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Abstract7

Psychologists must be able to test both for the presence of an effect and for the absence of8

an effect. In addition to testing against zero, researchers can use the Two One-Sided Tests9

(TOST) procedure to test for equivalence and reject the presence of a smallest effect size of10

interest (SESOI). The two one-sided tests procedure can be used to determine if an observed11

effect is surprisingly small, given that a true effect at least as large as the SESOI exists. We12

explain a range of approaches to determine the SESOI in psychological science, and provide13

detailed examples of how equivalence tests should be performed and reported. Equivalence14

tests are an important extension of statistical tools psychologists currently use, and enable15

researchers to falsify predictions about the presence, and declare the absence, of meaningful16

effects.17

Keywords: Equivalence Testing, null-hypothesis significance test, power, TOST,18

falsification.19
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Equivalence Testing for Psychological Research: A Tutorial21

Psychologists should be able to falsify predictions. A common prediction in22

psychological research is that an effect that differs from zero exists in the population. For23

example, we might predict that priming American Asian women with their Asian identity24

will increase their performance on a math test compared to women who are primed with25

their female identity. To be able to design a study that allows for strong inferences (Platt,26

1964), it is important to specify which test result would falsify this hypothesis.27

Equivalence testing can be used to test whether an observed effect is surprisingly small,28

assuming a meaningful effect exists in the population (see for example Goertzen & Cribbie,29

2010; Meyners, 2012; Quertemont, 2011; Rogers, Howard, & Vessey, 1993). The test is a30

simple variation of widely used null hypothesis significance tests. To understand the idea31

behind equivalence tests, it is useful to realize the null hypothesis we test against can be any32

numerical value. When we compare two groups, we often test whether we can reject that the33

difference between these groups is zero (see Figure 1A), but we may sometimes want to34

reject other values than zero. Imagine a researcher who is interested in voluntary35

participation in a national program to train young infants’ motor skills. The researcher36

wants to test whether more boys than girls are brought into the program by their parents.37

Because the human sex ratio of newborn boys to girls is not exactly 1:1, we should not38

expect 50% of participants to be boys. On average, 103 boys are born for every 100 girls39

(United States & Central Intelligence Agency, 2016), so approximately 50.74% of applicants40

should be boys, and 49.26% should be girls. If boys and girls were exactly equally likely to41

be brought into the program by their parents, we would not expect a difference of zero, but42

50.74% - 49.26% = 1.5% more boys. Rather than testing against a null hypothesis of 043

difference, the researcher tests against a null hypothesis of 0.015.44

Alternatively, the researcher could decide that even if the true ratio in the population45

is not exactly 0.015, the null hypothesis should consist of a range of values around the46

difference in proportions of 0.015 that can be considered trivially small. The researcher could47
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for example test if the difference is smaller than -0.005, or larger than 0.035. This test48

against two bounds, with H0 being a range rather than one value (see Figure 1B), is known49

as a minimal effects test (Murphy, Myors, & Wolach, 2014).50

Equivalence tests can be seen as the opposite of minimal effects tests: They examine51

whether the presence of effects that are large enough to be considered meaningful can be52

rejected (see Figure 1C). Note that when a meaningful effect can be rejected, it does not53

imply there is no effect at all. In our example, the researcher can perform an equivalence test54

to examine whether the gender difference in participants is not as extreme or more extreme55

than the smallest effect size of interest (SESOI). After an extensive discussion with experts,56

the researcher decides that as long as the difference in proportions does not deviate from the57

population gender ratio by more than 6%, the gender difference is too small to care about.58

Given an expected true difference in the population of 0.015, the researcher will test if the59

observed difference falls outside the boundary values (or equivalence bounds) of -0.055 and60

0.075. If differences more extreme than these boundary values can be rejected in two61

one-sided tests (TOST), the researcher will conclude statistical equivalence, the gender62

difference will be considered trivially small, and no money will be spent on addressing a63

gender difference in participation.64

In any one-sided test, for an alpha level of 5%, we can reject H0 when the 90%65

confidence interval around the observed estimate is in the predicted direction, and does not66

contain the value tested against (e.g., 0). In the two one-sided tests procedure, the first67

one-sided test is used to test against values smaller than the lower equivalence bound (∆L),68

and the second one-sided test is used to test against values larger than the upper equivalence69

bound (∆U). Even though the TOST procedure consists of two one-sided tests, it is not70

necessary to control for multiple comparisons because both tests need to be statistically71

significant to conclude equivalence. Consequently, when reporting an equivalence test, it72

suffices to report the one-sided test with the smaller test parameter (e.g. t or r) and thus the73

larger p-value. Statistical equivalence can be concluded when the largest of the two p-values74
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is smaller than alpha. If results are neither statistically different from zero nor statistically75

equivalent, there is insufficient data to draw conclusions. Further studies are needed, which76

can be analyzed using a (small-scale) meta-analysis. The additional data will narrow the77

confidence interval around the observed effect, allowing us to reject the null, reject the78

SESOI, or both. Analogous to the large sample sizes needed to detect small effects, as the79

SESOI becomes smaller, the equivalence bounds become narrower, and the sample size80

needed to obtain a sufficiently narrow confidence interval increases.81

Note that in this paper we will control the Type 1 error rate at 5% for all examples,82

mirroring the studies we reanalyze (but we recommend to justify the Type 1 error rate in83

original research based on substantive arguments, Lakens et al., 2017). It may be easiest to84

think of an equivalence test as checking whether the entire 90% confidence interval falls85

entirely between the upper and lower equivalence bounds, but for any given study an86

equivalence test could also be conceptualized as determining whether effect sizes or test87

statistics are closer to zero than some critical value, or even whether the p-value for a88

null-hypothesis significance test is larger than some p-value bound.89

In this article we provide five reproducible examples of equivalence tests which90

illustrate the procedure in free, easy-to-use software (R, jamovi, and a spreadsheet). But91

first, we discuss different approaches to determining the smallest effect size of interest for92

psychological research, which determines the statistical question an equivalence test answers.93

Justifying the Smallest Effect Size of Interest94

The Two One-Sided Test procedure is performed against equivalence bounds that are95

considered the smallest effect size of interest. The smallest effect size of interest (SESOI) can96

sometimes be determined objectively (for example based on just noticeable differences, as we97

will explain below). In lieu of objective justifications, the SESOI should ideally be based on98

a cost-benefit analysis. Since both costs and benefits are necessarily subjective, the SESOI99

will vary across researchers, fields, and time. The goal of setting a SESOI is to clearly justify100
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why designing a study that has a high probability of rejecting effects more extreme than the101

specified equivalence bounds contributes to our knowledge base. The SESOI is thus102

independent of the outcome of the study, and should be determined before looking at the103

data. A SESOI should be chosen such that inferences based on it answer a meaningful104

question. Although we use bounds that are symmetric around 0 for all equivalence tests in105

this manuscript (e.g., ∆L = −0.3, ∆U = 0.3), it is also possible to use asymmetric bounds106

(e.g., ∆L = −0.2, ∆U = 0.3).107

Objective Justification of a Smallest Effect Size of Interest108

An objectively determined smallest effect size of interest (SESOI) should be based on109

quantifiable theoretical predictions, such as computational models. Sometimes, the only110

theoretical prediction is that an effect should be noticeable. In such circumstances, the111

SESOI can be set based on just noticeable differences. For example, Burriss and colleagues112

(2015) examined whether women displayed an increase in redness in the face during the113

fertile phase of their ovulatory cycle. The hypothesis was that a slightly redder skin signals114

greater attractiveness and physical health, and sending this signal to men yields an115

evolutionary advantage. This hypothesis presupposes that men can detect the increase in116

redness with the naked eye. Burriss and colleagues collected data from 22 women and117

showed that there was indeed an increase in redness of the facial skin during their fertile118

period. However, this increase was not large enough for men to detect with the naked eye,119

thus falsifying their hypothesis. Because the just noticeable difference in redness of the skin120

can be measured, it is possible to establish an objective SESOI.121

Another example of an objectively determined SESOI can be found in Button et al.122

(2015), where the minimal clinically important difference on the Beck Depression Inventory –123

II was determined by asking 1039 patients when they subjectively felt less depressed (i.e.,124

when they personally noticed an improvement) and relating this to the corresponding125

difference score on the depression inventory. Similarly, Norman, Sloan, and Wyrwich (2003)126
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proposed there is a surprisingly consistent minimally important difference of half a standard127

deviation, or d = 0.5, in health outcomes.128

Subjective Justification of a Smallest Effect Size of Interest129

We distinguish between three categories of subjective justifications to determine the130

smallest effect size of interest. First, researchers can use benchmarks. For example, one131

might set the smallest effect size of interest to a standardized effect size of d = 0.5, which132

would allow rejecting effects more extreme than a “medium” effect size (Cohen, 1988).133

Similarly, effect sizes smaller than a Cohen’s d of 0.1 are sometimes considered trivially small134

(Maxwell, Lau, & Howard, 2015). Relying on a benchmark is the weakest possible135

justification of a smallest effect size of interest, and should be avoided. Based on a review of136

112 meta-analyses, Weber and Popova (2012) conclude that setting a smallest effect size of137

interest (SESOI) to a medium effect size (r = 0.3, or d = 0.5) corresponds to rejecting only138

the upper 25% of effect sizes reported in communications research, and Hemphill (2003)139

suggests that a smallest effect size of interest of d = 0.5 would imply rejecting effects as large140

as the upper 33% of effect sizes reported in the psychological literature.141

Second, the SESOI can be based on related published studies in the literature. Ideally,142

researchers who publish novel research would always specify their smallest effect size of143

interest, but this is not yet common practice. It is thus up to researchers who build on earlier144

work to decide which effect size is too small to be meaningful when examining the same145

hypothesis. Simonsohn (2015) recently proposed to set the SESOI to the effect size that an146

earlier study would have had 33% power to detect. With this so-called “small telescopes”147

approach, the equivalence bounds are thus primarily based on the sample size in the original148

study. For example, consider a study in which 100 participants answered a question, and the149

results were analyzed with a one-sample t-test. For a two-sided test with an alpha of 0.05,150

this test had 33% power to detect an effect of d = 0.15. Another example of how previous151

research can be used to determine the SESOI can be found in Kordsmeyer and Penke (2017),152
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who defined the SESOI based on the mean of effect sizes reported in the literature. Thus,153

they examined whether their replication study could reject effects as large or larger than had154

on average been reported in the literature. Given random variation and bias in the literature,155

a more conservative approach could be to use the lower end of a confidence interval around156

the meta-analytic effect size estimate (cf. Perugini, Gallucci, & Costantini, 2014).157

Another justifiable option when choosing the SESOI based on earlier work is to use the158

smallest observed effect size that could have been statistically significant in a previous study.159

In other words, we decide that effects that could not have yielded a p < α in an original160

study will not be considered meaningful in the replication study either, even if they were161

found to be statistically significant. The assumption here is that authors were interested in162

observing a significant effect, and thus were not interested in observed effect sizes that could163

not have yielded a significant effect. It might be likely that the original authors did not164

consider which effect sizes they could detect at all, or that they were interested in smaller165

effects, but gambled on observing an especially large effect in the sample purely due to166

random variation. Even then, observed effect sizes that could not have been significant in an167

earlier study might be a justifiable starting point when building on earlier research that did168

not specify a smallest effect size of interest. Based only on the alpha level and the sample169

size, we can calculate the critical test value (e.g., t, F, Z ). This critical test value can be170

transformed to a standardized effect size (e.g., d = t
√

1
n1

+ 1
n2
), which can thus be171

interpreted as the critical effect size.1 All observed effect sizes smaller than the critical effect172

size would not have been statistically significant in the original study, given the alpha and173

sample size of that study. By setting the SESOI to the critical effect size, an equivalence test174

can reject all observed effect sizes that could have been detected in an earlier study.175

Third, the SESOI can be determined based on a resource question. Not all176

psychological theories make quantifiable predictions (possibly related to the strong reliance177

1This will typically, although not always, correspond to the effect size the study had 50% power to detect
(see Lenth, 2007). This procedure will result in equivalence bounds that are wider than the ones obtained
using the small telescopes approach, which gives the effect size a study had 33% power to detect.
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on null-hypothesis significance testing in some fields, see Meehl, 1978). Researchers often178

have more precise ideas of the amount of data that they can afford to collect, or that other179

researchers in their field commonly collect. The amount of data that is collected limits the180

inferences you can make. Given the alpha level and the planned sample size, researchers can181

calculate the smallest effect size that they have sufficient power to detect.2182

An equivalence test based on this approach does not answer any theoretical question183

(after all, the equivalence bounds are not based on any theoretical predictions). When184

theories only allow for directional predictions, but do not predict effects of a specific size, the185

sample size justification can be used to determine which effects can be studied reliably, and186

thus which effects would be interesting to reject. For example, imagine a research line where187

almost all studies examined a hypothesis by performing a one-sample t-test on sample sizes188

smaller than 100. A one-sample t-test using an alpha of 5% (two-sided) with 100189

observations has 90% power to detect an effect of d = 0.33. Concluding equivalence in a test190

using equivalence bounds of ∆L = −0.33 and ∆U = 0.33 would suggest that effects as large191

or larger than those which published studies were sensitive enough to detect can be rejected.192

Such a study does not test a theoretical prediction, but it contributes to the literature by193

suggesting much larger sample sizes than 100 observations are needed.194

When there is no previous literature on a topic, researchers can justify their sample195

size based on reasonable resource limitations, which are specific to scientific disciplines and196

research questions (and can be expected to change over time). Where 22 patients with a rare197

neurological disorder might be the largest sample a single researcher can collect, a study on198

mTurk might easily collect hundreds or thousands of observations. Thus, whether or not the199

resource question that is answered by an equivalence test is interesting must be evaluated by200

peers, preferably when the study design is submitted to an ethical review board or as a201

2This approach is conceptually very similar to the power approach, where the effect size you had 95%
power to detect is calculated, and the presence of effects more extreme than this value is rejected after
observing a p-value larger than 0.05 in a traditional null-hypothesis significance test. However, Meyners
(2012) explains that this approach is not recommended (even though it is common) because it ignores the
possibility that effects are significant and equivalent, and error rates are not controlled accurately.
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Registered Report.202

Additional subjective justifications for a smallest effect size of interest are possible. For203

example, the Food and Drug Administration has set equivalence bounds for bioequivalence204

studies, taking the decision out of the hands of individual researchers (Senn, 2007). We have205

provided several approaches to help researchers justify equivalence bounds, but want to206

repeat the warning by Rogers et al. (1993), p. 564: “The thoughtless application of207

‘cookbook’ prescriptions is ill-advised, regardless of whether the goal is to establish a208

difference or to establish equivalency between treatments”. By transparently reporting and209

adequately justifying the smallest effect size of interest, researchers can communicate the210

information their study contributes to the literature, and provide a starting point for a211

discussion about what a reasonable SESOI may be.212

Raw Versus Standardized Equivalence Bounds213

The SESOI, and thus the equivalence bounds, can be set in terms of standardized214

effect sizes (e.g. a Cohen’s d of 0.5) or as a raw mean difference (e.g. 0.5 points on a 7-point215

scale). The key difference is that equivalence bounds set in raw differences are independent216

of the standard deviation, while equivalence bounds set as standardized effects are dependent217

on the standard deviation (since they are calculated as X1−X2
SD

). The observed standard218

deviation randomly varies across samples. In practice, this means that when using219

standardized differences as bounds (e.g., d = 0.35), the equivalence test depends on the220

standard deviation in the sample. The equivalence bound for a raw mean difference of 0.5221

equals a standardized equivalence bound of d = 0.5 when the standard deviation is 1, but a222

standardized equivalence bound of d = 1 when the standard deviation is 0.5.223

Both raw equivalence bounds and standardized equivalence bounds have specific224

benefits and limitations (for a discussion, see Baguley, 2009). When raw mean differences are225

meaningful and of theoretical interest, it makes sense to set equivalence bounds based on raw226

effect sizes. When the raw mean difference is of less theoretical importance, or different227
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measures are used across research lines, it is often easier to set equivalence bounds based on228

standardized differences. Researchers should realize that equivalence bounds based on raw229

differences or standardized differences ask slightly different questions, and justify their choice230

for either option. When setting equivalence bounds based on earlier research, such as in231

replication studies, equivalence bounds based on raw or standardized differences would232

ideally give the same result, and large differences in standard deviations between studies are233

as important to interpret as large differences in means.234

In the remainder of this article we will provide five detailed examples of equivalence235

tests performed on published studies. These concrete and easy to follow examples will236

illustrate all approaches to setting equivalence bounds discussed above, and demonstrate how237

to perform and report equivalence tests.238

Example 1: Not Statistically Equivalent and Not Statistically Different239

Moon and Roeder (2014), replicating Shih, Pittinsky, and Ambady (1999), conducted a240

study to investigate whether Asian-American women would perform better on a maths test241

when primed with their Asian identity. In contrast to the original study, they found a242

negative difference between the Asian primed group (n = 53, M = 0.46, SD = 0.17) and the243

control (n = 48, M = 0.50, SD = 0.18) which was not significant, d = −0.21,244

t(97.77) = −1.08, p = .284, two-sided3. The non-significant null-hypothesis test does not245

allow us to distinguish between the absence of a meaningful effect and data that are not246

sensitive enough to tell us whether a meaningful effect is present or absent.247

In order to distinguish between these possibilities, we can define what a “meaningful248

effect” would be and use it as the bounds for an equivalence test (remember that these249

bounds should normally be specified before looking at the data). If grades for this test were250

set at every 6.25% increase in correct answers (F = 0% to 6.25%, . . . A+ = 93.75% to 100%)251

3Fractional degrees of freedom in t-tests are a result of using Welch’s t-test instead of Student’s t-test,
which is the recommended default when sample sizes are unequal between groups (Delacre, Lakens, & Leys,
2017). When using the TOSTER package in R, this is achieved by setting “var.equal = FALSE”.
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we could decide that we are only interested in test score differences that correspond to an252

increase or decrease of at least 1 grade point. Thus, our SESOI becomes a difference in raw253

scores of 6.25%, or 0.0625. We can then perform an equivalence test for a two-sample254

Welch’s t-test, with equivalence bounds of ± the SESOI of 0.0625. The two one-sided-tests255

procedure consists of two one-sided tests, and we calculate t-values and p-values both for the256

test against ∆L, t(97.77) = 0.71, p = .241, and ∆U , t(97.77) = −2.86, p = .003. While the257

t-test against ∆U indicates that we can reject differences at least as extreme as 0.0625, the258

test against ∆L shows we can not reject effects as extreme or more extreme than -0.0625.259

The equivalence test is therefore non-significant, which means we cannot reject a true effect260

as large or larger than 6.25% (Figure 2A), t(97.77) = 0.71, p = .241 (note we typically only261

report the one-sided test yielding the higher p-value in the result section).4262

Example 2: Statistically Equivalent and Not Statistically Different263

Banerjee, Chatterjee, and Sinha (2012) reported that 40 participants who had been264

asked to describe an unethical deed from their past judged the room to be darker than265

participants who had been asked to describe an ethical deed (t(38) = 2.03, p = .049,266

d = 0.65). A close replication by Brandt, IJzerman, and Blanken (2014) with 100267

participants found no significant effect (Munethical = 4.79, SDunethical = 1.09, Methical = 4.66,268

SDethical = 1.19, t(97.78) = 0.57, p = .573, d = 0.11). We can choose (before looking at the269

data) to use the small telescopes approach, calculate the effect size the original study had270

33% power to detect (d = 0.49), and use this effect size as the equivalence bounds. The two271

one-sided tests procedure for Welch’s t-test for independent samples and equivalence bounds272

of ∆L = −0.49 and ∆U = 0.49 reveals that the effect observed in the replication study is273

statistically equivalent, because the larger of the two p values was less than .05,274

4Because this is a replication of a study, it would have been reasonable to assume that we only want to
reject effects in the same direction as the effect in the original study. After all, much smaller effects may
indicate non-replication, but so do large effects in the opposite direction. In that case, we would perform an
inferiority test (see figure 1D) against ∆U . As can be seen in Figure 2A, the 90% CI does not overlap with
∆U , so we can reject effects as large or larger than 0.0625. However, this must be decided before running the
tests to prevent loss of error control.
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t(97.78) = −1.90, p = .030 (Figure 2B). Following a Neyman-Pearson approach, this means275

we can reject the hypothesis that the true effect is smaller than d = −0.49 or larger than276

d = 0.49, and we can act as if the effect size falls within the equivalence bounds, with the277

understanding that based on our chosen alpha level, we will not be wrong more than 5% of278

the time.279

Example 3: Statistically Equivalent and Statistically Different280

Hyde, Lindberg, Linn, Ellis, and Williams (2008) reported that effect sizes for gender281

differences in mathematics tests across the 7 million students in the US represent trivial282

differences, which the authors specify as absolute effect sizes smaller than d = 0.10. For283

example, in grade 3 the difference is d = 0.04, with a standard error of 0.002. When we284

perform equivalence tests on the meta-analytic effect sizes of IQ difference for grades 2 to 11285

(using an alpha level of .005 to correct for multiple comparisons) and using equivalence286

bounds of ∆L = −0.1 and ∆U = 0.1, we see that all effect size estimates are measured with287

such high precision that they are statistically equivalent, and can be considered trivially288

small according to the authors’ definition (Figure 2C). In the case of grade 3, z = 70.00,289

p < .001. However, note that all of the effects are also statistically different from zero, as one290

might expect when there is no random assignment to conditions and samples sizes are very291

large (e.g., for grade 3, z = 20.00, p < .001). We see how equivalence tests allow researchers292

to distinguish between statistical significance and practical significance, which demonstrates293

how equivalence tests improve hypothesis testing procedures in psychological research.294

Example 4: Statistically Inferior and Not Statistically Different295

Lynott et al. (2014) conducted a study to investigate the effect of being exposed to296

physically warm or cold stimuli on subsequent judgments related to interpersonal warmth297

and prosocial behavior (replicating L. E. Williams & Bargh, 2008). They observed that298

50.74% of participants who received a cold pack (ncold = 404) opted to receive a reward for299

themselves, while 57.46% of participants who received a warm pack (nhot = 409) did the300
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same. In a z-test for the difference between the proportions, this effect is not statistically301

significant (Diff = −6.71%, z = −1.93, p = .054). Had the authors planned to perform a302

null-hypothesis significance test and an equivalence test, the latter would allow one to303

distinguish between an inconclusive outcome, or a statistically equivalent result.304

Since this is a replication, we could decide in advance that we are interested in whether305

the observed effect size is smaller than the smallest effect size that the original study could306

have detected. This means that we use the critical z value (~1.96 in a two-tailed test with an307

alpha of 0.05) as equivalence bounds (∆ = ±1.96). To calculate which difference corresponds308

to a critical z value in the original study, we multiply the critical z value with the standard309

error (1.96 * 0.13), and find that the original study could have observed a significant effect310

for differences of 0.25 or more. Since the original study had a clear directional hypothesis, in311

this replication study we are only interested in whether receiving a warm pack increases the312

proportion of people who choose a gift for a friend. This means we can test for inferiority313

(see Figure 1D) and conclude the absence of a meaningful effect if the observed effect size is314

reliably lower than the SESOI. We find that we can reject effects larger than ∆U = 0.25,315

z = −9.12, p < .001 (see Figure 2D). Thus, we can conclude that the statistically316

non-significant effect is also statistically smaller than our SESOI.317

Example 5: Statistically Equivalent and not Statistically Different318

Kahane and colleagues (2015) investigated how responses to moral dilemmas in which319

participants have to decide whether or not they would sacrifice one person’s life to save320

several other lives relate to other indicators of moral orientation. Traditionally, greater321

endorsement for sacrificing one life to save several others has been interpreted as a more322

“utilitarian” moral orientation (i.e. a stronger concern for the greater good). Kahane et al.323

contest this interpretation in a number of studies. In Study 4, they compare the traditionally324

used dilemmas with a set of new dilemmas in which the sacrifice for the greater good is not325

another person’s life, but something the participant would have a partial interest in326
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(e.g. buying a new mobile phone vs. donating the money to save lives in a distant country).327

The authors find no significant correlation between the two sets of dilemmas, r(229) = −0.04,328

p = .525, N = 2315. The authors conclude that “a robust association between ‘utilitarian’329

judgment and genuine concern for the greater good seems extremely unlikely” (p. 206), given330

the statistical power their study had to detect meaningful effect sizes.331

This interpretation can be formalized by performing an equivalence test for correlations,332

where equivalence bounds are set to an effect size the study had reasonable power to detect333

(as decided before looking at the data). With 231 participants, the study had 80% power to334

detect effects of r = 0.18. Performing the two one-sided tests procedure given bounds of335

∆L = −0.18 and ∆U = 0.18, the data is statistically equivalent, r(229) = −0.04, p = .015.336

This means that values smaller than r = −0.18 and larger than r = 0.18 can be rejected at337

an alpha level of 5%. If other researchers are interested in examining the presence of a338

smaller effect size, they can design studies with a larger sample size.339

Equivalence tests can be performed based on summary statistics (e.g., means, standard deviations,
and sample sizes) with the “TOSTER” package in the open-source programming language R. Using
TOSTER in R requires no more programming experience than reproducing three lines of code.

The code below reproduces the result of Example 2 in R, which can be typed into R or RStudio. The
parameters of the test are defined inside the parentheses. Simply copy the example to the console,
replace the values with the corresponding values of your own study, and run the code. Results and a
plot will automatically be printed. A help file provides more detailed information.

install.packages("TOSTER")

library(TOSTER)

TOSTtwo(m1 = 4.7857, m2 = 4.6569, sd1 = 1.0897, sd2 = 1.1895, n1 = 49,
n2 = 51, low_eqbound_d = -0.6401696, high_eqbound_d = 0.6401696, alpha = 0.05,
var.equal = FALSE)

Box 1. Calculating an equivalence test in R.

5Study 4 in Kahane et al. (2015) had a final sample size of N = 232, but due to missing data in 1 case,
the correlation reported here is based on a sample of N = 231.
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Discussion340

Equivalence testing is a simple statistical technique to reject the presence of a smallest341

effect size of interest. As long as we can calculate a confidence interval around a parameter342

estimate, we can compare it to the SESOI. The result of an equivalence test can be obtained343

by mere visual inspection of the CI (Seaman & Serlin, 1998; Tryon, 2001), or by performing344

two one-sided tests (known as the TOST procedure).345

As with any statistical test, the usefulness of the result of an equivalence test depends346

on the question we ask. The question manifests itself in the bounds we set: Is our data347

surprisingly close to zero, assuming a true effect exists that is as large as our smallest effect348

size of interest? If we test against very wide bounds, observing statistical equivalence can349

hardly be considered surprising, given that most effects in psychology are small to medium350

(Hemphill, 2003). Examining papers citing Lakens (2017a), we found that some researchers351

state, but do not justify, the SESOI used in the equivalence test (e.g., Brown, Rodriguez,352

Gretak, & Berry, 2017; Schumann, Klein, Douglas, & Hewstone, 2017). An equivalence test353

using a SESOI of d = 0.5 might very well answer a question the researchers are interested in354

(for one possible justification based on minimally important differences, see Norman et al.,355

2003), but researchers should always explain why they chose a SESOI. It makes little sense356

to report a statistical test without explaining why one would want to answer this question to357

begin with.358

Equivalence bounds should be specified before results are known, ideally as part of a359

preregistration (cf. Piaggio et al., 2006). In the most extreme case, a researcher can always360

first look at the data, and then choose equivalence bounds wide enough for the test to yield a361

“statistically equivalent” result (for a discussion, see Weber & Popova, 2012). However, fixed362

error rates are no longer valid when bounds are determined based on the observed data. The363

value of reporting an equivalence test is determined by the strength of the justification of the364

equivalence bounds. If bounds are chosen based on the observed data, an equivalence test365

becomes meaningless. We have proposed several ways to justify equivalence bounds, but in366
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the end these discussions must happen among peers, and the best place for these discussions367

is during peer-review of proposals for Registered Reports.368

As with null-hypothesis significance tests, equivalence tests interpreted from a369

Neyman-Pearson perspective on statistical inferences are used to guide the actions of370

researchers while controlling error rates. Research lines sometimes require dichotomous371

choices. For example, a researcher might want to decide to discontinue a research line when372

an effect is too small to be considered meaningful. Equivalence tests based on carefully373

chosen equivalence bounds and error rates can be used as a rule to govern our behavior374

(Neyman & Pearson, 1933). An equivalence test and a null-hypothesis significance test375

examine two different hypotheses, and can therefore be used in concert (Weber & Popova,376

2012). We recommend that researchers by default perform both a null hypothesis significance377

test and an equivalence test on their data, as long as they can justify a smallest effect size of378

interest, in order to improve the falsifiability of predictions in psychological science.379

The biggest challenge for researchers will be to specify the smallest effect size of380

interest. Psychological theories are usually too vague to derive precise predictions, and if381

there are no theoretical reference points, natural constraints, or prior studies a researcher can382

use to define the SESOI for a hypothesis test, any choice will be somewhat arbitrary. In383

some research lines, researchers might use equivalence tests to simply reject consecutively384

smaller effect sizes by performing studies with increasingly large sample sizes while385

controlling error rates, until no one is willing to invest the time and resources needed to386

examine the presence of even smaller effects. Nevertheless, it is important to realize that not387

specifying a SESOI for our research questions at all will severely hinder theoretical progress388

(Morey & Lakens, 2016). Incorporating equivalence tests in our statistical toolbox will in389

time contribute to better — and more falsifiable — theories.390
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B: Minimal effects test
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Figure 1 . Illustration of null hypotheses (H0) and alternative hypotheses (H1) for different
types of significance tests. A) Null-Hypothesis Significance Test: Tests if the hypothesis (H0)
that an effect is equal to 0 can be rejected. B) Minimal effects test: Tests if the hypothesis
(H0) that an effect is larger than ∆L and smaller than ∆U can be rejected. C) Equivalence
test: Tests if the hypothesis (H0) that an effect is smaller than ∆L or larger than ∆U can be
rejected. D) Inferiority test: Tests if the hypothesis (H0) that an effect is larger than ∆ can
be rejected.
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Effect (mean difference)

A: Example 1 (Moon & Roeder)

−1.0 −0.5 0.0 0.5 1.0
Effect (mean difference)

B: Example 2 (Brandt et al.)

−0.25 0.00 0.25
Effect (proportion difference)

D: Example 4 (Lynott et al.)
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Effect (pearson correlation)

E: Example 5 (Kahane et al.)

−0.1 0.0 0.1
Effect (Z)

C: Example 3 (Hyde et al.)

Figure 2 . Example effects plotted with 90% two one-sided tests confidence intervals (thick
lines) and 95% null-hypothesis significance test confidence intervals (thin lines), the null
hypothesis (solid vertical line) and the equivalence bounds (dashed vertical lines) displayed.
A) Example 1 - Mean Difference. B) Example 2 - Mean Difference. C) Example 3 -
Meta-analytic Effect Size. D) Example 4 - Proportion Difference. E) Example 5 - Pearson
Correlation.


	Abstract
	Equivalence Testing for Psychological Research: A Tutorial
	Justifying the Smallest Effect Size of Interest
	Objective Justification of a Smallest Effect Size of Interest
	Subjective Justification of a Smallest Effect Size of Interest
	Raw Versus Standardized Equivalence Bounds
	Example 1: Not Statistically Equivalent and Not Statistically Different
	Example 2: Statistically Equivalent and Not Statistically Different
	Example 3: Statistically Equivalent and Statistically Different
	Example 4: Statistically Inferior and Not Statistically Different
	Example 5: Statistically Equivalent and not Statistically Different

	Discussion
	Disclosures
	Data, materials, and online resources
	Conflicts of Interest
	Author Contributions
	Acknowledgments
	Prior versions


	References



