Main content

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Studying behavioral lateralization in animals holds great potential for answering important questions in laterality research and clinical neuroscience. However, comparative research encounters challenges in reliability and validity, requiring new approaches and innovative designs to overcome. Although validated tests exist for some species, there is yet no standard test to compare lateralized manual behaviors between individuals, populations, and animal species. One of the main reasons is that different fine-motor abilities and postures must be considered for each species. Given that pawedness/handedness is a universal marker for behavioral lateralization across species, this article focuses on three commonly investigated species in laterality research: dogs, cats, and rats. We will present six apparatuses (two for dogs, three for cats, and one for rats) that enable an accurate assessment of paw preference. Design requirements and specifications such as zoometric fit for different body sizes and ages, reliability, robustness of the material, maintenance during and after testing, and animal welfare are extremely important when designing a new apparatus. Given that the study of behavioral lateralization yields crucial insights into animal welfare, laterality research, and clinical neuroscience, we aim to provide a solution to these challenges by presenting design requirements and innovations in methodology across species.

Files

Loading files...

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.