
Running Head: CO-ACTIVE PARSES IN LANGUAGE COMPREHENSION  1 

 
 
 
 

A new argument for co-active parses during language comprehension 
 

Brian Dillon, Caroline Andrews, and Caren M. Rotello 

University of Massachusetts, Amherst 

Matthew Wagers 

University of California, Santa Cruz 

 
 
 

 
 
 
 
 
 

  

 

 

 

 

 

 

 

 

 

 

 



CO-ACTIVE PARSES IN LANGUAGE COMPREHENSION 

 

 

2 

 

 

 

 

 

 



CO-ACTIVE PARSES IN LANGUAGE COMPREHENSION 

 

 

3 

Abstract 

One perennially important question for theories of sentence comprehension is whether 

the human sentence processing mechanism is parallel (i.e. it simultaneously represents 

multiple syntactic analyses of linguistic input) or serial (i.e. it constructs only a single 

analysis at a time). Despite its centrality, this question has proven difficult to address for 

both theoretical and methodological reasons (Gibson & Pearlmutter, 2000; Lewis, 2000). 

In the present study, we reassess this question from a novel perspective. We investigated 

the well-known ambiguity advantage effect (Traxler, Pickering & Clifton, 1998) in a 

speeded acceptability judgment task. We adopted a Signal Detection Theoretic approach 

to these data, with the goal of determining whether speeded judgment responses were 

conditioned on one or multiple syntactic analyses. To link these results to incremental 

parsing models, we developed formal models to quantitatively evaluate how serial and 

parallel parsing models should impact perceived sentence acceptability in our task. Our 

results suggest that speeded acceptability judgments are jointly conditioned on multiple 

parses of the input, a finding that is overall more consistent with parallel parsing models 

than serial models. Our study thus provides a new, psychophysical argument for co-active 

parses during language comprehension. 
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A new argument for co-active parses during language comprehension 

 

 

Does the human parser maintain multiple co-active representations of a 

syntactically ambiguous sentence? This question has preoccupied many theories of 

human language processing because it speaks directly to the question of how syntactic 

information is represented during incremental sentence comprehension (Clifton & 

Frazier, 1996; Lewis, 2000).  

One class of models—serial parsing models1—holds that humans can maintain 

only a single active syntactic description of the linguistic input at any point in time 

(Frazier, 1979; Frazier & Fodor, 1978; Frazier & Clifton, 1996; Kimball, 1973; Lewis & 

Vasishth, 2005; McElree, 2006; van Dyke & Lewis, 2003). Parallel models, by contrast, 

allow comprehenders to maintain multiple, co-active syntactic descriptions of the input at 

once (Gibson, 1991; Hale, 2001; Levy, 2008; MacDonald, Pearlmutter & Seidenberg, 

1994; Trueswell, Tanenhaus & Garnsey, 1994). This broad class of parsing models can 
                                                

 

1 The terms serial and parallel are widely used in this debate, but we adopt them 

reluctantly. The crucial question is how many different syntactic representations are 

actively being updated as the parser takes in new information, not whether the 

computations happen simultaneously (cf. Lewis, 2000, who prefers the terms single-path 

versus multi-path). 
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be further divided into at least two distinct subclasses2. One group of models holds that 

comprehenders maintain multiple, distinct symbolic representations of the input (Gibson, 

1991; Gorrell, 1995; Hale, 2001; Levy, 2008). A second class of parallel models holds 

that multiple syntactic analyses may be co-represented, but are merged into a single 

representation that blends or superimposes the constituent representations (Cho, Goldrick 

& Smolensky, 2017; Christianson, Hollingworth, Halliwell, & Ferreira, 2001; Ferreira & 

Bailey, 2004; Rasmussen & Schuler, 2017; Tabor & Hutchins, 2004; van der Velder & 

De Kamps, 2006; Vosse & Kempen, 2000, 2009). 

This broad distinction is not only about how many mental representations there 

are at once, because the two models also differ in terms of the basic operations and 

memory characteristics of the parser: in particular, parallel parsers require either different 

elementary operations, like copying at choice points, or more sophisticated 

representations that allow substructures to be shared, like a chart (Earley, 1970). Parses in 

some grammatical theories are more easily represented with such structure-sharing 

mechanisms than in others (Lewis, 1998; Winograd, 1983). The choice also implicates 

different procedures of reanalysis (Lewis, 1998): backtracking or repair for serial parsers 

(e.g., Abney, 1989, Fodor & Inoue, 1998); selection, re-ranking or pruning of alternatives 

for parallel ones (e.g., Gibson, 1991; Jurafsky, 1996); and refinement of commitments for 

underspecified representations (e.g., Frazier & Clifton, 1996; Weinberg, 1993). Thus, 

finding evidence that could choose between serial and parallel theories has clear and 
                                                

 

2 We are grateful to Whitney Tabor for suggesting this classification to us. 
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definite implications for our cognitive models of how grammatical information is 

represented and used in real-time.  

In this paper, we ask whether comprehenders can concurrently represent multiple 

analyses of a single sentence by investigating at end-of-sentence acceptability judgments. 

In our approach, we used speeded acceptability judgments rendered at or immediately 

following a potentially disambiguating word. We reasoned that such judgments should 

reflect the difficulty of integrating this input with the syntactic representations 

constructed by the comprehender prior to encountering that critical input (i.e. the parser’s 

state at that point in incremental processing). We focus on the ambiguity advantage effect 

(AAE), the ironic finding that syntactically ambiguous sentences are easier to process 

than unambiguous sentences.  

To preview our results and conclusions: we show that the AAE holds in speeded 

acceptability judgment measures, and use a Signal Detection Theoretic analysis to show 

that the trial-to-trial variance is comparable for both ambiguous and unambiguous 

sentences. Furthermore, we derive explicit models to predict the performance in our task 

under serial and parallel parsing models. We find strong evidence that parallel parsing 

models better predict task performance than serial models. Our results suggest that 

acceptability judgments are conditioned on multiple syntactic analyses simultaneously. 

On the assumption that speeded judgments reflect the parsing processes necessary to 

integrate the input into the parser’s active syntactic representation(s), this finding is 

difficult to reconcile with parsing models that only assign a single, determinate analysis 

to ambiguous phrases. 
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The Ambiguity Advantage Effect 

The ambiguity advantage effect (AAE) is the finding that globally ambiguous 

phrases are easier to process than lexically matched but unambiguous phrases. The AAE 

has mostly been demonstrated for syntactic adjuncts: those phrases that characteristically 

modify other parts of sentences but which are largely optional. To our knowledge, it has 

only been investigated in reading time measures. The first key study, Traxler, Pickering 

& Clifton (1998) used eye-tracking-while-reading and found that ambiguous sentences 

were read more quickly than unambiguous sentences. In their study, sentences were 

structured like (1), each containing a relative clause (RC; underscored) and two possible 

noun attachment sites (bold). In (1a), both attachment sites can be plausibly modified by 

the relative clause (RC) and the sentence is globally ambiguous. By contrast, (1b) and 

(1c) are effectively disambiguated by the predicate ‘had a mustache’: in (1b), the relative 

clause must attach ‘low’ to the recent noun phrase (NP) the driver; and in (1c), it must 

attach ‘high’ to the more distant NP. 

(1) Three RC attachment configurations        (Traxler, Pickering & Clifton, 1998) 
a. The son of the driver that had a moustache was really cool.    [AMBIG] 

 b. The car of the driver that had a moustache was really cool.       [LOW] 
 c. The driver of the car that had a moustache was really cool.      [HIGH] 
  

The finding that readers were faster in (1a) compared to (1b-c) implies that there 

is a processing cost associated with both high and low unambiguous RC attachments in 

this experiment. Similar findings have been observed for RC attachments with different 

disambiguating cues (Swets, Desmet, Clifton & Ferreira, 2008; Traxler et al., 1998), verb 

phrase (VP)/NP attachment ambiguities (van Gompel, Pickering & Traxler, 2001), 

reduced RCs (van Gompel, Pickering, Pearson & Liversedge, 2005), VP attachment 
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ambiguities (van Gompel et al., 2005), and even pronominal ambiguities (Grant, Dillon & 

Sloggett, 2014; Stewart, Holler & Kidd, 2007).  

The AAE is a robust but seemingly counterintuitive effect, and it is a benchmark 

finding for models of incremental syntactic processing to explain. Traxler, Pickering & 

Clifton (1998) presented it as evidence against constraint-satisfaction models, which 

proposed that co-active alternative parses competed via lateral inhibition (e.g. 

MacDonald, Pearlmutter & Seidenberg, 1994; Vosse & Kempen, 2000). These models 

predict that, when multiple syntactic analyses compete for selection, the processor 

requires more time to settle into a single analysis. Because ambiguous material should 

trigger a competition, it should be associated with greater processing difficulty and higher 

reading times. The AAE seemed to disconfirm this prediction (Clifton & Staub, 2008; but 

cf. Green & Mitchell, 2006; Vosse & Kempen, 2009). 

Van Gompel and colleagues (2000) proposed to explain the AAE with the 

Unrestricted Race Model (URM). The URM is a stochastic, serial parsing model in 

which a single attachment site is probabilistically selected for an ambiguous phrase, on 

every parse. This predicts that globally ambiguous conditions are easy to process, 

because for any attachment the resulting parse will be syntactically well-formed and 

plausible. In contrast, unambiguous conditions are difficult because, on some proportion 

of trials, the wrong attachment site is initially chosen and a time-consuming reanalysis is 

triggered on those trials. Crucially, “variable choice” models of this sort predict that this 

difficulty in unambiguous sentences only arises on a subset of trials where reanalysis 

occurs. On trials where the correct attachment is made, there should be no appreciable 

difficulty. Put differently, unambiguous sentences should thus either be very difficult to 
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process (when the ‘wrong’ attachment is chosen, and reanalysis is triggered) or no 

different from the ambiguous baseline (when the ‘right’ attachment is selected). This 

parsing model predicts a mixture distribution of processing difficulty within an 

experimental setting: there should be separate subgroups of ‘easy’ trials and ‘hard’ trials. 

  However, not all explanations of the AAE rely on reanalysis in a stochastic, serial 

parser (Levy, 2008; Logačev & Vasishth, 2016a; Swets et al., 2008). Levy (2008) 

hypothesizes that, when there are two compatible attachment sites, there is a richer 

context for predicting upcoming words. The critical word, ‘moustache’ in (1), has a 

higher conditional probability in a globally ambiguous sentence and thus a lower 

surprisal value, which is linked to ease of processing. In contrast, this same word is 

relatively less predictable in either unambiguous condition because it is only compatible 

with one RC attachment (Levy, 2008; p. 1156). Alternatively, Swets and colleagues 

(2008) offer an explanation in terms of underspecification (see also Ferreira & Patson, 

2007; Frazier & Clifton, 1996). On this view, readers make time-consuming determinate 

attachments only when there is evidence for them (Swets et al., 2008). Still other 

interpretations are possible (see Logačev & Vasishth, 2016a). These models do not 

endorse a parser that obligatorily makes serial commitments, and so do not necessarily 

predict the same distinction between ‘easy’ and ‘hard’ trials that the URM does. Instead, 

they generally predict that there should be a cost paid for unambiguous sentences on 

every trial. 

The AAE has been presented as one particularly clear piece of empirical support 

for models that invoke serial syntactic analysis (Clifton & Staub, 2008). This makes it a 

good starting point for addressing the question of whether the parser can concurrently 
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maintain multiple, co-active syntactic analyses. As described above, different accounts of 

the AAE make distinct predictions about the how the penalty associated with 

unambiguous sentences should be distributed across trials in an experiment (see 

discussion in Levy, 2008). These differing empirical predictions provide the motivation 

for the present investigation, in which we ask whether the penalty for unambiguous 

sentences obtains only in a small subset of trials in an experiment, as predicted by serial 

parsing models, or if instead it affects all trials in an experiment to some degree. 

 

An Ambiguity Advantage in End-of-sentence Acceptability Judgments? 

Previous research on the AAE has focused on processing times. Here we offer a 

new methodological approach in which we directly sample the shape of the underlying 

cognitive variable by analyzing speeded acceptability judgments in a signal detection 

theoretic framework. Addressing our distributional question using reading time measures 

poses serious methodological challenges. For example, Gibson and Pearlmutter (2000) 

observe that distinguishing two discrete modes in reading time data is difficult because of 

the shape of the distributions involved will tend to obscure this bimodality. Moreover, 

reading experiments typically do not yield enough data to clearly identify bimodality 

(however, see Vasishth & Nicenboim, 2016; Nicenboim & Vasishth, 2018 for a recent 

approach to this issue). In response to this difficulty, other researchers have pursued 

alternative response measures to test the question of bimodality in response behavior; for 

example, Farmer and colleagues (2007) used mouse-tracking to address the question of 

bimodality in response behavior. In the present work, we address our question using 



CO-ACTIVE PARSES IN LANGUAGE COMPREHENSION 

 

 

11 

acceptability judgment data. Acceptability judgments have been shown to readily reveal 

bimodality in response behavior (Dillon, Staub, Levy & Clifton, 2017). 

Furthermore, using speeded acceptability judgments allows us to determine 

whether the AAE extends to dependent measures that do not directly reflect the 

incremental processing of the critical phrase. There is good reason to expect that it 

should. A number of studies have shown that sentence-medial parsing difficulty 

negatively affects end-of-sentence acceptability judgments in both speeded and 

unspeeded tasks (Ferreira & Henderson, 1991; Frazier & Clifton, 1998; Henderson & 

Ferreira, 1993; Tabor & Hutchins, 2004; van Dyke & Lewis, 2003; Warner & Glass, 

1987). This observation receives a natural explanation under a serial parsing model:  

Ferreira and Henderson (1991) point out that reanalysis in a serial parser may simply not 

succeed on any given trial. If reanalysis fails, then the failure to find a grammatical parse 

should make the sentence appear ungrammatical. However, it is also possible that 

incremental parsing failures (Ferreira & Henderson, 1991; Vasishth, Bruessow, Drenhaus  

& Lewis, 2008) or the temporary creation of an ungrammatical representation (Sprouse, 

2008; see also Clifton & Frazier, 2010; Fanselow & Frisch, 2006) create a persistent 

perception of sentence unacceptability that is reflected in end-of-sentence judgment 

measures, even if a successful parse is eventually found. In either scenario, the 

distribution of acceptability judgments reflects incremental parsing difficulty. It therefore 

stands to reason that the AAE will be evident in offline judgment measures: globally 

ambiguous sentences should be perceived as more acceptable than unambiguous 

sentences, because the latter will involve sporadic reanalysis or difficulty that in turn 

reduces their perceived acceptability.  
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Two Acceptability Judgment Models to Distinguish Serial and Parallel Parsers 

If the AAE does extend to acceptability judgment measures, then the 

distributional predictions made by serial and parallel parsers map in a fairly 

straightforward way onto those measures. Just as other researchers have asked whether 

multiple parses co-determine reading times (Gibson & Pearlmutter, 2000), we ask: does 

the grammaticality of two parses contribute to the percept of acceptability on a single 

judgment trial, as would be expected under a parallel parsing model? Or does the 

grammaticality of only one parse determine acceptability on a trial-by-trial basis, as 

expected in a serial model? To address these questions, we first describe a formal model 

of the judgment process under both serial and parallel models.  

We begin by assuming that any sentence can be mapped to a one-dimensional real 

number called Acceptability. This number is variable, and its precise value is affected by 

grammatical factors and by performance factors, such as: can a grammatical parse be 

found? how frequent are the words and constructions it contains? how efficiently is 

memory managed during parsing? etc. To address how acceptability is generated, the 

examples in (2) contrast sentences with grammatical and ungrammatical subject-verb 

agreement in an RC.  Assume that sentences with grammatical subject-verb agreement 

correspond to a normal distribution over Acceptability whose mean is higher than 

sentences with ungrammatical subject-verb agreement. In sentences with RC attachment 

ambiguities, there are two possible subject-verb agreement relationships. How the RC is 

attached thus determines the Acceptability value. For (2a), we see that regardless of how 

the RC is attached, the resulting Acceptability value must be high because both 



CO-ACTIVE PARSES IN LANGUAGE COMPREHENSION 

 

 

13 

grammatically-possible subjects (‘cousin’, ‘painter’) have the appropriate features to 

agree with the verb (‘knits’). And regardless of how the RC in (2b) is attached, the 

resulting Acceptability must be low because both otherwise grammatically-possible 

subjects (‘cousins’, ‘painters’) fail to agree with the verb. We refer to the sentences in (2) 

as “Pure” grammatical or “Pure” ungrammatical sentences. Figure 1, Panel A represents 

this situation graphically: the overall distribution of acceptability to the pure grammatical 

sentences (MULTIMATCH) is greater than that of the pure ungrammatical sentences 

(NOMATCH). 

 
(2) Pure grammatical or pure ungrammatical sentences (ambiguous attachment) 

a. Armand spotted the cousin of the painter who knits.   MULTIMATCH 
b. Armand spotted the cousins of the painters who knits. NOMATCH 
 

(3) Mixed grammatical/ungrammatical sentences (unambiguous attachment) 
a. Armand spotted the cousins of the painter who knits. LOWMATCH 
b. Armand spotted the cousin of the painters who knits.  HIGHMATCH 

 
The unambiguous sentences (3), by contrast, have one grammatically-possible 

subject that agrees with the verb and one otherwise grammatically-possible subject that 

does not. We refer to the sentences in (3) as “Mixed” grammatical/ungrammatical 

sentences. How should the Acceptability for these Mixed sentences be distributed? The 

answer depends on whether the parser can represent only a single syntactic analysis of the 

input – i.e. is serial – or whether it can represent multiple analyses simultaneously – i.e. is 

parallel.  

[FIGURE 1 GOES HERE] 

 

Serial Parsing: A Formal Model of Acceptability 
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For a serial parser, the distribution of Acceptability for unambiguous Mixed 

sentences is a mixture distribution. On a given trial, either the high or low parse is 

initially computed, and in some of these trials the chosen parse will turn out to be 

contradicted by the agreement features on the RC verb. Accordingly, the resulting 

Acceptability value will be drawn from either the grammatical or ungrammatical 

distribution. Put differently, on any given Mixed trial, a serial parser will discretely 

sample from either the grammatical or the ungrammatical distribution at the end-of-

sentence judgment depending on whether the correct attachment site was chosen. The 

resulting Acceptability distribution, then, is a mixture distribution. The properties of this 

mixture distribution, such as its variance, or whether it has multiple modes, are a function 

of i) the component distributions and ii) the probability of sampling from one distribution 

or another. More formally, we can say that the Acceptability distribution associated with 

grammatical and ungrammatical sentences is a normally distributed unidimensional 

random variable; for ease of presentation we refer to this as x. Without loss of generality, 

we assume that for ungrammatical sentences, x is normally distributed with a mean of 0 

and a variance of 1 (the standard normal); for grammatical sentences, it is drawn from a 

normal distribution with its own mean and variance3:  
                                                

 

3 This is because the specific values of the mean and variance do not themselves 

matter, but rather the ratio of the variances for the grammatical and ungrammatical 

distributions. This ratio is measured empirically, and one distribution is set to 

mathematically convenient parameters to ensure model identifiability. 
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(4)  𝑝"#$%&'(𝑥):	𝑥	~	𝑁(0,1) 

(5)  𝑝$%&'(𝑥): 𝑥	~	𝑁(𝜇3456, 𝜎34568 ) 

 

Let 𝜋:;3: represent the probability of choosing a high attachment on any trial. 

Given 𝜋:;3:, and the two component distributions in (4) and (5), we derive predicted 

Acceptability distributions for both Pure (2) and Mixed (3) sentences as follows: 

 

(6) 𝑝'"<=>'&=?@(𝑥) = 	𝜋:;3:𝑝$%&'(𝑥) + C1 − 𝜋:;3:E𝑝$%&'(𝑥) = 	𝑝$%&'(𝑥) 

(7) 𝑝#F'&=?@(𝑥) = 	𝜋:;3:𝑝"#$%&'(𝑥) + C1 − 𝜋:;3:E𝑝"#$%&'(𝑥) = 	𝑝"#$%&'(𝑥) 

(8) 𝑝<FG'&=?@(𝑥) = 	𝜋:;3:𝑝"#$%&'(𝑥) + C1 − 𝜋:;3:E𝑝$%&'(𝑥) 

(9) 𝑝@>$@'&=?@(𝑥) = 	𝜋:;3:𝑝$%&'(𝑥) + C1 − 𝜋:;3:E𝑝"#$%&'(𝑥) 

 

Figure 1, Panel B represents graphically the distribution of Acceptability under a 

serial parsing model, derived from the equations in (6)-(9). Note that although the 

predictions of serial models are sometimes cast in terms of ‘bimodality’ (e.g. Levy, 2008; 

Staub & Clifton, 2008), from this perspective bimodality is not strictly speaking 

diagnostic of a serial parser. Instead, what matters is that the overall distribution is a 

mixture that consists of two distinct component distributions. In the aggregate, this 

distribution may appear unimodal. However, it will crucially have greater variance than 

either of its component distributions.  
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Parallel parsing: a formal model of acceptability 

In contrast, for a parallel parser the Acceptability distribution for Mixed sentences 

is derived differently. We model a generic parallel parsing model that maintains multiple, 

weighted syntactic descriptions of the input at once (e.g. Gibson, 1991; Jurafsky, 1996; 

MacDonald et al., 1994; Tabor & Hutchins, 2004; Vosse & Kempen, 2000). To derive 

the Acceptability distribution under such a model, we assume that an acceptability 

judgment is conditioned on all active parses which are active at the decision point, 

weighted by their strength or probability. In the present case, this means that both the 

acceptability of the high attachment and the low attachment codetermine the final 

Acceptability value, for Pure and Mixed sentences alike. More formally, the distribution 

of Acceptability for Mixed sentences on the parallel model is a random variable that is 

itself a weighted sum of two random variables: the Acceptability value of the high parse 

and that of the low parse. Let x again represent Acceptability, the random variable of 

interest. As above, we assume that the distribution of this variable associated with simple 

grammatical agreement and ungrammatical agreement parses is a normally distributed 

unidimensional random variable x, constrained to the standard normal for ungrammatical 

sentences: 

 

(10)  𝑝"#$%&'(𝑥):	𝑥	~	𝑁(0,1) 

(11)  𝑝$%&'(𝑥): 𝑥	~	𝑁(𝜇3456, 𝜎34568 ) 
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Let 𝜋:;3: represent the weight associated with the high attachment parse; the 

weight associated with the low attachment parse is constrained to (1-𝜋:;3:). These 

weights are constrained to be positive. Under these conditions, we may again derive 

predicted Acceptability distributions for the Pure (2) and Mixed (3) sentences alike. For 

all four conditions, the Acceptability value is a normally distributed random variable that 

reflects the weighted sum of the component distributions of the high and low parses4: 

 

(12) 𝑝'"<=>'&=?@(𝑥):𝒩(𝜇3456, 𝜋:;3:8 𝜎34568 + (1 − 𝜋:;3:)8𝜎34568 ) 

(13)	𝑝#F'&=?@(𝑥):𝒩(0, 𝜋:;3:8 + C1 − 𝜋:;3:E
8) 

(14) 𝑝<FG'&=?I@(𝑥):𝒩((1 − 𝜋:;3:)𝜇3456, 𝜋:;3:8 + (1 − 𝜋:;3:)8𝜎34568 ) 

(15) 𝑝@>$@'&=?@(𝑥):𝒩(𝜋:;3:𝜇3456, 𝜋:;3:8 𝜎34568 + C1 − 𝜋:;3:E
8) 

 

Figure 1, Panel C represents graphically the distribution of Acceptability under a 

parallel parsing model, derived from the equations in (12)-(15). If the underlying 

distribution of Acceptability is normal, the resulting distribution is also a normal 

                                                

 

4 The mean of the weighted sum of n normally distributed random variables is 

itself a random variable with mean ∑ 𝜆;𝜇;L
;MN , where 𝜆; is the weight for each variable in 

the sum. The variance of this random variable is ∑ λ;8σ;8L
;MN . The values of the mean and 

variance in (12)-(15) are derived from these.  
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distribution, with a mean and variance that that can be analytically derived from the mean 

and variance of the component distributions as in (12)-(15).5  

With these models in hand, we are in a position to distinguish serial and parallel 

models of judgment performance on the Mixed sentences: if we find evidence that the 

distribution of Acceptability in Mixed sentences is more similar to a mixture model, then 

serial parsing models are supported. In contrast, if the distribution of Acceptability in 

Mixed sentences appears to be an admixture or blend, then parallel models are supported. 

At present, our predictions are stated in terms of an unobservable cognitive variable, 

Acceptability. In order to evaluate these predictions, we turn to Signal Detection Theory 

(SDT) to have a way of measuring this underlying cognitive variable.  

 

Signal Detection Theoretic Analysis of Acceptability 

To judge a sentence’s acceptability is to make a decision under uncertainty. From 

the perspective described above, this process is understood as a mapping from a noisy 

cognitive signal about the well-formedness of a sentence (i.e. Acceptability) to one of 

several response options offered to a participant (e.g. binary yes-no acceptability 

judgments, n-point Likert scales, etc.). We can analyze this process in SDT (Green & 

Swets, 1966; Macmillan & Creelman, 2005; cf. Bader & Haüssler, 2010, for a related 

attempt to analyze acceptability judgments with signal detection theory).  
                                                

 

5 Code for all analyses, models, and experimental data presented in this paper can 

be found at: https://osf.io/sd3hu/. 
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SDT makes explicit the role of decision processes, and describes the balance of 

possible decision errors (e.g., missed targets and false alarms to lures). A key advantage 

of SDT is that it allows independent estimates of the accuracy with which classes of 

stimuli can be discriminated and the tendency for raters to prefer to respond with one 

response class or another (i.e., their response biases). 

  

[FIGURE 2 GOES HERE] 

 

Figure 2 (left panel) shows an SDT model for a simple judgment task involving two 

classes of stimuli, such as the pure grammatical and pure ungrammatical sentences tested 

above. The x-axis here represents the evidence that an observer uses to make a decision. 

In the context of an acceptability judgment task, the evidence corresponds to 

Acceptability defined above (Bader & Häussler, 2010). A participant in a binary 

acceptability judgment task is assumed to set some (potentially arbitrary) decision 

criterion (black vertical line), above which a positive response (e.g. “grammatical”) is 

offered. The assumption of an arbitrary criterion setting is how SDT represents the 

idiosyncratic interindividual differences in how participants make use of the response 

options given in a judgment task (scale bias; Schütze & Sprouse, 2014). The area under 

the Target distribution above the criterion is the proportion of Targets that elicit a correct 

response, namely the hit rate (H). The area under the Lure distribution above the decision 

criterion provides the false alarm rate (F). 

 In sum, an SDT model of acceptability judgments endorses the view that 

acceptability judgments are based on a noisy, continuous signal of a sentence’s 
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wellformedness. By assuming arbitrary response criterion placement over this signal, 

SDT offers a model for how participants map this signal onto discrete response options in 

an experiment, and offers an explanation of why participants vary in their use of the 

response scale offered in an acceptability judgment task (Schütze & Sprouse, 2014).  

From this theoretical perspective, we can derive a measure of the discriminability 

or psychological distance between two classes of stimuli in da, a measure of the distance 

between the means of the distributions in units of their root mean squared standard 

deviation. When there are multiple response criteria in an experimental setting, the 

resulting (F, H) pairs yield a theoretical curve called a receiver operating characteristic 

(ROC; Fig. 2, middle panel); transforming both F and H to their z-score equivalents 

yields a zROC (Fig. 2, right panel). A theoretical ROC curve connects all pairs of hit and 

false alarm rates that reflect the same level of discrimination accuracy as measured by a 

specific summary statistic, such as d' or percent correct.  Each point on the ROC reflects 

the same accuracy, according to that measure, but a different response bias. These 

different biases can result from independent experimental conditions in which a more 

conservative or liberal response bias is induced and participants make a binary (yes/no) 

decision, or from responses associated with different confidence levels within a single 

condition: the same ROC will result (e.g., Egan, Shulman, & Greenberg, 1959; Dube & 

Rotello, 2012).  Smaller values of H and F indicate a conservative response bias (i.e., a 

preference for a “no” response); these points occur toward the lower-left end of the 

ROC.  Larger values of H and F indicate a liberal bias (i.e., preference for “yes”); the 

operating points occur at the upper-right end of the ROC.  Higher values of H relative to 

F reflect higher decision accuracy. 
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Importantly for present purposes, the shape of the (z)ROC gives us clues as to the 

underlying distribution of the Acceptability values: the slope of the zROC equals the ratio 

of the standard deviations of the Lure to the Target distribution (i.e., 1/s, where s = Target 

distribution standard deviation). For example, when the Target distribution is more 

variable than the Lure distribution, the slope of the zROC is less than 1, a result that is 

ubiquitous in the recognition memory literature (e.g., Ratcliff, Sheu, & Gronlund, 1992). 

Moreover, it is possible to directly observe mixture distributions in the shape of the 

zROC: deCarlo (2002) shows that mixture distributions of evidence appear as 

curvilinearity in the zROC that increases with the difference between the means of the 

latent distributions.  

Experiment 

We conducted a speeded acceptability judgment experiment to test our primary 

question of interest: is the distribution of Acceptability associated with unambiguous 

attachment sentences better characterized as a mixture, as predicted by serial models, or 

as a blend, as predicted by parallel models? To evaluate this, we tested sentences in the 

four conditions presented in (3) and (4) above. We had three goals. 

First, we sought to replicate the ambiguity advantage effect in standard dependent 

measures for speeded acceptability tasks, such as judgment accuracy and judgment RTs. 

In particular, we expected that pure grammatical and ungrammatical sentences would be 

classified more accurately, and more quickly, than their mixed grammaticality 

counterparts. This would extend the AAE to a novel dependent measure.  Second, we 

analyzed those judgments in an SDT framework to evaluate whether acceptability 
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judgments yield data patterns consistent with the modeling framework described above. 

Third, and most critically, we directly fit the serial and parallel parsing models above to 

the data we collected. In doing so, we sought to predict performance on the mixed 

conditions on the basis of performance in the pure conditions. 

 

Method 

Participants  

Eighty-one participants were recruited to participate in the experiment. Of these, 

34 were undergraduates at UMass Amherst and 47 were undergraduates at UC Santa 

Cruz. Participants gave informed consent and were compensated with course credit for 

their participation. All participants were native speakers of American English, over 18 

years old. The experimental protocol was approved by the Institutional Review Boards at 

both UMass Amherst and UC Santa Cruz. 

 
Materials 

 Forty critical item sets were developed. These critical materials were distributed 

into four Latin Squared lists, and each list was combined with the same set of sixty-eight 

fillers. Each participant was randomly assigned to a list. Forty-four of the filler items 

were grammatical. Thus, across the experiment the ratio of grammatical to 

ungrammatical sentences was 1:1. Filler sentences were designed to prevent participants 

from deploying any superficial ‘scanning’ strategies to make judgments, and included 

errors with unambiguous relative clause attachments, agreement with coordinated 
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subjects, reflexive agreement, number sensitive items (e.g. together), and implausible 

subject-verb combinations (e.g. the car fainted).  

 Across items, there was some variability in the position of the critical agreeing 

verb relative to the end of the sentence. The verb occurred sentence finally (e.g. … who 

knits.) in nineteen out of forty items (47.5%). There was a single word between the 

inflected verb and the end of the sentence (e.g. … who was blogging.) in sixteen out of 

nineteen items (40%), and in the remaining five items (12.5%) the end of the sentence 

occurred two words after the inflected verb (e.g. … who was on TV.). The full list of 

experimental stimuli is available at https://osf.io/sd3hu.  

 Prior to the experiment, we conducted an offline norming study to determine the 

attachment preferences in our experimental stimuli. 40 native speakers of American 

English were presented with the ambiguous, grammatical versions of our stimuli, and 

asked which NP in the sentence performed the action described in the relative clause. 

Overall, our items had a low attachment bias: participants interpreted the relative clause 

high on only 30% of trials. This value ranged from a minimum of 10% to a maximum of 

55% across individual items, and half of the items had a high attachment bias between 

22% and 38%. The attachment biases measured in the norming study may be seen as an 

empirical estimate for the parameter 𝜋:;3:. 
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Procedure 

Stimuli were displayed and responses were collected using the Linger software 

(Rohde, 2003). Each experimental trial began with a fixation cross in the center of the 

screen for 1s. Afterwards, a sentence was presented one word at a time. Each word 

appeared for 225ms followed by 100ms of blank screen. At the end of each trial, 

participants were prompted to make a binary acceptability judgment decision, with f 

indicating ‘grammatical’ and j indicating ‘ungrammatical.’ Participants were given a 2-

second deadline for the binary acceptability judgment. Following each judgment, 

participants rated their confidence in their decision on a three-point scale using the 

number keys 1-3. On each trial, the ends of the confidence scale were labeled, ranging 

from ‘not at all confident’ (1) to ‘very confident’ (3). Participants were under no time 

pressure to offer their confidence rating. 

An experimental session began with an informed consent form and a demographic 

survey. Following that, the participant was told that they would be reading sentences one 

at a time and that they would be judging whether each one sounded like ‘natural, 

grammatical English.’ The experimenter briefly explained what was meant by 

grammatical (colloquial, idiomatic English). Several practice trials were given, including 

practice trials with correct and incorrect agreement. 

Regression analysis 

We used mixed effects regression models to analyze i) percentage yes responses 

on the binary judgment, ii) reaction times to the binary judgment, and iii) confidence 

ratings. For all models, we used the maximal random effects structure (Barr, Levy, 

Scheepers & Levy, 2013) where possible. For binary judgment responses, logistic 
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regression was used to model the probability of offering a ‘grammatical’ response. For 

confidence ratings, ordinal regression was used on the restricted three-point confidence, 

ranging from 1 (not at all confident) to 3 (very confident). All reaction times were log-

transformed prior to analysis to ensure normally distributed residuals for linear models. 

The following fixed-effects contrasts were used: ambiguity (0.25 for LOWMATCH, 

HIGHMATCH and -0.25 for MULTIMATCH, NOMATCH), height (0.5 for 

HIGHMATCH, -0.5 for LOWMATCH, 0 otherwise) and grammaticality (0.5 for 

MULTIMATCH, -0.5 for NOMATCH, 0 otherwise). For reaction time and confidence 

ratings models, we further used accuracy as a fixed effect predictor (0.5 for incorrect 

response, -0.5 for correct response; ‘grammatical’ responses were accurate for all 

conditions except NOMATCH), and tested for interactions of response with the other 

fixed effect predictors. For linear models, we accepted coefficients with t-values greater 

than 2 as significant (Gelman & Hill, 2007).  

Prior to all analyses, we rejected any trial on which a participant did not make a 

response prior to the deadline for the binary judgment. This resulted in the rejection of 

299 trials (3% of data overall). 

  

ROC analysis 

For empirical ROC analysis, we combined the binary judgment and the 

confidence rating into a six point response scale ranging from very confident grammatical 

(1) to very confident ungrammatical (6). Prior to ROC analysis, we aggregated responses 

across all participants (Macmillan & Kaplan, 1985). On the aggregated data, we 

calculated the hit rate and false alarm rate at each confidence level (Macmillan & 
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Creelman, 2005). We performed three comparisons, allowing each of MULTIMATCH 

(the Pure grammatical condition), LOWMATCH, and HIGHMATCH (the two Mixed 

conditions) to contribute the hit rate for one comparison. For each, the NOMATCH 

condition determined the false alarm rate. In the interest of brevity, we refer to these 

comparisons simply as the MULTIMATCH, LOWMATCH, and HIGHMATCH 

comparisons.  

For each of these three comparisons, we fit unequal variance signal detection 

(UVSDT) Models to estimate both accuracy (measured in da) and slope (1/s) for all three 

comparisons. We estimated these parameters for each of the three comparisons using a 

bootstrap procedure, drawing 500 bootstrap samples by sampling (with replacement) at 

the level of experimental participant. The goal of this analysis was twofold. First, we 

aimed to determine whether the SDT assumptions about the underlying evidence 

distributions were well met for acceptability judgment data. Second, we wished to 

provide a theory neutral measurement of the relative amount of variation in the judgment 

distributions across the three comparisons.  

We also directly fit the serial and parallel parsing models of Acceptability, 

described in the introduction, to our data. We attempted to predict performance on the 

unambiguous conditions on the basis of performance on the ambiguous conditions. For 

both serial and parallel models, this was done by positing a single free parameter 𝜋:;3:. 

The serial model modeled the performance on the unambiguous conditions as the result 

of a mixture process: on any given trial, the perceiver discretely creates a high or low 

attachment parse, which in turn results in a sample from the acceptable or unacceptable 

distribution, depending on condition. In this model, 𝜋:;3: is interpreted as the probability 
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of creating a high attachment on any given trial. The parallel model holds that the 

perception of acceptability on any given trial is a weighted sum of the acceptability of the 

high and low parses. In this model,  𝜋:;3: is interpreted as the relative weight given to the 

high parse. The Acceptability distributions for each model were combined with (k-1) free 

criterion locations (c1, …, ck-1) to derive predicted response proportions in each of k 

response categories. For models reported in this paper, k = 6, yielding a total of 8 free 

parameters for both models (the mixture parameter, 5 criterion locations, plus the mean 

and standard deviation of the pure grammatical distribution). Models were fit using R (R 

Core team) by minimizing −2ℒ(𝜃) for the model fit to response proportions in each of 

the 6 response categories in our 4 experimental conditions. In order to estimate how 

reliable observed −2ℒ(𝜃) differences were, we performed bootstrap analysis using the 

same parameters as above. 

 

Results: RT and judgment analyses 

Binary acceptability responses 

Descriptive statistics for each of the judgment measures, and results from the 

regression analyses over those measures, are presented in Tables 1 and 2. Logistic mixed-

effects regression analysis revealed significant effects of all fixed-effects predictors. 

Participants were less likely to offer a ‘grammatical’ response for NOMATCH conditions 

compared to MULTIMATCH conditions, and were less likely to respond ‘grammatical’ to 

HIGHMATCH conditions than LOWMATCH conditions. Importantly, there was also an 



CO-ACTIVE PARSES IN LANGUAGE COMPREHENSION 

 

 

28 

overall effect of ambiguity: participants classified unambiguous sentences grammatical 

less often than ambiguous sentences. 

 

[TABLE 1 GOES HERE] 

[TABLE 2 GOES HERE] 

 

Confidence ratings 

Ordinal mixed-effects regression analysis reveals that raters were significantly 

less confident in incorrect responses (see Tables 1 and 2). We also observed a significant 

interaction of Accuracy and Ambiguity; this interaction reflected lower confidence ratings 

for correct unambiguous trials than correct ambiguous trials. Similarly, there were higher 

confidence ratings for incorrect unambiguous trials than incorrect ambiguous trials. Last, 

we observed an interaction of Accuracy and Height, driven by higher confidence ratings 

for correct responses to LOWMATCH trials.  

 

Reaction times 

Linear mixed-effects regression analysis of the log-transformed judgment times 

revealed several significant effects. First, reaction times for inaccurate trials were slower 

than for accurate trials. In addition, there was a significant main effect of ambiguity, such 

that unambiguous trials were judged significantly more slowly than ambiguous trials. 

However, this effect was qualified by an interaction of Ambiguity and Accuracy that 

mirrored pattern observed in confidence ratings: correct responses were significantly 

slower for unambiguous trials than for ambiguous trials. Last, we observed an interaction 
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of Height and Accuracy, such that correct responses had longer RTs for HIGHMATCH 

conditions than for LOWMATCH conditions. 

  

Discussion: RT and judgment analyses 

 

Judgments and confidence ratings reveal that there is an ambiguity advantage 

effect in the speeded acceptability judgments. Ambiguous MULTIMATCH conditions 

were correctly judged grammatical more often than either LOWMATCH or 

HIGHMATCH.  

For accurate trials in ambiguous conditions—MULTIMATCH and NOMATCH—

confidence was high and response times were fast, while confidence was low and RTs 

were long for inaccurate responses. The unambiguous LOWMATCH and HIGHMATCH 

conditions displayed a different pattern. For correct trials, confidence was lower and RTs 

were longer for unambiguous conditions compared to ambiguous conditions. For 

grammatical sentences, this replicates the ambiguity advantage effect in two further 

dependent measures: judgment latency and confidence ratings. For incorrect trials, 

confidence was higher and RTs were faster for unambiguous conditions compared to 

ambiguous conditions. This overall ambiguity advantage was again qualified by an effect 

of attachment height. In particular, we observed that an effect of the low bias both in 

confidence ratings and RTs: correct grammatical responses were issued with less 

confidence, and greater RTs, for HIGHMATCH conditions compared to LOWMATCH 

conditions.  
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In short, analysis of reaction times and confidence measures shows that 

ambiguous conditions were judged more quickly and more confidently than were 

unambiguous sentences. 

 

Results: SDT analysis 

UVSDT Analysis 

Unequal variance SDT fits to our data are presented in Table 3. Receiver 

operating characteristics are plotted in Figure 3.  

With respect to da measures of accuracy, we observe clear differences between all 

conditions. The MULTIMATCH comparison was associated with the highest accuracy, 

followed by LOWMATCH, and then HIGHMATCH. Insofar as the MULTIMATCH 

condition had higher accuracy than the unambiguous conditions, this pattern reflects an 

ambiguity advantage in judgment measures. However, our analysis also reveals a 

significant difference between LOWMATCH and HIGHMATCH conditions, with higher 

accuracy on unambiguous low attachment sentences.  

Turning to 1/s, we observe that all three comparisons had values close to 1, 

suggesting equal variance between the grammatical conditions and the ungrammatical 

condition. While LOWMATCH and MULTIMATCH comparisons had nearly identical 

estimates of 1/s6, the estimate for HIGHMATCH was lower than either of these by .1; this 
                                                

 

6 Note that the lure distribution was identical for all comparisons, and for reasons 

of model identifiability, its variance was fixed to 1. This crucially allows direct 
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pattern suggests that the HIGHMATCH conditions had greater variance in judgments than 

either LOWMATCH or MULTIMATCH comparisons. When compared against 

MULTIMATCH, this difference was significant; when compared against LOWMATCH it 

was not. Thus while this analysis suggests that the variance in judgments is largely 

comparable across all three comparisons, we do find limited evidence for greater 

variability in the HIGHMATCH conditions relative to all other comparison.  

 

[TABLE 3 GOES HERE] 

[FIGURE 3 GOES HERE] 

 

Serial versus parallel models 

The best-fit serial mixture and parallel ad-mixture models are shown in Figure 4. 

Overall, the models fit the observed data fairly well; for both models, the overall 

predicted accuracy was slighter lower than observed. For the observed data, there was a 

clear advantage for parallel models over the serial models (−2ℒ(𝜃)SERIAL – −2ℒ(𝜃)PARALLEL = 

23.8; 95% CI based on bootstrap = [3.4, 45.0]). The parallel model consistently had lower 

−2ℒ(𝜃) values across bootstrap samples: 99% of resampled data sets were fit better by 

the parallel model. 

                                                                                                                                            

 

comparison of the magnitude of 1/s across comparisons. 

 



CO-ACTIVE PARSES IN LANGUAGE COMPREHENSION 

 

 

32 

Inspection of Figure 4 suggests that the parallel model achieves lower BIC scores 

primarily because of its ability to fit the slope of the zROC line. The serial model does a 

poorer job of this, and consistently predicts shallower slopes than what are actually 

observed. This pattern suggests that the degree of variability observed in the 

unambiguous conditions is more consistent with a parallel model than a serial model. In 

other words, it appears that the variability in Acceptability in the Mixed conditions does 

not appear to be great enough to support the predictions of a serial parser.    
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One further pattern that is evident in Figure 4 is that both the parallel and serial 

models provide somewhat imperfect fits to the data. This suggests that some aspect of the 

data does not fit the generative model implied by each of these models. We see several 

possible reasons for this. First, we note that the zROCs are not perfectly linear: there is a 

bowing of the zROC function in the middle three points of the curve, a pattern that is 

most pronounced in the MULTIMATCH condition. Ratcliff, McKoon and Tindall (1994) 

note that this pattern may arise if there is noise in an experimental setting that results in a 

subset of decisions being uniformly distributed of the response. For example, this pattern 

may plausibly arise when there is a small subset of trials where a participant’s attention 

lapses, leading them to offer responses randomly. Such a noise process is not explicitly 

represented in our models, and so could create a disconnect between the model fits and 

the empirical data. Second, we note that the best fit overall is the one that allows the 

model to fit response behavior in all three comparisons under highly restrictive 

conditions. In particular, our model assumes that the weights on the two parses in both 

models must sum to one. This is a natural constraint for the serial model, where the 

weight is interpreted as the probability of attaching at one of two possible attachment 

sites. For the parallel model, however, this constraint may not be warranted: on this 

model, it is theoretically possible to assign arbitrary weights to both the high and low 

attachment parses. It is possible that with this greater flexibility, the parallel model could 

achieve a more accurate fit overall.7 
                                                

 

7 Exploratory fits with such a model confirm that this is indeed the case. An 
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[FIGURE 4 GOES HERE] 

 

Model mimicry analysis 

 The modeling results suggest a clear advantage for parallel models over serial 

models. In order to interpret this as evidence in favor of parallel models, it is important to 

determine whether the two models can, in principle, be distinguished using our 

experimental paradigm. To evaluate this, we performed a model mimicry analysis 

(Wagenmakers, Ratcliff, Gomez, & Iverson, 2004). We generated 550 bootstrap samples 

from our original data set. For each sample, we fit both a serial mixture and parallel ad-

mixture model. From each fitted model, we simulated a data set, creating one simulated 

data set generated from a parallel model and one from a serial model. We then fit both the 

serial and parallel models to each of these simulated data sets. If the serial models 

provide the better fit to the simulated serial data, and the parallel models the simulated 
                                                                                                                                            

 

‘unrestricted’ parallel model that replaces the low attachment weight (1-𝜋:;3:) with a 

totally free parameter 𝜋TUV achieves a significantly better fit to the data 

(−2ℒ(𝜃)PARALLEL:RESTRICTED – −2ℒ(𝜃)PARALLEL:UNRESTRICTED = 32.7). However, this model has significantly 

more flexibility to fit the data than the restricted parallel model described in the text. 

Thus, in order to provide the fairest comparison to the serial model, where the constraints 

on parameter values are theoretically grounded, we choose to retain our focus in the text 

on the restricted version of the parallel model.  
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parallel data, then we conclude that the two models can be distinguished in this 

experimental design.  

 The results of this analysis are presented in Figure 5. As before, we evaluated fit 

using −2ℒ(𝜃). The optimal criterion for distinguishing the two models was a difference 

of 4.99 in −2ℒ(𝜃). Adopting this criterion, we found that more than 99% of generated 

data sets were better fit by the correct generating model. Although classification errors 

were very few, they were not equally distributed among serial and parallel models. 

Simulated data from the parallel model was more likely to be better fit by the serial 

model than the other way around. This is suggestive evidence that that of the two models, 

the serial model may have more flexibility in fitting possible data sets (it is somewhat 

more likely to falsely “claim” data as being self-generated). This bolsters confidence in 

the results reported above: the parallel model appears to be the more constrained model in 

terms of its ability to fit diverse data patterns, yet it consistently outperformed the serial 

model on the data we collected.  

 

[FIGURE 5 GOES HERE] 

 

General Discussion  

We investigated the ambiguity advantage effect in a speeded binary acceptability 

judgment task, with a secondary confidence rating measure. We analyzed the results 

using both a traditional analysis of ratings and reaction times, as well as a secondary 

analysis using signal detection theory. In addition, we derived predictions about 
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Acceptability distributions using explicit serial and parallel parsing models. Our goal was 

to evaluate if both parses of an in-principle ambiguous relative clause co-determine 

sentence acceptability, or if instead, only one parse does. 

In an analysis of responses and reaction times, we replicated the AAE in a 

speeded acceptability judgment measure: there were fewer correct grammatical responses 

to unambiguous sentences than ambiguous sentences, and participants were slower to 

accept unambiguous sentences than ambiguous sentences. In a secondary confidence 

rating measure, we observed that comprehenders were overall less confident in their 

judgments to unambiguous sentences. These empirical conclusions were further refined 

with a signal detection theoretic analysis. This analysis showed that the ambiguous 

MULTIMATCH condition had higher Acceptability, expressed in da, than either of the 

unambiguous sentences. In turn, we also observed higher da for LOWMATCH sentences 

than HIGHMATCH sentences. In measures of variance derived from the signal detection 

analysis, we failed to find any evidence that unambiguous HIGHMATCH conditions had 

higher variance in Acceptability than did ambiguous MULTIMATCH conditions. 

However, we did find evidence that suggests that the unambiguous HIGHMATCH 

comparisons did have more variance than either the MULTIMATCH or LOWMATCH 

comparisons. Last, we fit explicit serial and parallel models to our data. These models 

predicted the distribution of the Mixed conditions on the basis of performance in the Pure 

conditions, under both a serial and a parallel parsing model. This modeling exercise 

revealed clear evidence in favor of the parallel model: performance in the Mixed 

conditions was better predicted by a parallel parser, and this was true for 99% of 

bootstrapped data sets in our analysis.  
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Overall, across all measures and analyses, we found evidence that better accords 

with the view that both relative clause attachment sites are co-active until the moment of 

disambiguation, and that speeded acceptability judgments are conditioned on both 

attachments. For example, with respect to reaction times and confidence ratings, the 

pattern of responses suggests that participants were overall less sure of their responses in 

unambiguous conditions than they were for ambiguous conditions. This is consistent with 

a parallel parsing model that allows both parses to simultaneously contribute to the 

judgment process: in the Mixed conditions, there are conflicting acceptability signals 

resulting from the high and low attachments. This conflict creates uncertainty in the 

judgment process, lowering confidence ratings and increasing judgment times for the 

binary judgment. In a serial model, it is not clear how the acceptability of the parse not 

chosen can impact judgment confidence or reaction times; in a sense, serial models make 

the strong claim that Mixed sentences are always perceived as Pure sentences, because 

only one attachment is ever active. In brief, our serial model offers no mechanism to 

allow the parse not chosen to interfere in the judgment process; yet this is what the effect 

of ambiguity on judgment times and confidence ratings seems to suggest.  

The signal detection theoretic analysis points to a similar conclusion. First, we 

note that the ROC functions we measured in our experiment appear remarkably well-

behaved. The zROCs appear largely linear, which is consistent with the modeling 

assumptions made in the input: it appears that speeded acceptability judgments are well 

modeled by a Gaussian signal detection process. Furthermore, the da accuracy measures 

indicate that ambiguous Pure sentences have greater Acceptability than unambiguous 

Mixed sentences; this replicates the AAE in judgment measures, and offers some 
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validation of our choice of dependent measure. Interestingly, we also observed that 1/s 

was approximately 1 for the MULTIMATCH comparison. Importantly, this is consistent 

with the specific modeling assumptions we made in the introduction: namely, that the 

distribution of the Pure grammatical and Pure ungrammatical sentences are normal and of 

equal variance. 1/s was also approximately 1 for the LOWMATCH comparison, 

indicating that the variance in the Mixed LOWMATCH condition is roughly equal to that 

of the Pure conditions; we thus find no evidence of bimodality, or increased variance, in 

the LOWMATCH conditions, contravening the predictions of a serial parsing model. The 

situation was slightly different for the mixed HIGHMATCH comparison. The 1/s 

estimate for HIGHMATCH was slightly lower than either the LOWMATCH or 

MULTIMATCH comparisons, indicating that there was greater variability in judgments 

in this condition. However, even so, this variability was not large enough to satisfy the 

predictions of the serial parsing model. 

Last, and perhaps most critically, this conclusion is directly supported by the 

head-to-head comparison of serial and parallel parsing models. We were able to predict 

performance in the Mixed conditions by assuming that Acceptability in these trials was a 

weighted sum of two, co-active parses that each contribute their own Acceptability in 

proportion to their weight. In our view, the parallel model’s ability to provide fairly good 

predictions to performance on the mixed conditions on the basis of the pure conditions by 

adopting only a single free parameter constitutes an argument in favor of the parallel 

model.      

To return to our original question: can the human parser maintain multiple co-

active representations of a syntactically ambiguous sentence? Our data and modeling 
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suggest that the answer to this question is yes. It seems that both parses co-determine the 

acceptability of an unambiguous Mixed sentence, and they appear to do so on the vast 

majority of experimental trials. We find no evidence to support the view that there is 

substantial trial-to-trial variation in the Acceptability of our mixed sentences, a key 

prediction of serial parsing models.  

 

Relating acceptability and incremental processing 

Our primary theoretical conclusion is that the parser can simultaneously represent 

multiple analyses of a single sentence, and that this is responsible for our finding that 

multiple parses jointly contribute to the acceptability of a sentence. Our theoretical 

conclusion rests on the assumption of a fairly direct mapping between parser state and 

acceptability: acceptability is a straightforward function of whatever representations are 

active at the point when the judgment is formed.   

This is one possible function that could link incremental parsing behavior and 

acceptability judgments, but it is not the only possibility8. It may be, for example, that 

acceptability judgments reflect the average acceptability of all parse states that the parser 

had created over the course of a sentence (Sprouse, 2008). Under this linking hypothesis, 

a serial, probabilistic parser that can rapidly reanalyze an ungrammatical parse might be 

able to explain our findings. This is because any reanalysis that occurs during incremental 

                                                

 

8 We are grateful to Whitney Tabor for suggesting this framing of the issue. 
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processing will negatively impact acceptability, reflecting both on the unacceptable pre-

reanalysis parse and the acceptable post-reanalysis parse.  

We cannot rule this possibility out categorically, but we believe it unlikely for the 

present data for two reasons. First, in our experiment, acceptability judgments were 

rendered at, or immediately following, the point of disambiguation (i.e. the sentence-final 

inflected verb). This leaves little time for reanalysis before the judgment is required; the 

speeded response demands on the participants plausibly creates a pressure to judge the 

sentence based on whatever parse they have constructed at the point that the critical word 

is encountered. Second, if participants were parsing serially and rapidly reanalyzing ill-

formed input at the point when a judgment was demanded, then we might expect long 

response times to the ungrammatical NOMATCH condition. This is because participants 

would have to reanalyze and compute both high and low attachments in this condition in 

order to recognize that these sentences are unambiguously ill-formed. Such an exhaustive 

search would be a time-consuming computation. Yet there is no trace of this in our data: 

accurate ‘no’ responses to the ungrammatical condition were in fact the fastest responses 

observed in our experiment. This suggests that the evidence that the string was ill-formed 

was relatively clear or unambiguous, allowing rapid, accurate acceptability judgments 

(see Hammerly, Staub & Dillon, 2018, for a model of judgment RTs; see also Ratcliff & 

McKoon, 2008). In this sense, the fast and accurate ‘no’ responses to the NOMATCH 

condition are more consistent with a parallel parsing model. 

Implications for models of parsing 

One important question is how this finding links to the incremental processing 

measures of the AAE discussed in the introduction. If we assume that the AAE in 



CO-ACTIVE PARSES IN LANGUAGE COMPREHENSION 

 

 

41 

judgment measures and online processing measures reflect a single underlying processing 

mechanism, then we would expect that the AAE observed in reading measures is 

similarly gradient in nature. If true, this constitutes an argument against the URM, and 

other serial, stochastic models of this effect. 

Caution is warranted in drawing too strong a parallel between the AAE in our task 

and that seen in online reading measures. It has been shown that the experimental task 

context can alter parsing behavior. In particular, the depth of syntactic analysis pursued 

may be modulated by task demands (Logacev & Vasishth, 2016a; Swets et al., 2008). 

Since comprehenders did not need to form a single, coherent interpretation of our stimuli 

for the purposes of answering comprehension questions, our task context may not have 

created a strong pressure to form a single parse of the input. If our judgment task is one 

where comprehenders need not form a determinate attachment, then this may be what 

drives the pattern of responses we see. In other words, a shallow, parallel representation 

of the input may be ‘Good Enough’ to render an acceptability judgment (Ferreira & 

Patson, 2007; Swets et al., 2008). In light of this, we cannot at present confidently 

generalize beyond our task to other task contexts, such as reading experiments, where 

forming a coherent interpretation is often necessary (Swets et al., 2008). 

Indeed, if we do assume that the ambiguity advantage effect seen in online 

reading measures and the one observed in our experiment reflect the same phenomenon, 

we are faced with a puzzle. The finding that the AAE is observed both in judgment 

measures and late eye-tracking measures (e.g. regression path and total times) suggests 

that the AAE in reading is driven by parsing failure or breakdown of some sort (Clifton & 

Staub, 2008). However, it is not clear that parallel or continuous explanations of the AAE 
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can be straightforwardly extended to acceptability judgment measures. In particular, it is 

not clear that differences in word predictability (Levy, 2008), statistical facilitation 

(Logacev & Vasishth, 2016a), or a time cost for computing a determinate attachment 

(Swets et al., 2008) would be severe enough to be reflected in judgment measures. Put 

simply, it appears that serial stochastic models explain why the ambiguity advantage 

effect looks like a reflection of parsing failure in reading (it is), but fail to explain why 

the effect is essentially graded in judgment measures. For underspecification or surprisal-

based parsing models, the opposite is true: they can offer an explanation of the finding 

that both parses co-contribute to processing difficulty on a trial-to-trial basis, but the link 

between these models and acceptability measures is less clear. 

To fully resolve this puzzle, a more complete parsing model is required; 

unfortunately, we are not in a position to offer such a model at present. Recall that 

parallel parsing models may be thought of in two distinct classes: those that posit that 

comprehenders maintain multiple, distinct symbolic representations of the input (Gibson, 

1991; Gorrell, 1995; Hale, 2001; Levy, 2008), and those that can merge multiple distinct 

symbolic parses into a single representation that blends each parse (Cho, Goldrick & 

Smolensky, 2017; Christianson, Hollingworth, Halliwell, & Ferreira, 2001; Ferreira & 

Bailey, 2004; Rasmussen & Schuler, 2017; Tabor & Hutchins, 2004; van der Velder & 

De Kamps, 2006; Vosse & Kempen, 2000, 2009). At present, our data are in principle 

compatible with parallel models of each type. 

To reconcile the eye-tracking and judgment data, parallel models that allow 

multiple traditional symbolic structures to be represented in parallel (Gibson, 1991; 

Gorrell, 1995; Hale, 2001; Levy, 2008) must adopt additional assumptions. For example, 
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it may be the case that the ‘integration failure’ that drives regressive eye-movements 

(Reichle, Warren & McConnell, 2009) may be triggered by an integration failure for any 

one of the representations under consideration by the parser.  

However, if the parser is represents multiple syntactic analyses by blending them 

into a single representation, the eye-tracking data and the judgment data may be 

reconciled quite naturally.  This is because these models essentially posit a composite 

representation of the input with two effective attachment sites of the relative clause, in a 

sort of ‘blended’ syntactic representation  (Ferreira & Bailey, 2004; Ferreira & Patson, 

2007; Lau & Ferreira, 2005; Slattery, Sturt, Christianson, Yoshida, & Ferreira, 2013).  

Given such a representation, parsing failure could arise in the unambiguous conditions 

for exactly the same reason it would arise in a serial and stochastic model: the resulting 

composite representation contains an ill-formed agreement dependency, which can both 

create integration failure (accounting for regressive eye-movements and re-reading in 

these conditions; Reichle et al., 2009) and the violation of a syntactic constraint 

(accounting for the effect in judgment measures). In this way, blend models can account 

for the AAE in reading time measures by maintaining that it reflects parse failure, as 

endorsed by the URM. However, they can account for the present results because they do 

not require that this failure reflect trial to trial variation in the attachment site selected by 

the comprehender.  

A bit further afield, we note that a parser which operates by blending multiple 

syntactic representations by superimposing multiple attachments at once may offer 

additional benefits to the comprehender. For instance, we note that models that allow for 

syntactic blending bear some similarity to the ‘overlay’ mechanism that has been posited 
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by Ferreira and colleagues to explain how syntactic analyses that have been abandoned 

can persist and facilitate subsequent syntactic processing (Ferreira & Bailey, 2004; Lau, 

Ferreira & Bailey, 2007). The leading idea of this proposal is that a reanalyzed parse is 

not fully abandoned; instead, the parser ‘overlays’ the correct analysis on the existing 

structure, leading to a blended representation (see related discussion in Clifton & Staub, 

2008; Ferreira & Patson, 2007; Slattery et al., 2013; Staub, 2007; Sturt, 2007). This 

mechanism accounts for the observation that the reanalyzed structure can be relatively 

easily reinstated and can otherwise continue to interfere in later processing (Christianson, 

Hollingworth, Halliwell, & Ferreira, 2001; Slattery et al., 2013; Staub, 2007; Sturt, 2007). 

This mechanism arguably already implies a limited sort of parallelism in the parser 

(Clifton & Staub, 2008), insofar as the parser can maintain blended representations of the 

input, allowing a single phrase to be associated with multiple attachment sites. 

To be sure, there remain many open questions. Perhaps the most pressing question 

for future work concerns the conditions under which sentence ambiguity can facilitate 

processing and improve perceived acceptability. One interesting possibility is that the 

effect we see is limited to adjunct relations, such as the relative clause attachments we 

investigated. This possibility is suggested by evidence that the parser makes less 

determinate attachments for relative clauses than other types of syntactic dependency, 

perhaps owing to their status as adjunct or ‘non-primary’ syntactic relations (Frazier & 

Clifton, 1996; Swets et al., 2008). More generally, it is unclear what distinguishes the 

present contexts from cases where ambiguity seems to hinder, rather that facilitate, 

syntactic processing. Local coherence effects (Paape & Vasishth, 2016; Tabor, 

Galuntucci & Richardson, 2004) present one such a case. Local coherence presents as a 
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slowdown in reading times when readers consider a locally coherent, but globally 

incoherent, parse of the input. Put differently, local coherence effects can be described as 

contexts where perceived ambiguity creates a processing cost. Indeed, many different 

sorts of garden paths may be described in a similar fashion: in each case, ambiguity 

imposes a cost at the point when the sentence is disambiguated towards the dispreferred 

structure. More work is necessary to determine why ambiguity imposes a cost in these 

contexts, while improving the acceptability of relative clauses in the present study. 

 

Conclusions 

In this paper, we investigated the ambiguity advantage effect using a speeded 

acceptability judgment task. We offered a novel, signal-detection theoretic approach for 

investigating questions of syntactic representation created by the parser, and formal 

models for deriving distributions of underlying sentence acceptability given different 

representations of the input. We found that acceptability judgments in sentences with a 

relative clause attachment reflect the joint contribution of both possible analyses of that 

relative clause, a conclusion supported by both analyses of confidence ratings and 

reaction times, as well as mathematical modeling of our results. In all, our data and 

modeling suggest that the parser can represent multiple relative clause attachments 

simultaneously.  
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Figure 1: Visual summary of Acceptability distributions. Panel A: Acceptability 

distributions for Pure sentences. Yellow solid line (left) is hypothesized distribution of 

Acceptability for pure ungrammatical (NOMATCH), blue solid line (right) is distribution 

for pure grammatical sentences (MULTIMATCH). Panel B:  Acceptability distribution 

(solid black lines) for Mixed sentences under a serial parsing model, reflecting the 

distribution of Acceptability on different types of trials. Dashed lines represent the same 

distributions as in Panel A. Panel C: Acceptability distribution (solid black lines) for 

Mixed sentences under a parallel parsing model, reflecting a weighted sum of samples 

from pure distributions. Dashed lines represent the same distributions as in Panel A. 
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Figure 2: Signal detection model for a simple task (left panel); Receiver 

operating characteristic curve (middle panel); zROC (right panel). 
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 Figure 3:  Empirical ROC and zROC functions for all three empirical 

comparisons. Open circles plot observed hit/false alarm rates at each level of confidence. 

The hit rates (y-coordinates) come from MULTIMATCH, HIGHMATCH, and 

LOWMATCH conditions. In all cases, the false alarm rate (x-coordinates) come from 

NOMATCH conditions. Dashed lines indicate best-fit UVSDT model to all four 

conditions. Grey (topmost line) indicates MULTIMATCH comparison; blue indicates 

LOWMATCH comparison; yellow (bottommost line) indicates HIGHMATCH 

comparison. 

 

 

 

 

-2 -1 0 1 2

-2
-1

0
1

2

zROC

False alarms
H
its

MULTIMATCH
LOWMATCH
HIGHMATCH

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC

False alarms

H
its



CO-ACTIVE PARSES IN LANGUAGE COMPREHENSION 

 

 

58 

Figure 4:  zROC comparison of observed data (open circles) to model predictions 

(crosses and dashed lines). Best-fit parallel model is plotted in the left panel; best-fit 

serial model on the right. Grey (topmost line) indicates MULTIMATCH comparison; 

blue indicates LOWMATCH comparison; yellow (bottommost line) indicates 

HIGHMATCH comparison. 
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Figure 5: Histogram of bootstrapped differences in −𝟐𝓛(𝜽), serial fit minus parallel 

fit. Negative values indicate that the serial model provided a better fit to a simulated data 

set; positive values indicate that the parallel model was a better fit. Vertical dashed line 

indicates optimal −𝟐𝓛(𝜽) difference for deciding between models. 
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  “Yes” responses “No” responses 

Condition % Accepted RT Confidence RT Confidence 

NOMATCH 0.16 1531 (87) 2.0 (0.10) 1185 (35) 2.5 (0.04) 

MULTIMATCH 0.74 1267 (34) 2.4 (0.04) 1458 (59) 1.9 (0.07) 

LOWMATCH 0.60 1356 (41) 2.3 (0.04) 1464 (52) 2.0 (0.06) 

HIGHMATCH 0.41 1455 (49) 2.2 (0.05) 1352 (41) 2.2 (0.05) 
 

Table 1: Ambiguous Conditions are Judged More Quickly and More Confidently. 

Summary of % accepted, reaction time (RT) and confidence ratings for ‘yes’ and ‘no 

responses to all conditions. Boxed cells indicate correct response. Confidence ranged 

from 1 (not at all confident) to 3 (very confident). By-participant standard error in 

parentheses. 
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 % Yes Confidence RT 
 β Z β Z β t 

Amb .81 (±.24) 3.4 -.09 (±.11) -.9 .08 (±.04) 2.0 
Height -.91 (±.20) -4.4 .13 (±.08) 1.6 .00 (±.02) 0.2 
Gram -3.37 (±.25) -13.4 .14 (±.09) 1.6 -.03 (±.03) -0.8 
Correct - - .55 (±.07) 7.8 -.07 (±.02) -3.4 
Amb × Acc - - -1.15 (±.27) -4.2 .34 (±.09) 3.7 
Height × Acc - - -.47 (±.15) -3.2 .17 (±.05) 3.6 
Gram × Acc - - .25 (±.22) 1.1 -.09 (±.08) -1.2 

Table 2: Summary of mixed-effect regression analyses for all three dependent measures 

in the judgment task. Shaded cells represent reliable effects at t/Z = 2.  
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 Accuracy: da Slope: 1/s 
MULTIMATCH 1.52 1.05 
LOWMATCH 1.19 1.04 
HIGHMATCH .75 .95 

MULTIMATCH v. LOWMATCH .33 [.23-.44] .01 [-.08-.12] 
MULTIMATCH v. HIGHMATCH .78 [.61-.95] .09 [.00-.19] 
LOWMATCH v. HIGHMATCH .45 [.28-.62] .08 [-.02-.19] 

 

Table 3:  Results of UVSDT analysis, including accuracy (measured in da.) and 

slope (1/s) by comparison. The lower three rows represent the mean difference in 

estimated parameters between ROCs along with a 95% confidence interval on the 

difference across bootstrap samples. Shaded cells indicate a significant difference at α = 

0.05. 

 

 

 

 

 

 

 

 

 

 

 


