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Fig. 1: Our goal is to make complicated networks easier to read. We achieve this by formulating readability criteria as a constrained
optimization problem. Our optimization model for laying out layered node-link visualizations includes several modular, customizable
components. Each addresses a different readability criteria or network feature — hence the building blocks metaphor. This modularity
allows the layout to be tailored for diverse use cases. Here we illustrate some of the features of our Integer Linear Programming
(ILP) formulation, which we call STRATISFIMAL LAYOUT— combining the words stratified (arranged in layers) and optimal.

Abstract—Node-link visualizations are a familiar and powerful tool for displaying the relationships in a network. The readability of these
visualizations highly depends on the spatial layout used for the nodes. In this paper, we focus on computing layered layouts, in which
nodes are aligned on a set of parallel axes to better expose hierarchical or sequential relationships. Heuristic-based layouts are widely
used as they scale well to larger networks and usually create readable, albeit sub-optimal, visualizations. We instead use a layout
optimization model that prioritizes optimality — as compared to scalability — because an optimal solution not only represents the best
attainable result, but can also serve as a baseline to evaluate the effectiveness of layout heuristics. We take an important step towards
powerful and flexible network visualization by proposing STRATISFIMAL LAYOUT, a modular integer-linear-programming formulation that
can consider several important readability criteria simultaneously — crossing reduction, edge bendiness, and nested and multi-layer
groups. The layout can be adapted to diverse use cases through its modularity. Individual features can be enabled and customized
depending on the application. We provide open-source and documented implementations of the layout, both for web-based and desktop
visualizations. As a proof-of-concept, we apply it to the problem of visualizing complicated SQL queries, which have features that we
believe cannot be addressed by existing layout optimization models. We also include a benchmark network generator and the results of
an empirical evaluation to assess the performance trade-offs of our design choices. A full version of this paper with all appendices,
data, and source code is available at osf.io/qdyt9 with live examples at https://visdunneright.github.io/stratisfimal/.

Index Terms—Layered node-link visualization, integer linear programming, crossing reduction, bendiness reduction, nested groups.

1 INTRODUCTION

Networks are widely used across many disciplines to model entities and
the relationships between them [37]. Specifically, a network consists of
a finite set of nodes and a finite set of edges, each connecting two nodes.
Node-link visualizations are a familiar and powerful tool for exposing
the network topology (e.g., paths between nodes and highly-connected
clusters) by drawing nodes as point marks and edges as connecting line
marks [58]. To better show the topology, nodes can be assigned spatial
coordinates based on the relationship structure.

We may wish to expose hierarchical or sequential relationships in a
network. These can be displayed in a layered node-link visualization,
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where each node is assigned to exactly one layer (rank) [73]. This
layer assignment can be given a priori or obtained algorithmically. The
visualization arranges the nodes in a layer along a linear axis and the
axes in parallel. Here we use vertical lines for axes, but our methods
work horizontally as well. The edges then fall into three categories:
same-layer edges between nodes that share a layer, 2-layer edges that
connect nodes in adjacent layers, and 333+++-layer edges which cross at
least one intermediate layer between the incident nodes. In this context,
we define groups as sets of nodes that must be placed adjacent to each
other, both within the same layer and across consecutive layers. Each
pair of groups must be either disjoint or one is a subset of the other.

For both general and layered node-link visualizations, assigning
spatial coordinates to nodes is key for creating a readable visualiza-
tion [4, 22, 73]. Optimally creating this assignment, called a visu-
alization layout, based on readability criteria remains an open chal-
lenge. Just determining the minimal number of edge crossings is NP-
complete [29]. The field of graph drawing focuses on this and other
network visualization problems. Researchers have proposed many lay-
out approaches — see overviews in [3, 4, 21, 31, 73] — but most are
heuristics that prioritize scalability over optimality.
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There are two main reasons, though, to search for an optimal solu-
tion: (1) An optimal layout can be used as a baseline against which
heuristics can be compared, making it possible to quantify the trade-
off between increased scalability and worse readability. (2) There are
numerous “small” networks in practice where maximal readability is
paramount. For such applications, the extra compute time to create an
optimal layout to improve readability is worth the wait.

One such example is a metro map, which has few nodes and edges,
but needs to be easily and quickly readable. The up-front layout com-
putation time is negligible compared to the possible human and capital
expense to deploy a new map.

Another example, which we use as a motivating case study, is helping
users interpret database queries. SQL has been the standard language
for writing database queries for decades [11], but it has been repeatedly
criticized for its complexity and for the time it takes to read a query.
Indeed, a query can have a number of nested subqueries, involve many
tables in the database, or contain complex joins — all of which make
keeping a mental map of the intermediate results of the operations
contained in it a very difficult task [9]. Query visualizations, such as
the recently-proposed QueryVis diagrams [17, 48], expose the logical
structure of SQL queries using layered node-link visualizations. The
size of the network QueryVis produces to model a complicated query
is small, generally consisting of fewer than 30 nodes. Since one of the
uses of QueryVis is to help students learn SQL, unnecessary readabil-
ity issues should be eliminated as much as possible. Moreover, as a
complicated query can take several minutes to understand, the layout
computation time is negligible if it stays within a few seconds.

This paper focuses on the use of Integer Linear Programming
(ILP) to create optimal layouts for layered node-link visualizations.
ILP is a method to achieve the optimal solution for a mathematical
model within the boundaries established by linear constraints. An ILP
formulation is comprised by an objective function, which describes the
goal, and a set of constraints. The fundamental challenge of solving a
problem through ILP is figuring out a smart way to define these two
components, which, together, describe a problem. While ILP is NP-
complete, solvers have made tremendous advances over the years to a
degree where many practical problems can be solved efficiently. Recent
progress on solvers, together with a natural problem-size limit estab-
lished by human ability to “consume” a network visualization, have
renewed interest in finding exact criteria for optimal layout algorithms.

ILP formulations have already been explored for creating optimal
layouts for node-link visualizations based on readability criteria [22,71],
including minimizing edge crossings [34, 35, 60, 82], minimizing edge
bendiness [28], and contiguously grouping nodes within a single layer
[82]. However, existing approaches do not handle same-layer edges,
groups that span many layers, or nested groups — nor can these criteria
be solved simultaneously.

Our goal is to provide a set of more expressive and modular formulas
for readability optimizations that can be “cherry-picked” and flexibly
composed like building blocks, depending on the target application and
the reader’s needs. Figure 1 illustrates several of our modules and how
they can be composed into an overall layout optimization model.

Contributions and Supplemental Materials

In this paper, we contribute:
1. STRATISFIMAL LAYOUT, an optimization model for laying out

layered node-link visualizations. The model translates important
readability criteria into a modular ILP formulation and layout algo-
rithm. It includes:

(a) Edge crossing reduction for 2-layer and 3+-layer edges as per
Zarate et al. [82] and, for the first time, for same-layer edges.

(b) Edge bendiness reduction, extending Gansner et al.’s formula-
tion [28] to support modular composition with other criteria.

(c) Contiguous grouping of nodes enclosed by concave or convex
shapes. We improve efficiency vs. Zarate et al. [82] for groups
within a single layer and, novelly, support groups that span many
layers and nested groups.

Our modular, customizable ILP formulation enables tailoring
the layout to diverse use cases. Each module is presented with
an in-depth explanation and application example to illustrate the
reasoning and trade-offs for including each feature.

2. Open-source and documented layout implementations, both as
a web-based JavaScript library and for desktop computation via
Gurobi [33]. Our model can serve as a layout algorithm directly or
an optimal baseline for evaluating fast layout heuristics.

3. A case study demonstrating the utility of the layout for improv-
ing the readability of logical diagrams of SQL queries.

4. A benchmark network generator with parameters to control cru-
cial network properties, including groups of nodes, and the results
of an empirical evaluation on these networks that illustrate the
performance trade-offs of our design choices.

A full version of this paper with all appendices, data, and
source code is available at osf.io/qdyt9 with live examples at
https://visdunneright.github.io/stratisfimal/.

2 MOTIVATING CASE STUDY: INTERPRETING SQL QUERIES

We introduce STRATISFIMAL LAYOUT in the context of a motivating
case study on visualizing the logical structure of SQL queries. The goal
is to improve the layout of QueryVis diagrams [48], which incorporate
layered node-link visualizations and hierarchical grouping of nodes
within and across layers. This application was our original motiva-
tion, as we know of no existing heuristic or optimization-based layout
algorithm that can address all the necessary constraints simultaneously.

SQL (Structured Query Language) has been the standard query
language for relational databases for decades [11]. Formulating or
interpreting a non-trivial query can be challenging and time consuming,
even for experts. SQL queries can be verbose, deeply nested, and
involve complex logical constructs. Several attempts have been made to
improve query readability, either by mapping SQL to natural language
[43] or through visual query languages [10, 30, 38]. QueryVis [17, 48],
the subject of our case study, focuses on displaying the underlying logic
behind an SQL query. A controlled experiment found that existing SQL
users were faster at correctly interpreting queries with QueryVis than
with SQL alone, even after only a brief exposure to the visual language.

QueryVis models an SQL query as a network (see Figure 2, Middle).
Nodes represent attributes, and edges represent relationships between
them (e.g., joins). Each node belongs to a group for its database table;
these groups are disjoint sets. Additional groups are used to show
any hierarchical nesting of subqueries. This enables modeling query
nesting and logical quantifiers (e.g., NOT EXISTS). This network is
then displayed using a layered node-link visualization.

Optimal layouts for readability. The visualizations produced by
QueryVis may still be challenging to interpret, even for well-trained
users, and despite being comparatively easier to read than the original
SQL queries. This is a consequence of the logic behind SQL, which
may take long to understand for complicated queries (e.g., see the
unique beer taste query in Figure 2, Left). In many cases, running
a misinterpreted query can incur hours or even days of delay for the
user. Making interpretation of a visualization as easy as possible is
imperative in this situation.

For that reason, we would like to find an optimal layout (subject to
the constraints imposed by the query logic). QueryVis originally used a
heuristic-based layout: GraphViz’s dot [27], which is based on Gansner
et al.’s edge crossing reduction algorithm for layered networks [28]. The
latter is fast but does not guarantee minimal edge crossings, a widely
accepted readability criteria. (See, e.g., Figure 5 and Appendix E). It
also does not support groups, a key aspect of QueryVis, but dot can lay
out groups by treating them as subproblems. This further compromises
readability, especially as it does not reduce crossings of edges within
a layer. The network for a complicated SQL query generally consists
of fewer than 30 nodes. In this case, spending the time to compute an
optimal layout for the visualization is clearly warranted.

Another case study based on StoryLines [32, 50] is in Appendix F.

https://osf.io/qdyt9
https://visdunneright.github.io/stratisfimal/


Fig. 2: Visualizing an SQL query (adapted from QueryVis, Fig. 1 [48]). Left: The SQL query for “find drinkers that like a unique set of beers.”
Middle: The same query shown using QueryVis. Each table used is represented by a rectangle, subdivided vertically to show the title (black
background) and relevant attributes (white background). The SELECT statement is similarly displayed, just with a gray background for the title.
Curves show relationships between attributes (e.g., joins) and may be labeled with comparison operators (e.g., <>). NOT EXISTS statements are
shown as dashed lines surrounding hierarchically-nested groups for subqueries. Layers are arranged left-to-right to show depth from the SELECT
statement, and the contained nodes are aligned to a vertical line. Right: An abstract representation of the QueryVis network, simplified by omitting
any layout-irrelevant information (e.g., title nodes). The layout is optimized for readability using our method, with circles for nodes/attributes and
nested convex hulls for groups. We illustrate which building blocks are used in the layout formulation (their arrangement is arbitrary).

3 BACKGROUND AND RELATED WORK

Node-link visualization of networks. Networks are used to represent
data in an innumerable amount of contexts, among which linguistics
[12], cartography [2,54,80], computer networks [5], and social network
analysis [16,56,70] are just a few examples [37]. Effectively visualizing
a network can help a reader better understand relationships between
elements in the data, find insights [36], and discover patterns and
outliers [63]. Research on how to best represent a network as a node-
link visualization started as early as 1934 with Moreno [56]. The
discipline of representing networks visually is called graph drawing [4],
though in this context we use the terminology of networks, node-link
visualizations, and layouts of them.

Scientists have developed several readability criteria for visualiza-
tions [22, 66], and algorithms to implement those criteria in prac-
tice [22, 45]. Computational layout approaches began appearing in
the 1960s [41, 76, 77]. Though most layout algorithm research has
focused on heuristics (relevant examples: [28, 72]), there have been
efforts at using neural networks [14, 46, 53] and Integer Linear Pro-
gramming (ILP). The problem is still open and the general agreement is
that there is no universal layout solution that embraces all the possible
applications and use cases [6, 31].

Integer Linear Programming (ILP). Our STRATISFIMAL LAY-
OUT approach uses ILP to find an optimal layout based on readability
criteria, rather than layout heuristics. ILP [18] is a generic optimization
technique that can solve a wide range of combinatorial optimization
problems. In order to use ILP for laying out a node-link visualization,
a composition of a set of readability criteria needs to be translated
into a quantitative objective function, such as minimizing the number
of edge crossings, minimizing edge bendiness, and creating uniform
edge length. Additional constraints may be specified in the formulation.
The formulation can then be fed to an ILP solver, e.g., GLPK.js1 or
Gurobi [33], in order to find the optimal solution.

We integrate a discussion of the literature most relevant to our op-
timization model formulation as part of Section 5, but here mention a
closely-related problem: metro map layouts. Nöllenburg and Wolff [62]
used a mixed-integer linear program to lay out a metro map, optimizing
for uniform edge length and avoiding bends. They proposed constraints
that enforce that the solution keeps the original topology intact, so
that readers can easily trace back the network topology to the actual
geography of the represented region. Metro maps have been a popular
subject for this kind of approach, e.g., [2, 54, 80].

Crossing reduction: Minimizing edge crossings is one of the best
known and important optimization criteria for node-link visualization

1https://github.com/hgourvest/glpk.js

layout algorithms, as crossings clearly affect network readability for
path-following tasks [66]. Buchheim et al. first proposed a branch-
and-cut approach [8] to reduce the number of variables involved in an
integer-linear-programming problem for crossing-restricted networks
(networks that allow at most one intersection between two edges) by
dividing the network into smaller subproblems. A similar approach
is also used in [40]. Chimani et al. later worked on improving the
efficiency of a similar method based on column generation [13]. The
crossing minimization problem has also been reduced to a planarization
problem [59], at first with two layers [60], then on k-level networks
[34, 35]. Gange et al. [26] use ILP to obtain crossing reduction and
minimal edge deletion for planarization including an optimization based
on K2,2 graphs [44]. Alternatively, we consider the entire graph for the
layout as well as edge bendiness and groups. An extensive survey on
crossing minimization in node-link visualizations can be found in [73].

The most relevant approach to discuss is Zarate et al.’s optimization
model for layered node-link visualizations [82], which can minimize
crossings of 2-layer and 3+-layer edges. Similar to Zarate et al. and
without loss of generality, we assume that all edges are same-layer or
2-layer — we show in Section 5.1.6 how to “break up” 3+-layer edges
using dummy anchor nodes to satisfy this condition. We based our
initial formulation for minimizing edge crossings on Zarate et al.’s, but
further extend it to support same-layer edges.

Bendiness reduction: Edge bendiness is another important layout
optimization criteria for node-link visualizations. That is to say, having
predominantly straight edges versus edges that have bends, curves, or
have to be drawn diagonally. Low edge bendiness is important for
users performing path-following tasks [66]. Consistent with previous
work on layered networks with vertically aligned layer axes, we define
an edge to be “bent” if and only if it is not horizontal, i.e., its ends
have different y coordinates. The first optimization model solution
by Sugiyama et al. [72] formalized the optimization objective using
the squared difference in vertical coordinates between the two end
nodes of an edge: (yu1 − yw1)

2. This quadratic formulation makes the
optimization expensive. Gansner et al. [28] simplified the optimization
objective into a linear function, though they also added a new variable
and two constraints for each edge. Both Sugiyama et al. and Gansner
et al. counterbalance the costliness of their solutions by additionally
providing a heuristic-based layout algorithm as an alternative. There
are also several other heuristic-based approaches for optimizing edge
bendiness [7,24,69]. Our formulation here extends Gansner et al.’s [28]
approach to support modular composition with other readability criteria.
Optimizing for horizontal edges requires modifications to the objective
function and introduction of variables that capture the vertical position
(i.e., the y coordinate) of a node and the resulting bendiness of an edge.

https://github.com/hgourvest/glpk.js


This paper generalizes several previous optimization model ap-
proaches by defining a modular mathematical framework that allows
for combining and optimizing several readability criteria simultane-
ously — minimizing edge crossings, minimizing edge bendiness, and
contiguously grouping nodes. These criteria can be mixed and matched
to adapt to different use cases. Moreover, we contribute extensions to
previous ILP-based approaches [28, 82] to novelly support minimizing
edge crossings for same-layer edges, add support for groups that span
multiple layers, and add support for nested groups.

4 READABILITY OBJECTIVES AND CONSTRAINTS

Based on an analysis of previous work (e.g., [22, 66, 67, 71]) and our
motivating case study on QueryVis (Section 2), we identified the fol-
lowing objectives and constraints necessary for creating an optimal,
readable layout for a layered node-link visualization.

Optimization objectives: These are the metrics we aim to optimize.
• Minimize edge crossings [22, 66]: In a 1997 study [66], Purchase

found that crossing edges are the main characteristic negatively
affecting network readability. Placing nodes so that the number of
crossings is minimized is thus given the highest priority

• Minimize edge bendiness [22, 66]: Edge bendiness is considered
a criterion negatively affecting readability as well. In a layered
node-link visualization with parallel layers, we define an edge to be
“bent” if its points do not lie on a line perpendicular to the layers.

Hard constraints: These conditions must be valid in any context.
• No node-node or node-edge overlaps [22]: Nodes cannot be

drawn on top of each other and no edge can lie over a node.
• Groups cannot enclose non-member nodes: Only nodes that are

members of a group can be drawn within the area enclosed by the
group’s mark.

Soft constraints: Nice-to-have features, but not strictly necessary.
• Rectangular groups [78, 81]: Groups can be constrained to fit in

a rectangular area.
• Minimize group area: The area enclosed by a group should be as

small as possible, given any necessary whitespace padding.

5 THE STRATISFIMAL LAYOUT OPTIMIZATION MODEL

We now discuss how to formalize all these varied optimization objec-
tives and constraints for laying out a layered node-link visualization.
Our optimization model formulation uses Integer Linear Programming
(ILP) and is modular — depending on the desired visualization prop-
erties, the reader can combine the corresponding features. An exten-
sive demonstration of our approach on real networks can be found at
https://visdunneright.github.io/stratisfimal/proofs.html.

How to read this section: Each subsection will detail a feature
using a modular ILP formulation, which the reader can simply add
to the overall layout optimization model. The actual formulation is
marked by an image of a building block. Relevant information about
the formulation is shown in an accompanying gray box. The Intuition
behind the constraints explains the idea more plainly (but imprecisely).
The Number of constraints generated provides some indication of
how computationally expensive it would be to add the feature to the
optimization model. Finally, for cases where constraints build atop each
other, all the Prerequisites from other subsections are shown. Please
refer to Figure 3 for an explanation of the notation we use.

Preprocessing: Our method assumes an already-established and
immutable layer assignment for the nodes of the input network. Layer
assignment may be given a priori, such as the query depth in our mo-
tivating case study (Section 2). Alternatively, layers can be assigned
algorithmically based on network topology, e.g., using approach de-
tailed by Gansner et al. [28], Rüegg et al.’s extension of it [68], or the
ILP formulation by Tang & Hu [75].

5.1 Crossing reduction
5.1.1 Objective function for crossing reduction
Crossings can only occur between edges in the set Ek. The following
formula minimizes the number edge crossings:

Definitions:
G = {N,E} The network (graph) consists of a set of nodes

N and edges E.
Nk The nodes in layer k.

E=
k Same-layer edges with both ends in layer k.

E<
k 2-layer edges with one end in layer k and the

other in layer k+1.
Ek = E=

k ∪E<
k 2-layer edges (layer k to k+1) and same-layer

edges (only layer k).
L = {1,2, . . . , `} The set of ` layers in G.

u1w1 An edge between nodes u1 and w1.
Γ The set of groups in G.

g1 A group; g1 ∈ Γ.
Lg1 Set of layers in which g1 has at least one node.

Decision variables:
xu1,u2 The relative vertical order of nodes. Boolean

equal to 1 if u1 is above u2, 0 otherwise.
cu1w1,u2w2 Indicates if edges u1w1 and u2w2 cross. Boolean

equal to 1 if they cross, 0 otherwise.
yu1 Vertical coordinate of node u1.

bu1w1 Bendiness of edge u1w1, defined as |yu1 − yw1 |.
yT

g1
Topmost boundary of group g1

yB
g1

Bottommost boundary of group g1

Parameters:
m Greatest allowed absolute vertical distance between

the topmost and bottommost nodes in a layer. De-
fault: 50, but depends on implementation details.

γ1,γ2 Weights for the two parts of the objective function.
Default: γ1 (crossings) = 10,γ2 (bendiness) = 1.

Fig. 3: The notation used in this paper.

Minimize : ∑
k∈L

∑
u1w1,u2w2∈Ek

u1w1 6=u2w2

cu1w1,u2w2 (1)

5.1.2 Transitivity constraints
Laying out nodes in a layer establishes a total order of nodes within it.
We enforce that the ILP solution is consistent with such per-layer orders
by defining transitivity constraints for each triplet of nodes in a layer.
The idea is that if node u1 is above node u2 and node u2 is above node
u3, then node u1 must be above node u3. The opposite must also be true.
We can write this as xu1,u2 ∧ xu2,u3 ⇒ xu1,u3 and ¬xu1,u2 ∧¬xu2,u3 ⇒
¬xu1,u3 . These formulas, translated to ILP constraints, are written thus:

xu1,u2 + xu2,u3 − xu1,u3 ≥ 0
−xu1,u2 − xu2,u3 + xu1,u3 ≥−1

(2)

(∀k ∈ L : ∀u1,u2,u3 ∈ Nk, where u1 6= u2 6= u3 6= u1)

Intuition: If u1 is above u2, and u2 is above u3, then u1 must be
above u3.
Number of constraints generated: O(|N|3)

Note that, in any one of the constraints, xu1,u2 can always be written
as 1− xu2,u1 . This reduces the number of variables needed in a model.

5.1.3 2-layer edge crossings
Crossing indicators c are computed by comparing position indicators
x for each pair of 2-layer edges in a layer. There are 4 possible cases,
captured by the visualization and formulas below.

https://visdunneright.github.io/stratisfimal/proofs.html


u1

u2

w1

w2

u1

u2

w2

w1

u2

u1

w1

w2

u2

u1

w2

w1

The visualization shows that there is a crossing if the two ends of the
edges are in opposite order on the first and on the second layer. This
can be written as xu1,u2 ∧¬xw1,w2 ⇒ cu1w1,u2w2 and ¬xu1,u2 ∧ xw1,w2 ⇒
cu1w1,u2w2 , which in turn translates to:

cu1w1,u2w2 + xu2,u1 + xw1,w2 ≥ 1
cu1w1,u2w2 + xu1,u2 + xw2,w1 ≥ 1

(3)

(∀k ∈ L : ∀u1w1,u2w2 ∈ E<
k , where u1w1 6= u2w2)

Intuition: There is a crossing (cu1w1,u2w2 = 1) if the ends of a 2-
layer edge have opposite positions in the two adjacent layers: either
u1 is above u2 but w1 is below w2 or vice versa.
Number of constraints generated: O(|E|2)
Prerequisites: 5.1.2 Transitivity constraints

We provide a more detailed explanation of this constraint, which can
be found in Appendix A.1.

5.1.4 Same-layer edge crossings

We need additional constraints to detect crossings of same-layer edges.
There are 4! = 24 permutations of 4 nodes in a layer; 8 of these permu-
tations can produce a crossing between two same-layer edges. The 8
formulas of this module, illustrated and detailed below, each encode
one such permutation:

u1

u2

w1

w2

u1

u2

w2

w1

u1

w1

u2

w2

cu1w1,u2w2 + xu2,u1 + xw1,u2 + xw2,w1 ≥ 1
cu1w1,u2w2 + xw2,u1 + xw1,w2 + xu2,w1 ≥ 1
cu1w1,u2w2 + xu1,u2 + xw2,u1 + xw1,w2 ≥ 1
cu1w1,u2w2 + xw1,u2 + xw2,w1 + xu1,w2 ≥ 1
cu1w1,u2w2 + xu2,w1 + xu1,u2 + xw2,u1 ≥ 1
cu1w1,u2w2 + xw2,w1 + xu1,w2 + xu2,u1 ≥ 1
cu1w1,u2w2 + xw1,w2 + xu2,w1 + xu1,u2 ≥ 1
cu1w1,u2w2 + xu1,w2 + xu2,u1 + xw1,u2 ≥ 1

(4)

(∀k ∈ L : ∀u1w1,u2w2 ∈ E=
k , where u1w1 6= u2w2)

Intuition: There is a crossing between two same-layer edges if
nodes are in one of 8 specific orderings. An example: there is a
crossing if u1 is above u2, u2 is above w1, and w1 is above w2.
Number of constraints generated: O(|E|2)
Prerequisites: 5.1.2 Transitivity constraints

5.1.5 Crossings between same-layer and 2-layer edges

Detecting crossings between same-layer and 2-layer edges requires yet
another type of constraint:

u1

u2

w1

w2 u1

w1

u2

w2 u2

u1

w1

w2

cu1w1,u2w2 − xu1,u2 + xw1,u2 ≥ 0
cu1w1,u2w2 + xu1,u2 − xw1,u2 ≥ 0

(5)

(∀k ∈ L : ∀u1w1 ∈ E=
k : ∀u2w2 ∈ E<

k )

Intuition: There is a crossing between a same-layer and a 2-layer
edge if an end of the 2-layer edge is in-between the two ends of the
same-layer edge.
Number of constraints generated: O(|E|2)
Prerequisites: 5.1.2 Transitivity constraints

5.1.6 3+-layer edges
Similar to Chimani et al. [13] and Zarate et al. [82], we split any 3+-
layer edge, i.e., an edge whose endpoints are in layers i and i+n−1, for
n > 2, into a path consisting of n+1 2-layer edges between adjacent
layers. This is done during a pre-processing step, so that the ILP
formulation only has to deal with 1- and 2-layer edges, eliminating
the need for more complex constraint types for 3+-layer edges. (The
pseudocode for this step can be found in Appendix C.1.) The added
nodes in the intermediate layers are called anchors, and they will not
appear in the visualization. Breaking up 3+-layer edges increases
the cardinality of E and N, thus increasing the number of constraints
accordingly. The picture below shows an example effect of anchors
used in combination with crossing reduction. Anchors are represented
with semi-transparent nodes that are added here only for illustration.
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5.2 Bendiness reduction
5.2.1 Objective function for bendiness reduction
For bendiness reduction, we add a term to the objective function to
account for bent edges. Parameters γ1 and γ2 are set by the user to
weight the relative importance of minimizing edge crossings vs. bendi-
ness. Note that in our formulation, the bendiness bu1w1 of an edge u1w1
is defined as the absolute difference |yu1 − yw1 | between the vertical
coordinates of its endpoints. Other formulations with more complex
distance measures (e.g., squared difference) are possible, but may fall
outside the capabilities of ILP and hence are left for future work.

Minimize : γ1 ∑
k∈L

∑
u1w1,u2w2∈Ek

u1w1 6=u2w2

cu1w1,u2w2 + γ2 ∑
u1w1∈E

bu1w1

5.2.2 Vertical position constraints
For nodes in the same layer, we must ensure that their vertical po-
sitions (y variables) are consistent with the ordering established by
the x variables: if xu1,u2 = 1 then yu1 < yu2; and if xu1,u2 = 0 then
yu1 > yu2. These implications can be expressed as yu1 > yu2 xu1,u2 and
yu2 > yu1 xu1,u2 , respectively. (Note that xu1,u2 = 1− xu2,u1 .) Since
ILP does not allow non-linear constraints — like those involving the
product of 2 variables — we need to convert them to equivalent linear
constraints. For the specific structure of our problem, we identified
an effective conversion detailed by Coelho [15]. The conversion intro-
duces an auxiliary variable zi for each node ui and requires a predefined
constant, m, that limits the maximal vertical span (i.e., the greatest
absolute difference between any pair of y coordinates) of the layer:



zi−m · xu2,u1 ≤ 0
zi− yu2 +m · xu2,u1 ≥−m
yu1 − zi−1 · xu2u1 ≥ 0 (∀k ∈ L : ∀u1,u2 ∈ Nk)

zi ≤ yu2

zi ≥ 0

(6)

Intuition: Vertical node coordinates must be consistent with their
vertical position ordering.
Number of constraints generated: O(|N|2)
Prerequisites: 5.1.2 Transitivity constraints,

Equation (6) contains a term−1 ·xu2u1 , which defines the distance be-
tween two nodes and can be adjusted by increasing the constant factor.

5.2.3 Computing edge bendiness

We define the bendiness of an edge as the absolute difference between
the vertical coordinates of its endpoints. Unfortunately the absolute
function is not allowed in ILP constraints as the resulting function
would be non-linear. We therefore convert each constraint bu1w1 ≥
|yu1 − yw1 | to the following equivalent linear constraints:
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yu1 − yw1 ≤ bu1w1
(∀u1w1 ∈ E)

yw1 − yu1 ≤ bu1w1

(7)

Intuition: The bendiness of every edge is the difference between
the y variables of the two ends of the edge.
Number of constraints generated: O(|E|)
Prerequisites: 5.2.2 Vertical position constraints

5.3 Grouping

We now discuss how to lay out enclosed and contiguous groups of
nodes and the associated constraints we developed.

Showing contiguous groups of nodes within a single layer is useful
in many contexts. E.g., the proportionally sized groups in each layer
in Sankey diagrams and Di Bartolomeo et al.’s Sequence Braiding
visualization for temporal event sequence data — both showing an
overview of flow patterns. In our motivating case study on QueryVis
(Section 2, Figure 2), groups are used to display tables of attributes
contiguously within a layer, akin to an entity relationship (ER) diagram.
Thus, Zarate et al.’s ILP approach for laying out Sankey diagrams [82]
includes a simple constraint to support such single-layer groups.

However, showing any hierarchical subqueries in an SQL query addi-
tionally requires support for groups that (1) span multiple layers and
(2) can be nested. To the best of our knowledge, there are no optimiza-
tion models for laying out layered node-link visualizations that have
multi-level or nested groups. Providing this support in STRATISFIMAL
LAYOUT is one of the main technical innovations of this work.

For ease of presentation and without loss of generality, the discussion
here focuses on rectangular group shapes. Our framework supports
more general shapes by removing the corresponding “rectangularity”
constraints below, as illustrated near the end of Section 5.3.4.

5.3.1 Single-layer groups

We are not aware of any prior framework that could seamlessly deal
with groups, especially in combination with crossings and bendiness.
Importantly, as the experiments will confirm, in our framework groups
do not fundamentally increase the asymptotic complexity of the
optimization problem.

To enforce adjacent placement of group members in a single layer, it
is sufficient to specify that if two nodes u1 and u2 are in the same group,
then no node u3 not belonging to that group can be placed between
them. The constraint below equivalently expresses that u3 has to be
either above both u1 and u2, or below both.

xu1,u3 − xu2,u3 = 0 (8)

(∀g ∈ Γ, where Γ is a single-layer group : ∀u1,u2 ∈ g : ∀u3 6∈ g)

Intuition: If nodes u1 and u2 are in group g1, and node u3 is not in
g1, then either u3 is above both u1 and u2, or below both of them.
Number of constraints generated: Reduces the number of con-
straints. For every single-layer group constraint we add, 2 transitiv-
ity constraints are removed.
Prerequisites: 5.1.2 Transitivity constraints

Notice that Equation (8) implies the 2 transitivity constraints in
Equation (2), meaning that after adding Equation (8), both implied
constraints can be removed without changing the solution. We show the
implication for xu1,u2 + xu2,u3 − xu1,u3 ≥ 0; the other one is analogous:
From xu1,u3−xu2,u3 = 0 follows xu2,u3−xu1,u3 = 0, which together with
xu1,u2 ≥ 0 yields the desired xu1,u2 + xu2,u3 − xu1,u3 ≥ 0.

5.3.2 Multi-layer groups

When a group spans multiple layers, Equation (8) is not sufficient. In
addition to adjacent node placement within each layer, the vertical
positions across layers needs to be taken into account. To this end,
we could follow an approach similar to edge bendiness by penalizing
differences in vertical coordinates between group members in adja-
cent layers. Since that is straightforward, we instead demonstrate our
framework’s flexibility by enforcing rectangular multi-layer groups.
A rectangle is a simple easy-to-read convex hull [57], popular for en-
abling easy identification of group boundaries and group membership
via enclosure [78, 81].

To achieve rectangular groups, we use a trick: for a given group, we
determine the maximum number of group members in each layer and
then add “filler nodes” to ensure the same number of group members
across all layers it spans. We apply this procedure to all groups, then
analogously ensure that all layers have the same total number of nodes.
The pseudocode for this step is in Appendix C.2.

With the filler nodes in place, we only need to ensure that the top-
most node of the group in each layer has the same y coordinate. Our ILP
framework does this by “counting” the nodes above a group through
the x variables. Consider a group g1 with nodes u1 and u2 in some
layer. A non-group node u3 is above the group if and only if xu1,u3 = 1,
or, equivalently, xu2,u3 = 1. In general, since Equation (8) enforces that
all group members in a layer must be adjacent to each other, we only
need to select one group member node per layer to count the number of
non-group nodes above it in that layer. This count must be consistent
across all layers the group spans:
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∑
u2 6∈g,u2∈Lk

xu1u2 = ∑
u4 6∈g,u4∈Lk+1

xu3u4 (9)

(∀g ∈ Γ : ∀k ∈ Lg, where k+1 ∈ Lg)

In the above formula, u1 is an arbitrary member of group g in layer
k and u3 is an arbitrary member of group g in the next layer k+1, i.e.,
u1 ∈ g∧u1 ∈ Lk ∧u3 ∈ g∧u3 ∈ Lk+1.

Intuition: The number of non-group nodes above the group must
be the same across all layers the group spans.
Number of constraints generated: O(` · |Γ|) = O(` · |N|)
Prerequisites: 5.1.2 Transitivity constraints, 5.3.1 Single-layer
groups

5.3.3 Nested multi-layer groups
Nested groups play an important role in hierarchical networks, includ-
ing our motivating case study of visualizing SQL queries. There, the
relative scopes of tables are nested according to the nesting structure of
the query (see Section 2). Interestingly, the ILP constraints introduced
so far can, by design, already handle nested groups. We simply apply
the group constraints discussed above (Equations (8) and (9)) recur-
sively such that the subgroup (red box in the diagram below) takes on
the role of the group and the enclosing group (blue box) takes on the
role of the entire network. This recursive construction is applied by
starting with the innermost group. The pseudocode for this procedure
is described in Appendix C.2.
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5.3.4 Multi-layer groups with vertical coordinates
Notice that the ILP constraints for multi-layer groups in Equations (8)
and (9) can be used regardless of whether the problem otherwise re-
quires y coordinates (for bendiness reduction). We now show an alter-
native formulation that relies on the y coordinates and has the major
benefits that no filler nodes are needed and that additional requirements,
e.g., regarding the shape and area of non-rectangular groups, can be
expressed easily. To this end, we introduce two new variables, yT

g and
yB

g , for every group g ∈ Γ to represent the top and bottom boundary of
the group, respectively. For a rectangular group, all group members
must be within those boundaries:

yu1 ≥ yT
g (∀g ∈ Γ : ∀u1 ∈ g)

yu1 ≤ yB
g

(10)

Intuition: All nodes in a group must fall between top and bottom
boundary of the group.
Number of constraints generated: O(|N|)
Prerequisites: 5.2.2 Vertical position constraints, 5.3.1 Single-
layer groups
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Similarly, all nodes not in the group must fall outside the group
boundaries in all layers spanned by the group. The direct encoding
— enforcing for a node u2 outside the group that either yu2 < yT

g or
yu2 > yB

g — requires disjunction (“OR”), which is not supported by ILP.
We therefore convert the disjunction to:

yu2 −m · xu1,u2 < yT
g (11)

−yu2 +m · xu1,u2 < m− yB
g (12)

(∀g ∈ Γ : ∀k ∈ Lg : ∀u2 ∈ Lk, where u2 6∈ g)

Recall that m denotes the largest vertical coordinate difference al-
lowed within a layer. Node u1 is an arbitrary node in layer k that
belongs to group g. (Since group nodes in the same layer are adjacent
to each other due to Equation (8), any one of them being above u2
implies that all of them are.)

Intuition: In a layer spanned by the group, nodes outside the group
should be either above or below the group.
Number of constraints generated: O(|N| · |Γ|)
Prerequisites: 5.2.2 Vertical position constraints, 5.3.1 Single-
layer groups

To prevent the solver from setting all top and bottom group bound-
aries to 0 (the lowest possible y value) and m (the highest possible y
value), respectively, we need to add constraints that force the group
boundaries to not overlap. This again introduces disjunctions (to not
overlap, in each layer the top boundary of one group must be below the
bottom boundary of the other, or vice versa), which we transform to
ILP-supported linear constraints:

yB
g2
−m · xu2,u1 − yT

g1
< 0

−yT
g2
+m · xu2,u1 + yB

g1
< m

(13)

(∀g1,g2 ∈ Γ, where g1 6= g2 ∧ Lg1 ∩Lg2 6= /0)

Notice that the constraints are only introduced for groups that contain
nodes in at least one common layer. Here u1 ∈ g1 and u2 ∈ g2 refer to
arbirtrary group members from one of the common layers.

Intuition: For each two groups that have in common at least one
layer, either the top boundary of one is below the bottom boundary
of the other, or vice versa.
Number of constraints generated: O(|Γ|2)
Prerequisites: 5.2.2 Vertical position constraints, 5.3.1 Single-
layer groups

Non-rectangular groups. The y-coordinate variables enable more
flexible group-shape constraints. For non-rectangular groups, one can
replace variables yT

g and yB
g with per-layer boundaries like yT

gk
for each

layer k spanned by group g. Or the user may decide for a group to have
a common bottom boundary yB

g , but flexible per-layer top boundaries
yT

gk
. In particular cases like the ones below, in which all the nodes in

the network are enclosed in completely distinct groups, flexible group
shapes can simply be attained by leaving out constraints 11 and 12.
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Constraining the area of a group. So far, none of the constraints
forces a group to be “compact,” e.g., there could be a large gap between
adjacent group members in the same layer. The introduction of vari-
ables for vertical coordinates offers an easy fix for this issue through
constraints on the difference between top and bottom boundary of a
group. For example, let groupsize be a user-controlled parameter, then
we can constrain group area as follows:

yB
g − yT

g ≤ groupsize (∀g ∈ Γ) (14)

Intuition: For each group, the difference between top and bottom
boundary must not exceed a given limit.
Number of constraints generated: O(|Γ|)
Prerequisites: 5.2.2 Vertical position constraints, 5.3.4 Multi-layer
groups with vertical coordinates

Note that one could similarly specify a different limit for each group.
In all cases, the limit must be at least as high as the number of group
members in a single layer. If it is set too low, the ILP solver will not
find a solution and needs to be re-started with a higher limit.

5.4 Optimizing the number of variables and constraints
Complement variables. We cut the number of order-indicator vari-
ables in half by removing complement variables: instead of using both
xu1,u2 and xu2,u1 , we use only xu1,u2 and replace xu2,u1 with 1− xu1,u2 .

Collapsing groups. We propose to exploit groups to reduce the
effective network size, and thus optimization cost, for all types of con-
straints by essentially collapsing groups into single nodes. A special
case of this idea is in Section 5.3.1, where each group-related con-
straint enabled the removal of 2 transitivity constraints. For the general
approach, consider Figure 4. The “inclusion network” on the right
encodes the hierarchy of groups and subgroups from the network on
the left, making each subgroup a child of the directly enclosing group.
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Fig. 4: A network with nested groups and its corresponding inclusion
network. Colored nodes on the right represent groups on the left.

In the inclusion network, comparable elements are children of the
same node. It is easy to show that every constraint involving inclusion-
network nodes that are not siblings can be removed without affecting
the ILP solution. E.g., in Figure 4, we can replace xu6u2 and xu6u3 with
xu6g1 , as node u6 can only be above or below both nodes in g1. For
networks with large nested groups, this can vastly reduce the number
of variables and constraints, resulting in lower optimization cost.

6 IMPLEMENTATION AND EVALUATION

We implemented two versions of STRATISFIMAL LAYOUT: (1) a
web-based JavaScript library using GLPK.js2 as solver and (2) a
formulation for desktop computation via Gurobi [33]. Our im-
plementations, website, and supplemental material can be found
at osf.io/qdyt9 with a live demo also available online at
https://visdunneright.github.io/stratisfimal/.

2https://github.com/hgourvest/glpk.js

The JavaScript implementation allows for easy distribution of web-
based visualizations built upon STRATISFIMAL LAYOUT, requiring no
server-side computation or local installation. The formulation of the
problem, the solving process, and the visualization can all be done seam-
lessly client-side in the browser. The downside of using a JavaScript
solver is reduced performance. But most of the networks in our target
size (a few dozen nodes) can still be solved quickly.

The website also contains a network generator with parameters that
can be tweaked and processed on the spot, a page3 containing more
extensive explanations and examples of the application of the modules
to the network, comparisons of the application of our method compared
to other layout algorithms, and several examples and benchmarks.

Applying the method to QueryVis on the web: We provide ini-
tial validation of our approach using of our motivating case study on
QueryVis (Section 2). We conducted an experimental evaluation which
compared STRATISFIMAL LAYOUT with Gansner et al.’s [28] heuristic-
based layout based on computation time and the number of crossings.
Bendiness reduction was omitted other than a very simple postpro-
cessing step which did not impact our measurements. We used the
constraints from sections 5.1.2–5.1.5 and 5.3.1. At first, a network is
randomly generated (Figure 5a), then the results from the application of
Gansner et al.’s method (Figure 5b) and our method (Figure 5c). While
the original, randomly-generated network had 30 crossings, Gansner is
able to reduce the number of crossings to 8 in 76 ms, while our method
reduces the number of crossings to 2 in 191 ms. Comparisons on a
number of different networks and network sizes are available on our
website and appendices. As expected, our method takes more time but
finds an optimal solution — demonstrating the utility of STRATISFIMAL
LAYOUT for improving QueryVis visualizations.

The values reported in Figure 5 are obtained by running the compar-
ison in Firefox 86, on a 2020 MacBook with 32 GB RAM and an Intel
Core i5-1038NG7 CPU. We wrote both layouts in JavaScript and run
entirely on the client, including the ILP solver GLPK.js.

Rome-Lib benchmark on the desktop: We also experimented with
a commercial desktop-based solver, Gurobi [33] (version 9.1). In
Figure 6, we report results obtained using the Rome-Lib benchmark
dataset [20] — comparing the application of just crossing reduction
(CM) to both crossing and bendiness reduction (CM + BR). All the
tests are run using the same subset of problems from Rome-Lib — the
first 26 networks with a number of nodes that is a multiple of 5, starting
from 10. The problems were all run on a computer with an Intel i7-
7700K processor, 32 GB RAM, and running Ubuntu 20.04. Note that
Rome-Lib contains undirected, non-layered networks with no groups.
In order to obtain these results, we preprocessed the Rome-Lib dataset,
performing a layer-assignment step (Appendix C) to obtain layered
networks. We used Navlakha et al.’s [61] network summarization
algorithm to obtain groups of nodes. In Figure 6, we report the time
spent solving problems of increasing size. The results are split in three
figures: the first compares CM vs. CM + BR on Rome-Lib with no
groups, the second includes groups but does not apply group collapsing,
the third has groups and group collapsing. The visualizations show
the median time to solve problems with increasing number of nodes,
with boundaries at the 25% and 75% quartiles. We set a timeout of
1000 seconds for each problem, and the lines in the visualization are
cut wherever the success rate of solving problems within the timeout
became less than 75%, which would affect the shown data. A more
extensive report can be found in Appendix C.

A word on scalability. While our experiments indicate that STRAT-
ISFIMAL LAYOUT could easily scale to networks with 50 to 100 nodes,
it generally is difficult to predict ILP optimization time from network
size alone. Other factors such as the connection pattern and the se-
lection of constraints play an important role as well. In theory, the
complexity of an ILP problem is determined by the number of vari-
ables, which define the space of possible combinations. Here Integer
variables are more expensive than Boolean variables. However, in prac-
tice, an ILP solver can exploit special properties of a given problem
to find the optimal solution much more rapidly. In some cases, adding

3https://visdunneright.github.io/stratisfimal/proofs.html

https://osf.io/qdyt9
https://visdunneright.github.io/stratisfimal/
https://github.com/hgourvest/glpk.js
https://visdunneright.github.io/stratisfimal/proofs.html
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(a) A randomly-generated QueryVis [48] visualization.
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(b) Gansner et al. [28] applied to the network.
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(c) STRATISFIMAL LAYOUT applied to the network.

Fig. 5: Comparison of different layouts applied to a randomly generated QueryVis example.

No Groups With groups, no collapsing With groups + collapsing

10⁻²

10⁻¹

10⁰

10¹

10²

10³

20 40 60 80 100

m
ed

ia
n 

tim
e 

(s
ec

on
ds

)

number of nodes

CM + BR
CM

10⁻²

10⁻¹

10⁰

10¹

10²

10³

20 40 60 80 100

m
ed

ia
n 

tim
e 

(s
ec

on
ds

)

number of nodes

CM + BR
CM

10⁻²

10⁻¹

10⁰

10¹

10²

10³

20 40 60 80 100

m
ed

ia
n 

tim
e 

(s
ec

on
ds

)

number of nodes

CM + BR
CM

Fig. 6: The median time spent solving a problem from the Rome-Lib [20] network benchmark. The interval between the first and fourth percentiles
is shown in lighter colors Each line represents the execution on the first 26 networks in Rome-Lib with n nodes, where n is a multiple of 5 between
10 and 100, for a total of 468 networks per line. The timeout was set to 1000 seconds per individual network, and the lines are cut whenever less
than 75% of problems with the same number of nodes could be completed within the timeout. Crossing reduction (CM) + bendiness reduction
(BR) is always several times costlier than CM only, and groups improve performance and the number of problems solvable within the timeout.
Some oscillations in the lines are only due to varying difficulty in the set of problems.

redundant constraints that are already implied by existing ones can
improve the solver’s ability to home in on the feasibility region [47,55].
Another approach is the introduction of variance in performance via
erraticism [25, 51], due to imperfect tie-breaking by the ILP solver’s
search algorithm [42] and the choice of initial conditions for the search
algorithm, such as the seed for the random-number generator [47].
Lastly, we have to take into account how performance changes with
different solvers and machines [51].

For our problem, the number of variables grows more rapidly with
the number of nodes in a layer than with the number of layers, because
the number of xu,w order indicator variables is quadratic in the number
of nodes in a layer. Our group-collapsing optimization (Section 5.4) ul-
timately reduces constraint redundancy, yet it also succeeds in reducing
the number of variables. It thus effectively lowers problem complexity
— in the best case, halving the number of variables. Thus, an ILP solver
will perform better on a network with pre-established groups than on
a network of a similar size without groups. Specific examples for this
effect can be found in Appendix B.

Heuristics vs. ILP. Our method complements work on heuristic
solutions by establishing a baseline against which the solutions found
by the faster techniques can be compared, as done for network layout
algorithms and other problems in [23, 26, 39, 52, 64]. Furthermore, ILP
solvers, together with other optimization tools, have been improving
at a staggering rate in terms of optimization speed and features sup-
ported [1]. Both Gurobi4 and CPLEX’s5 most recent technical reports
claim substantial improvements in processing times and the number
of benchmark problems solved, including a 3× improvement over the
last five years in processing time. This means that STRATISFIMAL
LAYOUT will become faster with each improvement in ILP solver tech-
nology, allowing it to scale to larger problems even as new visualization
constraints may be added.

4https://www.gurobi.com/wp-content/uploads/2020/02/
Performance-Gurobi-9.0-1.pdf

5https://www.ibm.com/downloads/cas/KEVDB4NZ

7 CONCLUSION AND FUTURE WORK

Algorithms that lay out node-link network visualizations based on hu-
man factors can help users understand complicated networks faster.
Motivated by the real-world application of helping users understand
complicated SQL queries faster, we devised a modular layout opti-
mization framework that supports a combination of existing and novel
readability criteria and features that together had not been addressed
by any previous optimization model. Novel features include crossing
minimization for same-layer edges and multi-layer and nested groups.
Our approach finds optimal layouts for networks with 30 variables
and complicated groupings within a second, which is a reasonable
time, given that a diagram can take minutes to understand, and then be
reused multiple times. The framework is versatile and allows the user
to cherry-pick modules according to the features they require for their
visualizations. Moreover, we provided our solution as open-source code
together with a benchmark to measure optimization time for problems
of various sizes and features.

Future work. Many more network features could be integrated into
our modular formulation, e.g., to optimize edge-crossing angles [79], to
improve the symmetry of the visualization [49,66,67], to bundle groups
of edges [19, 65], or to minimize edge length [81]. A feature that is not
necessary for our motivating example (but may be relevant for other
applications) is to handle groups with overlapping intersections such as
in Venn diagrams.
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A GUIDED UNDERSTANDING OF A CONSTRAINT

Understanding why and how the constraint work is not straightforward.
In this section, we include a short tutorial on understanding a few of the
constraints. We will not be doing the same for every constraint because
it would take too much time and space, but we care about giving a hint
to how to think about these rules.

A.1 2-layer edge crossings
This discussion compliments Section 5.1.

u1

u2

w1

w2

u1

u2

w2

w1

u2

u1

w1

w2

u2

u1

w2

w1

The figure above shows all the possible permutations of two nodes on
two adjacent layers. The ones with a crossing are the second and third
ones. Based on this picture we ask ourselves: what criteria determine if
there is a crossing? And the answer that we find is: there is a crossing
if the position of the ends of the edges are inverted in the two ranks.
Indeed, the second picture has u1 above u2, but w2 above w1. The third
one has the exact opposite, which still results in a crossing: u2 is above
u1, but w1 is above w2.

Now, the constraints tie together the existence of a crossing to the
relative position of the nodes. Here are the two formulas corresponding
to this constraint:

cu1w1,u2w2 + xu2,u1 + xw1,w2 ≥ 1 (15)
cu1w1,u2w2 + xu1,u2 + xw2,w1 ≥ 1 (16)

As mentioned in the paper, the x variables indicate the relative
position of two nodes. xu1,u2 is equal to 1 if and only if u1 is above
u2, and it is 0 otherwise. The c variables indicate the existence of a
crossing, thus cu1w1,u2w2 = 1 if there is a crossing, 0 otherwise. Note
that these variables don’t have any assigned value — they are just an
instruction for the solver to tell to it that, if it assigns the node positions
in some particular ways, there will be a crossing. Let’s see it applied in
practice on one of the visualization above, the third one:

u2

u1

w1

w2

This is the case in which u1 is below u2, thus xu1,u2 = 0, and w2 is
below w1, thus xw2,w1 = 0. If we assign these values in Equation (16),
we obtain:

cu1w1,u2w2 +0+0≥ 1

As the objective function given to the solver is trying to minimize
the sum of all the c variables, the values assigned to cu1w1,u2w2 will be
the minimum possible value that still makes Equation (16) hold, thus
cu1w1,u2w2 = 1, meaning that, with this combination of relative positions
of the nodes, there will necessarily be a crossing.

There is another formula in the same constraint, Equation (15),
which, if we replace the variables, gives us cu1w1,u2w2 + 1+ 1 ≥ 1,
which doesn’t give us the lower bound for cu1w1,u2w2 that we want.
All these constraints are evaluated together though, and the values
assigned to the variables must respect all equations. Thus, the final
value assigned to cu1w1,u2w2 will be 1.

All the other constraints present in the paper follow a similar thought
process.

A.2 Multi-layer groups
To keep multi-layer groups rectangular, we presented the following
formula in the body of the paper:

∑
u2 6∈g,u2∈Lk

xu1u2 = ∑
u4 6∈g,u4∈Lk+1

xu3u4 (17)

(∀g ∈ Γ : ∀k ∈ Lg, where k+1 ∈ Lg)

In practice, the way in which we impose the node to be all in a
rectangle is by forcing the sum of the distance from the top of the
network for any node in the group to be the same. Let’s see it expanded
on one example:

u3

u2

u1
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u7
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u11

u10

u9

u8

In this example, expanding those constraints would give us

xu1,u3 + xu1,u2 + xu1,u0 = xu7,u6 + xu7,u5 + xu7,u4

xu7,u6 + xu7,u5 + xu7,u4 = xu9,u11 + xu9,u10 + xu9,u8

xu1,u3 + xu1,u2 + xu1,u0 = xu9,u11 + xu9,u10 + xu9,u8

(18)

Those constraints force all three nodes in the group to be at the same
height. This can only work if all the layers in the rank contain the same
number of elements and the group contains the same number of nodes
on every layer it spans across, thus we first need a preprocessing step
described in Appendix C.2.

B EXAMPLE APPLICATIONS OF OUR METHOD

In this section, we show how a full model looks like and how quickly
can the number of variables and constraints scale.

The first example, shown below, with only crossing reduction active
on it and no groups, represents a very simple network with only two
edges which can collide (u9u5 and u10u6), resulting in a very short
model. Since there is a maximum of two nodes per rank, there is no
need to have transitivity constraints specified. Also, this example is
made especially simple by the facts that:

• In a rank with a single node, there is no need for any variable or
constraint

• Two edges which have the same source or the same target can’t
intersect (u4u9 and u4u10).

• Crossing reduction alone requires only binary variables, as shown
in the "Binaries" section of the model.

The first gray box in the text below reports a few statistics about the
model and the result obtained from executing it, while the second
reports the full model.

u1 u7 u2 u8 u3

u4

u9

u10

u5

u6

Constraints: 2

Variables: 4

Crossings: 0

Time to solve: 3 ms

Minimize

1 c_u9u5_u10u6

Subject To

c_u9u5_u10u6 + x_u10_u9 + x_u5_u6 >= 1

c_u9u5_u10u6 - x_u10_u9 - x_u5_u6 >= -1

Binaries

c_u9u5_u10u6

x_u10_u9

x_u5_u6

x_u3_u4



The next example is just a little more complicated, although it has
the same number of nodes as the previous one and, like the previous
one, only deals with crossing minimization. Still, more nodes in the
same rank make transitivity constraints necessary and introduces the
need to check more possible intersections between pairs of edges. This
example shows how it’s not the sheer number of nodes that influences
the number of variables and constraints needed, but their positioning in
the ranks.

u1 u7

u8

u9

u2

u3

u4

u6

u10 u5

Constraints: 24

Variables: 16

Crossings: 0

Time to solve: 1 ms

Minimize

1 c_u7u2_u9u6 + 1 c_u7u2_u8u6 + 1 c_u7u2_u8u4 + 1 c_u7u3_u9u6

+ 1 c_u7u3_u8u6 + 1 c_u7u3_u8u4 + 1 c_u9u6_u8u4

Subject To

+ x_u7_u8 + x_u8_u9 - x_u7_u9 >= 0

- x_u7_u8 - x_u8_u9 + x_u7_u9 >= -1

+ x_u2_u3 + x_u3_u4 - x_u2_u4 >= 0

- x_u2_u3 - x_u3_u4 + x_u2_u4 >= -1

+ x_u2_u3 + x_u3_u6 - x_u2_u6 >= 0

- x_u2_u3 - x_u3_u6 + x_u2_u6 >= -1

+ x_u2_u4 + x_u4_u6 - x_u2_u6 >= 0

- x_u2_u4 - x_u4_u6 + x_u2_u6 >= -1

+ x_u3_u4 + x_u4_u6 - x_u3_u6 >= 0

- x_u3_u4 - x_u4_u6 + x_u3_u6 >= -1

c_u7u2_u9u6 - x_u7_u9 + x_u2_u6 >= 0

c_u7u2_u9u6 + x_u7_u9 - x_u2_u6 >= 0

c_u7u2_u8u6 - x_u7_u8 + x_u2_u6 >= 0

c_u7u2_u8u6 + x_u7_u8 - x_u2_u6 >= 0

c_u7u2_u8u4 - x_u7_u8 + x_u2_u4 >= 0

c_u7u2_u8u4 + x_u7_u8 - x_u2_u4 >= 0

c_u7u3_u9u6 - x_u7_u9 + x_u3_u6 >= 0

c_u7u3_u9u6 + x_u7_u9 - x_u3_u6 >= 0

c_u7u3_u8u6 - x_u7_u8 + x_u3_u6 >= 0

c_u7u3_u8u6 + x_u7_u8 - x_u3_u6 >= 0

c_u7u3_u8u4 - x_u7_u8 + x_u3_u4 >= 0

c_u7u3_u8u4 + x_u7_u8 - x_u3_u4 >= 0

c_u9u6_u8u4 + x_u8_u9 - x_u4_u6 >= 0

c_u9u6_u8u4 - x_u8_u9 + x_u4_u6 >= 0

Binaries

c_u7u2_u9u6

c_u7u2_u8u6

c_u7u2_u8u4

c_u7u3_u9u6

c_u7u3_u8u6

c_u7u3_u8u4

c_u9u6_u8u4

x_u7_u8

x_u8_u9

x_u7_u9

x_u2_u3

x_u3_u4

x_u2_u4

x_u3_u6

x_u2_u6

x_u4_u6

An extensive number of examples of vari-
ous sizes and complexities can be found at

https://visdunneright.github.io/stratisfimal/, as
well as a random network generator with various settings to let the user
see the model applied to many different cases.

The next two examples show instead the benefit of applying our
group collapsing optimization method explained in Section 5.4. The
network is a little more complicated and features groups, and optimizes
for both crossing and bendiness reduction, resulting in a considerable
number of variables and constraints. We will not report the extended
model this time, as we care more about showing the differences in sheer
number of constraints and variables.

Both executions are done on the same network, and result in the
same output, as shown in the two pictures, but the first one has group
collapsing disabled, while the second one has it enabled. This results in
the number of variables needed to describe the same problem to differ
vastly, as can be seen in the gray boxes below the networks: while the
first one requires 93 variables and 479 constraints, the second execution
only needs 24 variables and 172 constraints. The time required to solve
the problem is also greatly affected, going from 835 to just 36 ms.

s u0 u1

u2

u16

u13

u3

u6

u14

u4

u12

u7

u15

u5

u9

u11

u8

u10

Group collapsing disabled:

Constraints: 479

Variables: 93

Crossings: 0

Bendiness: 14

Time to solve: 835 ms

s u0 u1

u2

u16

u13

u3

u6

u14

u4

u12

u7

u15

u5

u9

u11

u8

u10

Group collapsing enabled:

Constraints: 172

Variables: 24

Crossings: 0

Bendiness: 14

Time to solve: 36 ms

https://visdunneright.github.io/stratisfimal/


C PSEUDOCODE FOR SOME OPERATIONS MENTIONED IN THE
PAPER

In this section, we report the pseudocode for some procedures used in
preprocessing in our method.

C.1 Adding anchors to edges
The first one deals with the introduction of anchors to split 3+-layer
edges into smaller edges (Section 5.1.6).

Algorithm 1 Adding anchors to edges

1: for edge in E do
2: sr = edge.source.layer
3: tr = edge.target.layer
4: if abs(sr - tr) > 1 then
5: anchors = [edge.source]
6: minr = min(sr, tr)
7: maxr = max(sr, tr)
8: for i from minr + 1 to maxr do
9: nweNode = new Node()

10: newNode.layer = i
11: anchors.push(newNode)
12: anchors.push(edge.target)
13: for i from 1 to anchors.length do
14: newEdge = new Edge()
15: newEdge.source = anchors[i-1]
16: newEdge.target = anchors[i]
17: network.edges.remove(edge)

C.2 Adding filler nodes to groups
This pseudocode is used to add filler nodes when using crossing reduc-
tion only, in order to keep groups in networks enclosed in a rectangular
shape. It is mentioned in Section 5.3.2 and Section 5.3.3.

Algorithm 2 Adding filler nodes to groups

1: sortGroupsBySize()
2: for g of network.groups do
3: minLayer← min(group.layers)
4: maxLayer← max(group.layers)
5: maxNodesPerLayer← max(numNodesAtLayer(g, [minLayer,

..., maxLayer))
6: for k from minLayer to maxLayer do
7: while numNodesAtLayer(g, k) < maxNodesPerLayer do
8: n← new Node()
9: newNode.layer← k

10: newNode.type← filler
11: g.nodes.push(newNode)
12: maxNodesInLayer = max(numNodesAtLayer(network, [minLayer,

..., maxLayer))
13: for ` of network.layers do
14: while numNodesAtLayer(network, `) < maxNodesInLayer do
15: newNode← new Node()
16: newNode.layer← k
17: newNode.type← fake
18: g.nodes.push(newNode)

C.3 Simple layer assignment for non-layered networks
This snippet of code serves to assign nodes to layers in non-layered
networks, so that we can obtain a layered network to process with our
method. This procedure is in no way optimal, and just pushes the nodes
to the n-th rank, where n is the length of the shortest path from the
node to any other node in the network we design as source. This is
not intended to be part of our method, but we found ourselves needing
to perform this operation a number of times through the development
— this is the method we use to assign ranks when generating random

networks from scratch, for example. Another issue we had is that we
weren’t able to find a viable benchmark dataset containing layered
networks, and we resorted to using Rome-Lib anyways — whose
networks are not layered, thus we needed to find a way to treat them
as layered. Reinstating that it is in no way optimal and should not be
considered part of the project, we provide this snippet for replicability
purposes, in case other researchers wanted to compare their methods
against ours using networks with the same features.

Algorithm 3 Simple rank assignment

1: procedure MOVETODEPTH(node, newDepth)
2: g.nodeIndex[node.depth].remove(node)
3: node.depth← newDepth
4: g.nodeIndex[node.depth].push(node)
5:
6: procedure GETCUREDGES(r)
7: curEdges← []
8: for e of g.edges do
9: if e has an end in r-1 and the other in r then

10: curEdges.push(edge)
11: return curEdges
12:
13: procedure GETCURNODES(r, curEdges)
14: curNodes← []
15: rankNodes← getNodesInRank(g, r)
16: for node of rankNodes do
17: if no edge in curEdges has node as one of its ends then
18: curNodes.push(node)
19: return curNodes
20:
21: g← the network
22: startnode← source node for the network
23: g.nodes← list of all nodes in g
24: g.edges← list of all edges in g
25: curRank← 0
26:
27: while g.nodeIndex[curRank] 6= undefined do
28: if curRank == 0 then
29: for node of g.nodes do
30: if node 6= startnode then
31: moveToDepth(node, node.depth + 1)
32: curEdges← getCurEdges(curRank)
33: curNodes← getCurNodes(curRank, curEdges)
34: for node of curNodes do
35: moveToDepth(node, node.depth + 1)
36: curRank++

D PROVIDED DATASET

As mentioned in the previous section, we used Rome-Lib as a base for
doing our tests, but had to introduce a couple of features into it: namely,
we assigned ranks to the nodes in it and added groups through Navlakha
et al.’s graph summarization algorithm [61]. For replicability purposes,
we include in our supplemental material a version of Rome-Lib with
our preprocessing steps already done, so that other researchers can take
it and compare their methods against our own from the same starting
point. It can be found on osf.io/qdyt9.

The dataset is provided in json format, and it is split in two folders:
“paper set” contains only the networks used to run the benchmarks
included in this paper, a subsection of Rome-Lib comprised of 260
networks. “Full set” instead, contains the entirety of Rome-Lib with
our preprocessing step applied.

Each json contains a list of nodes with an id and a depth, which is
the rank assigned to them, a list of edges with the source and the target,
and a list of groups, each group having the set of nodes included in it.
The group entry can be ignored when running experiments which do
not consider groups.

https://osf.io/qdyt9


E GRAPHVIZ ISSUES

This section serves as a support to our claim that GraphViz is sub-
optimal for network layouts with certain features. Indeed, it uses a
heuristic-based approach, which does not guarantee optimality, and it
does not take into account some specific features, such as same-rank
edges.

This is a description of a simple planar network containing same-
rank edges in the DOT language, used by GraphViz.

digraph G {
s -> u3;
s -> u0;
u0 -> u1;
u3 -> u1;
u3 -> u7;
u3 -> u8;
u3 -> u4;
u7 -> u8;
u1 -> u2;
u8 -> u9;
u4 -> u5;
u4 -> u6;
u2 -> u5;

{rank="same"; u3; u0;}
{rank="same"; u7; u8; u1; u4}
{rank="same"; u2; u9; u5; u6}

}

This is GraphViz’s rendering of the network above. Even if we take
into account that the curve of edge u2u5 could be turned towards the
bottom to solve the intersection with u4u6, the intersections between
u7u8 and other edges cannot be solved as easily.

Fig. 7: GraphViz dot layout for a planar network with same-rank edges,
which creates unnecessary edge crossings.

This is, instead, the rendering of the same network obtained through
our own method. It can easily be seen that it found a solution with no
intersections.

s u0

u3

u1

u7

u8

u4

u2

u9

u5

u6

Fig. 8: The STRATISFIMAL LAYOUT layout for the same network as
Figure 7 finds the planar solution.

F CASE STUDY: STORYLINE VISUALIZATION OF THE ORIGI-
NAL STAR WARS TRILOGY

Figure 9 shows a comparison of three different layout methods applied
to creating a StoryLine visualization [50] for the original trilogy of Star
Wars movies. This idea was originally featured in a xkcd comic,6 then
made into a dataset for Tanahashi and Ma’s research on StoryLine visu-
alizations [50] as part of a larger set of movie interaction datasets, and
has since been used for comparative assessments of various StoryLine
layout algorithms [32, 74]. At each timestep, characters are grouped
together if they appear together in a scene.

The first picture, Figure 9a, is the application of Tanahashi and Ma’s
own method [50] on the Star Wars dataset, directly taken from their
paper. They use a genetic layout algorithm which tries to approximate
the optimal solution through iterations (sub-optimal). Their paper
states that it took 12 minutes to generate this visualization and it has
51 crossings. In a later work, Tanahashi et al. [74], using a similar
algorithm, were able to get the number of crossings down to 41, but
removed a fair amount of group constraints from the previous iteration.

The second picture, Figure 9b, presents the same dataset using
Gronemann et al.’s method [32], which is instead based on linear pro-
gramming and claims optimality for crossing reduction. They claim
that generating the visualization takes 1 second and has 39 crossings
(although from the image we were only able to find 38 crossings). They
used best-of-breed C++ desktop solvers on a supercomputing cluster.

Interestingly, our formulation (shown in Figure 9c) is actually able
to obtain fewer crossings than Gronemann et al.’s [32], despite their
optimality claims. Our solution has one fewer: 37 crossings. The
constraints should be exactly the same: characters which appear in the
same scene should be kept adjacent, while characters that do not appear
together must appear separate. Note that Gronemann et al. includes
twice as many layers, but in their dataset every other layer is just an
exact copy of the previous one, and removing all the duplicate layers
has no effect on the number of crossings.

Regarding the application of STRATISFIMAL LAYOUT to the dataset,
we used single-layer groups to constrain characters that need to be
adjacent. Since the dataset is larger than what we were able to process
in a single run, we used a sliding-window approach: we consider
15 layers at a time, solve the problem for those 15 layers, then slide
the window to the next 15 layers. The windows always overlap by 1
layer. Thus the solution of the first problem on that shared layer is
passed on to the next window, so that the ordering of the nodes can
be kept consistent when passing from a window to the next. Crossing
reduction is computed at first, then bendiness reduction is applied as
a post-processing step so as to focus on the comparing the number
of crossings. The whole dataset is processed in under 5 seconds in
Chrome 91 on a 2020 MacBook Pro with 32 GB RAM and an Intel
Core i5 CPU.

It’s important to note that the use of this sliding-window method
makes us unable to guarantee global optimality for our solution. Each
solution is only optimal locally, in its own window. Indeed, if we

6https://xkcd.com/657/

https://xkcd.com/657/


(a) Tanahashi et al.’s original StoryLines visualization [50], which has 51 crossings.

(b) Gronemann et al.’s layout for the Star Wars trilogy [32]. Although the paper claims that their optimal result contains 39 crossings, we count only 38 crossings in this picture.
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(c) STRATISFIMAL LAYOUT applied to the original Star Wars trilogy. This visualization has 37 crossings, better than Gronemann et al.’s optimal solution [32].

Fig. 9: Comparison of three layout approaches for creating a StoryLine visualization [50] for the Star Wars trilogy.

solve the window for the first set of layers, there’s no way to know
if the ordering of the nodes in the first window is going to cause a
crossing that would have been solvable in another window. But despite
this potential limitation, we had one fewer crossing than the optimal
solution of Gronemann et al. [32].

G CROSSING REDUCTION: STRATISFIMAL LAYOUT VS.
GANSNER ET AL.

We include here a comparison of STRATISFIMAL LAYOUT and [28]
using a randomly-generated QueryVis-style network. In these examples,
STRATISFIMAL LAYOUT is set to compute crossing reduction only,
without taking into account edge bendiness. All tests were run in
Firefox 86, on a 2020 MacBook Pro with 32 GB RAM and an Intel
Core i5 CPU.

The results from these tests show, predictably, that the heuristic-
based method is much more scalable than the optimal method, but
clearly does not achieve optimality. This confirms that STRATISFIMAL
LAYOUT works best on smaller networks where the difference in time
between the heuristic and the optimal method would not be noticeable
anyways. The decision on which method is best heavily depends on
the context: if the visualization is going to be static, we can afford long
processing times. Cases with 45–50 edges can be processed in a very
short time even using ILP, thus in these cases STRATISFIMAL LAYOUT
can be used even in visualizations that feature interaction.

H BENCHMARK TIMES

Table 2 reports in full the times briefly summarized in Figure 6 in
the paper. The benchmarks were all run on a machine with an Intel
i7-7700K processor, 32 gb RAM, running Ubuntu 20.04. Each test set
contains a total of 364 networks, the first 26 networks with n nodes
in Rome-Lib where n is 5, 10, 15... up to 80, with a timeout of 1000

seconds per problem. The line in the visualization at the top of each
column represents the median time, with the confidence boundaries
representing the interval within the first and fourth quartile. Just below
the times, another line chart shows the timeout rate. The visualizations
are cut wherever less than 75% of networks in the same category could
not be processed within the timeout. The first column reports results
with no groups at all — in this case, running the code with crossing
reduction and bendiness reduction severely affects the performance, in
many cases taking 10 or even 100 times the amount of time required to
solve the same problems with crossing reduction only. This difference
is lessened in the presence of groups — shown on the second and
third columns. Note how collapsing groups (third column) improves
the performances compared to not collapsing them (second column)
allowing for a larger percentage of problems to be processed within
the same timeout. This comparison between collapse/no collapse is
analyzed further in Figure 11a and Figure 11b, which compare results
within the same setting (either CM, or CM+BR) directly juxtaposing the
results of applying group collapse or not applying it. From the charts,
we can see that collapsing groups in most cases improves performance
by 10×.
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crossings: 137 crossings: 30 crossings: 8

time: 39ms time: 9656ms

Fig. 10: Comparison of the visual result between two randomly-generated QueryVis-style networks, the same networks with Gansner et al.’s
layout [28] applied to it, and the same networks with STRATISFIMAL LAYOUT (crossing reduction only) applied to it.

Random Gansner et al. Stratisfimal Layout
Edges Crossings Time (ms) Crossings Time (ms) Crossings Constraints Variables

8 1 10 0 75 0 49 50
10 4 14 0 97 0 110 92
12 6 3 0 190 0 118 82
18 27 31 1 175 0 485 375
26 12 18 0 183 0 414 318
27 21 29 6 164 1 349 252
41 36 37 7 289 1 707 532
44 38 29 3 362 1 947 698
49 29 40 7 2128 4 844 567
68 62 67 18 9,586 5 1803 1285
71 89 54 9 1,033 3 1654 1095
72 91 54 12 1,468 5 1882 1692
94 111 115 31 33,362 6 2772 1794

109 200 141 35 112,446 17 3173 1912

Table 1: More timing, crossings, and constraint/variable count comparisons between Gansner et al.’s layout [28] and STRATISFIMAL LAYOUT
(crossing reduction only) for several random networks.
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(a) Comparison for crossing minimization (CM) only.
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(b) Comparison for crossing minimization with bendiness reduction (CM + BR).

Fig. 11: Comparison of the time spent solving problems when using Section 5.4 Optimizing the number of variables and constraints and
when not applying it.
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10 0 0.01 0 0.02 0 0.01
15 0 0.02 0 0.06 0 0.01
20 0 0.04 0.01 0.2 0 0.03
25 0 0. 14 0.01 0.52 0 0.07
30 0.01 0.26 0.03 1.05 0.02 0.1
35 0.01 0.64 0.07 2.83 0.05 0.21
40 0.03 2.8 0.16 11.91 0.1 0.83
45 0.04 3.01 0.54 15.18 0.18 0.57
50 0.04 7.66 1.41 34.37 0.29 1.87
55 0.09 21.03 8% 3.51 58.54 4% 0.68 4.63
60 0.21 28.76 8% 8.3 91.61 1.02 7.67
65 0.39 69.25 31% 19.21 4% 329.04 19% 5.19 18.56
70 0.75 229.24 53% 136.91 12% 281.17 50% 13.31 69.63 15%
75 1.85 88.74 8% 19.56 94.61 8%
80 16.72 620.08 81% 168.63 35% 517.54 81% 91.12 8% 164.03 50%
85 10.98 4% 102.87 38%
90 94.63 12% 59.06 26% 440.86 73%
95 120.57 12% 74.66 69%

100

Table 2: The table reports the results from our method on the Rome-Lib [20] benchmark dataset of networks. Each test is run on the first 26
networks included in Rome-Lib containing the number of nodes reported on the left column. The first column reports results with no preprocessing
to introduce groups, the second column introduces groups, the third one has groups and makes use of group collapsing to optimize the number
of variables and constraints. For each one of these cases, we tested the method with just crossing minimization in the objective function and
constraints (CM) and with both crossing minimization and bendiness reduction (CM + BR). For each test, we set a timeout of 1000 seconds. The
times reported are averages, in seconds, excluding the tests that timed out. The percentage of timed out tests for each test is reported in the “fail
ratio” column.
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