety of individual
differences in the efficacy rankings of the

studied visual encodings.

More Accurate Less Accurate

Hypothesis 1
Participants have varying effectiveness

with different visual encodings.

Hypothesis 2
Children's will be less accurate in overall 
elementary perceptual task than adults.

Most Accurate

Least AccurateLeast Accurate

Rankings based on relative distances 
between most accurate and least accurate.

Most Accurate

Figure 5: Summative results for Hypothesis 1 and 2 and an exploratory analysis of individual diferences in encoding rankings. 
In A , B , and C the error bars show 95% bias-corrected and accelerated (BCa) bootstrapped confdence intervals [23]. (A rough 
rule of thumb for reading 95% CIs is that if two intervals overlap by less than 1/4 of their average length, then the comparison 
will have p < .05 [22].) The mean absolute error for each encoding is shown in A for children and B for adults. In C , the 
previous two charts are rearranged to compare children with adults. Children are clearly less accurate when using each of the 
encodings. The exploratory analysis included, D , shows the variation in encoding rankings among individual children (left) 
and adults (right). Each line represents an encoding, ranked left-to-right in increasing mean absolute error for each task. The 
grey rows are sized to represent the count of individuals with a shared ranking. E.g., the top row shows that 5 children ranked 

Position Along a Common Axis as most accurate, followed by Length, Position Along an Unaligned Axis, Angle, 
and lastly Area. The line-row intersections show the encoding ranking for that row. Children displayed a larger variety 
of individual diferences in encoding rankings than adults. Finally, E shows more simply the overall rankings we found for 
adults and children. 

, shows the variation in encoding rankings among individual children (left)
and adults (right). Each line represents an encoding, ranked left-to-right in increasing mean absolute error for each task. The
grey rows are sized to represent the count of individuals with a shared ranking. E.g., the top row shows that 5 children ranked

Position Along a Common Axis as most accurate, followed by Length, Position Along an Unaligned Axis, Angle,
and lastly Area. The line-row intersections show the encoding ranking for that row. Children displayed a larger variety
of individual differences in encoding rankings than adults. Finally,

                  

                   
                   

                        
                        

                    
                

                   
                       

                 
                  

                  
   

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Panavas, Worth, Crnovrsanin, Sathyamurthi, Cordes, Borkin, & Dunne 

Position Along a Common Axis

Position Along an Unaligned Axis Length

Angle

Area

Child—Mean Age: 9.91
Range 8–12, M: 19 F: 14
Adult—Mean Age: 24.00
Range 18–29, M: 13 F: 11

4.94

7.81

6.42

10.35

9.72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.87

5.75

4.00

7.91

7.86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4.94

2.87

7.81

5.76

6.42

4.00

10.34

7.91

9.72

7.86

Mean Error Per Task:
The absolute error |Actual – Guessed| value for each task. Error bars represent
 95% bias-corrected and accelerated (BCa) bootstrapped confidence intervals.

More Accurate Less Accurate More Accurate Less Accurate

1

1

1

1

1

1

1

1

1

5

4

3

2

2

1

1

1

1

1

1

1

1

7

6

3

3

2

1
1

1

A

B

D

C

E

More Accurate Less Accurate

Individual Differences

The chart represent the variety of individual
differences in the efficacy rankings of the

studied visual encodings.

More Accurate Less Accurate

Hypothesis 1
Participants have varying effectiveness

with different visual encodings.

Hypothesis 2
Children's will be less accurate in overall 
elementary perceptual task than adults.

Most Accurate

Least AccurateLeast Accurate

Rankings based on relative distances 
between most accurate and least accurate.

Most Accurate

Figure 5: Summative results for Hypothesis 1 and 2 and an exploratory analysis of individual diferences in encoding rankings. 
In A , B , and C the error bars show 95% bias-corrected and accelerated (BCa) bootstrapped confdence intervals [23]. (A rough 
rule of thumb for reading 95% CIs is that if two intervals overlap by less than 1/4 of their average length, then the comparison 
will have p < .05 [22].) The mean absolute error for each encoding is shown in A for children and B for adults. In C , the 
previous two charts are rearranged to compare children with adults. Children are clearly less accurate when using each of the 
encodings. The exploratory analysis included, D , shows the variation in encoding rankings among individual children (left) 
and adults (right). Each line represents an encoding, ranked left-to-right in increasing mean absolute error for each task. The 
grey rows are sized to represent the count of individuals with a shared ranking. E.g., the top row shows that 5 children ranked 

Position Along a Common Axis as most accurate, followed by Length, Position Along an Unaligned Axis, Angle, 
and lastly Area. The line-row intersections show the encoding ranking for that row. Children displayed a larger variety 
of individual diferences in encoding rankings than adults. Finally, E shows more simply the overall rankings we found for 
adults and children. 

shows more simply the overall rankings we found for
adults and children.



Juvenile Graphical Perception: A Comparison between Children and Adults CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 6: Summative results for Hypothesis 3.
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The table shows the ∆i for the Akaike’s Information Criterion (AIC) for each
model and encoding combination, separately for children (left) and adults (right). The model with the lowest ∆i is best. See
section 5.4 and Burnham & Anderson [9] for details. Though no model is consistently best for either population, both pop-
ulations share very similar patterns of error. This indicates that they likely use similar cognitive processes when decoding
the information.
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The charts show how the exponential bias model for Position Along an Unaligned Axis fits the partic-
ipant responses. The clear deviation from the linear model along with the large difference in AIC scores indicates a pattern
of underestimation in participant’s responses. For both populations, only the exponential model for the Position Along an
Unaligned Axis is definitively the best choice to minimize information loss.

for having ∆i > 10, indicating essentially no support, Position
Along an Unaligned Axis is the only encoding where a clear pattern
emerges. One possibility is that participants tended toward lower
estimates because the reference was always 100 and they were
asked for a value under 100. Future research could try to include
test values above 100 to see if this holds when asked about values
above and below.

D5: Contradicting prior studies, Position Along an Un-
aligned Axis was less accurate than Length, and there is
little evidence for a difference between Area and An-
gle. Prior studies suggest that Position Along an Unaligned Axis
is more accurate than Length [15, 30]—but we found the converse
to be true in both populations. Our results further indicated that
there was no meaningful difference in task performance between

Area and Angle, contradicting established guidance that
Angle is more effective [15, 30]. The difference in results likely
stems from the stimuli used. Cleveland & McGill set out to test the

“perceptual building blocks” of visualizations [14]. Their stimuli,
and other studies afterwards, mix several building blocks and add
distractors, which may result in the elementary tasks not being
accurately examined [30, 40, 67]. We test what we believe are the
most basic elements extracted from popular visualization types.
Our hope is that by isolating the stimuli to their most basic level we
can more accurately rank the elementary building blocks of visual-
izations. Then designers and researchers can decide from empirical
evidence how best to build their visualizations.

7.1 Design Recommendations
We build each of our design recommendations based on the preced-
ing discussion points, which we reference in parenthesis.

DR1 (D1, D2): We recommend that designers follow the
same encoding ranking guidelines for both adults and chil-
dren. From our findings, it can be seen that, at least in regards to
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graphical perception, children use similar cognitive processes as
adults. This, however, does not mean that they will be able to effec-
tively interpret visualizations of similar complexity. It is important
to keep in mind that children have significantly less experience
with visualizations and may not be able to decipher meaning from
more complex ones. Moreover, our results indicate that children
are approximately 2.5 percentage points less accurate than adults
at these tasks.

DR2 (D2, D4, D5): From Hypothesis 2 (section 5.3) it is apparent
that children are less accurate when decoding visualizations. One
strategy that may help mitigate children’s loss in accuracy
is adding gridlines. Gridlines may improve children’s judgment
by providing additional reference points. This may be particularly
helpful when creating visualizations that rely heavily on Posi-
tion Along a Common Axis, Position Along an Unaligned Axis,
and Length. Work by Hollands & Dyre [32] and Heer & Bostock
[30] theoretically and experimentally substantiate this. Heer & Bo-
stock in their third crowdsourced experiment showed that adding
gridlines increased perceptual accuracy for Position Along a
Common Axis tasks. In Hollands & Dyre’s [32] cyclic power model,
the more reference points the more the amplitude of the bias de-
creases. Therefore, adding gridlines and increasing the amount of
reference points would decrease participant’s perceptual bias, as
evidenced by the experimental work done by Heer & Bostock.

DR3 (D3): Since children’s encoding rankings are more
varied, visualization creators and teachers may want to con-
sider other factors beyond accuracy in their designs. This ex-
tends to the practical application and interpretation of the results of
graphical perception studies. Though the differences between the
encodings may be meaningfully different, the differences are still
on the smaller side. When considering a visualization, the designer
may want to contemplate if the difference in accuracy will affect the
user’s ability to perceive the patterns in a visualization. Choosing a
better encoding that provides slightly more accuracy may not be
worth the loss in creativity or user enjoyment [59].

DR4 (D5): We advise the reader to look deeper at the
data behind graphical perception guidelines and future re-
searchers to present these rankings in a way that better mir-
rors the results.When the rankings are presented as an ordered
list, it gives the impression that one encoding is equidistant from
another. In fig. 5E, we present an alternative way to express the re-
sults. While this display does not encapsulate the variability of the
participants’ data, it is a step in the right direction of showing the
differences in error. By presenting the results to more closely reflect
the findings of our studies, visualization designers may correctly
assume that Area and Angle are interchangeable.

7.2 Limitations and Future work
While our work furthers the research on how children perceive
visualizations, it is not without limitations. We broaden and con-
firm the results of graphical perception studies to a population not
usually assessed in visualization research [31]. This is a helpful first
step, but we continue to encounter the problem of using a narrow
sample to generalize to a broader population. The children were all
sampled from one after-school program, and adults were all com-
puter science students at one university. The variety of individual

differences and spread of results indicates that we need to conduct
these studies with broader, more diverse populations to confirm
what we found.

To increase the diversity of participants, graphical perception
studies could look at a broader age range of children. Our find-
ings show that children are less accurate in graphical perception
tasks, but we have not determined when their accuracy becomes
comparable to adults. Future work could investigate both younger
and older children to see how graphical perception may change or
develop over the years. Additional work could also be conducted
to help better understand what cognitive processes and skills are
involved in improved graphical perception ability.

In addition to diversifying the types of populations studied, fu-
ture researchers could also broaden the types of studies and analysis
done with children to better understand how they perceive visu-
alizations. Our work quantifies the kinds of patterns and errors
children and adults make when decoding information from charts.
By looking at the patterns of errors for both populations, we hy-
pothesize that they use similar cognitive processes to make their
judgements. Future researchers could conduct more qualitative
studies to better understand these cognitive processes and identify
which visualizations are easier to understand. The educator admin-
istering the study noticed that several children easily understood
the Area encoding but struggled to process the others. Future
qualitative work could explore what data abstractions are more
intuitive and comprehensible to children.

To offer a bit of encouragement to future researchers interested
in working with children, we leave you with one last observation.
When designing studies for children, it can be difficult to think of
the many design choices one must make to accommodate them.
While this is true, we found that the children in our study were
eager to help. Though our study may not be well-characterized
as fun, the children were engaged in the study tasks and enjoyed
seeing their individualized encoding ranking at the end of the study.
We also strongly advise partnering with someone familiar with the
students. Having collaborators who know the participants can help
in all aspects of the study, from designing the study to gathering and
assessing the participants. Other researchers have given similar
advice, and this has been associated with a rise in visualization
studies involving children [2]. We hope this trend continues as more
researchers recognize the importance of studying how children
interpret visualizations.

8 CONCLUSION
Children’s ability to understand visualizations is critical to their
success in building foundational knowledge and skills. And yet
visualizations designed for children rely for the most part on graph-
ical perception research conducted with adults. To create better
visualizations, we gathered empirical evidence to support design
guidelines for children. We take a step towards solving this problem
via a graphical perception study with children and adults, investi-
gating how they perceive visualizations. Our results indicate that
children process visualizations in very similar ways to adults but
have difficulty making judgements as accurately. Our results lead
us to propose several guidelines not just for children’s visualiza-
tions, but also for graphical perception results and interpretation.



Juvenile Graphical Perception: A Comparison between Children and Adults CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

We hope that our work will prompt more visualization researchers
to conduct studies with this important population of visualization
users. While adults may encounter visualizations sporadically, it is
likely that every child going to school will encounter visualizations
and charts daily. By working with this population and making ef-
fective visualizations for them, we can directly impact their lives
and create more informed scholars and citizens.
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