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Abstract 9 

The extent, nature, and temporality of early hominin food procurement strategies has been subject 10 

to extensive debate. In this paper, we examine evidence for the seasonal scheduling of resource 11 

procurement and technological investment in the Oldowan, starting with an evaluation of the 12 

seasonal signature of USOs, freshwater resources, and terrestrial animal resources in extant 13 

primates and modern human hunter-gatherer populations. Subsequently, we use the mortality 14 

profiles, taxonomic composition, and taphonomy of the bovid assemblages at Kanjera South 15 

(Homa Peninsula, Kenya) and FLK-Zinj (Olduvai Gorge, Tanzania) to illustrate the behavioral 16 

flexibility of Oldowan hominins, who were targeting different seasonally-vulnerable 17 

demographics. In terms of the lithic assemblages, the specific opportunities and constraints 18 

afforded by dry season subsistence at FLK-Zinj may have disincentivized lithic investment, 19 

resulting in a more expedient toolkit for fast and effective carcass processing. This may have been 20 

reinforced by raw material site provisioning during a relatively prolonged seasonal occupation, 21 

reducing pressures on the reduction and curation of lithic implements. In contrast, wet season plant 22 
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abundance would have offered a predictable set of high-quality resources associated with low 23 

levels of competition and reduced search times, in the context of perhaps greater seasonal mobility 24 

and consequently shorter occupations. These factors appear to have fostered technological 25 

investment to reduce resource handling costs at Kanjera South, facilitated by more consistent net 26 

returns and enhanced planning of lithic deployment throughout the landscape. We subsequently 27 

discuss the seasonality of freshwater resources in Oldowan procurement strategies, focusing on 28 

FwJj20 (Koobi Fora, Kenya). While more analytical studies with representative sample sizes are 29 

needed, we argue that inter-assemblage differences evidence the ability of Oldowan hominins to 30 

adapt to seasonal constraints and opportunities in resource exploitation. 31 

Keywords: Seasonality; Zooarcheology; Taphonomy; Lithic technology; Early Pleistocene; 32 

Oldowan.  33 
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1. Introduction 34 

The Oldowan represents the first geographically and temporally widespread lithic tradition 35 

of the African Early Stone Age, and can be characterized by the removal of sharp (often short and 36 

thick) flakes from cores by direct percussion, with little secondary modification (Gallotti, 2018; 37 

Shea, 2020). Assemblages of this nature first appear around the beginning of the Early Pleistocene 38 

(~2.6–2.5 Ma) at Ledi-Geraru and Gona, Ethiopia (Semaw et al., 1997; Semaw et al., 2003; Braun 39 

et al., 2019). Their appearance is correlated with a period of major climatic change in East Africa 40 

(Plummer, 2004), as the gradual onset of the Northern Hemisphere Glaciation, particularly around 41 

~3.0–2.6 Ma, resulted in demonstrably cooler and more variable worldwide climates (e.g., Lisiecki 42 

and Raymo 2005; Herbert et al., 2010; Joordens et al., 2019; Trauth et al. 2021). In Africa, this 43 

process may have involved an expansion of grasslands and turnovers in mammalian faunas (e.g., 44 

Vrba, 1985; deMenocal, 1995; Bobe and Behrensmeyer, 2004; deMenocal, 2004; Cerling et al., 45 

2011; Potts, 2012; Potts and Faith, 2015), but these are likely to have been gradual and regionally-46 

distinct (Trauth et al., 2021). An important consequence of these changes is the evidence for an 47 

intensification of yearly seasonality to levels comparable to the modern-day by at least 2 Ma 48 

(Blumenthal et al., 2019).  49 

In many regions of East Africa, these patterns would imply the alternation of dry and wet 50 

seasons, which can be identified directly at paleolake basin sites with intra-annual fluctuations in 51 

water level, such as Olduvai Gorge (Beverly et al., 2014). Butzer (1982) argued that the strategic 52 

location of hominin sites in mosaic environments with access to different resource patches would 53 

have mediated the seasonal fluctuation of water and resources, with sites in the African interior 54 

restricted to wetter climatic phases. In contrast, Speth (1987) proposed that the increasing 55 

seasonality associated with the Plio-Pleistocene transition would have had crucial implications for 56 
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hominin ecological fitness, requiring the development of adaptive subsistence strategies able to 57 

successfully cope with the cyclical resource stress inherent to the food supply mechanisms of 58 

hunter-gatherer and primate communities living in semi-arid landscapes. Ethnographic and 59 

primatological studies attest to the notion that seasonal fluctuations in resource availability and 60 

quality in subtropical environments have a considerable influence on the food-procurement 61 

strategies and dietary composition of both modern human hunter-gatherers and non-human 62 

primates (e.g., Speth, 1987; Hawkes et al., 1989; Marlowe and Berbesque, 2009; Lee, 2013; Oelze 63 

et al., 2014). Recent approaches are showing that such seasonal variations also influenced hominin 64 

diets (e.g., Sponheimer et al., 2005; Sponheimer et al., 2006; Joannes-Boyau et al., 2019).  65 

Resource availability is not the only factor to consider for understanding the optimality of 66 

hominin foraging strategies (cf., Hawkes et al., 1982; Foley, 1985; Kurland and Beckerman, 1985; 67 

Ferraro, 2007). For example, even when an attractive resource is available in a given season, a 68 

minimum level of landscape knowledge may be required for their consumption. Clark and Linares-69 

Matás (2020) define landscape knowledge as the extent to which a population is aware of the 70 

distribution and predictability of specific resources within their unique habitat, suggesting that this 71 

information determines the extent of engagement and technological investment in their 72 

exploitation. This may explain why chimpanzees (Pan troglodytes) at Lopé Reserve, Gabon, do 73 

not partake in nut-cracking, despite the bioavailability of nuts and the existence of suitable raw 74 

materials (McGrew et al., 1997).  75 

From the perspective of dietary breadth models, animals rank resources in their environment 76 

by their nutritional rewards relative to search, procurement, and processing costs (Stephens and 77 

Krebs, 1986; Kelly, 2013). Both high- and low-ranked plant and other non-mammalian resources 78 

are likely to have been very important to hominin diets throughout human evolution, given their 79 
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considerable contributions to primate and hunter-gatherer diets (Tanaka, 1976; Goodall, 1986; 80 

Hawkes et al., 1989; Hawkes et al., 1995; Kitanishi, 1995; Marlowe and Berbesque, 2009; Melin 81 

et al., 2014). Meat and within-bone resources, such as marrow, have a particularly high calorific 82 

and nutritional potential (e.g., Bunn and Ezzo, 1993; Cordain et al., 2001; Tennie et al., 2009), and 83 

thus are likely to have been an attractive resource for Early Pleistocene hominins. Evidence for 84 

animal exploitation is often the best preserved direct evidence of Early Pleistocene subsistence, 85 

with the appearance of the Oldowan penecontemporaneous with the first secure evidence for 86 

hominin processing of animal remains1. This pattern is first documented at Gona and Bouri, 87 

Ethiopia around 2.6–2.5 Ma (de Heinzelin et al., 1999; Domínguez-Rodrigo et al., 2005), and at 88 

Ain Boucherit, Algeria, from 2.4 Ma (Sahnouni et al., 2018). Lithics are likely to represent an 89 

adaptation for a faster and more efficient processing of particular resources available to hominins, 90 

including the manufacture of organic implements (e.g., Isaac, 1986; Toth, 1987; Plummer, 2004; 91 

Domínguez-Rodrigo et al., 2009; Gürbüz and Lycett, 2021). 92 

Since certain primate genera are known to sporadically consume animal resources (Stanford, 93 

2001; Surbeck and Hohmann, 2008; Watts, 2020), occasional omnivory was likely a basal hominin 94 

trait (Stanford, 2012; Wood and Gilby, 2017). Nonetheless, meat is still a relatively marginal 95 

dietary component in bonobos (Pan paniscus; Oelze et al., 2011), while chimpanzees only rarely 96 

approach even the lowest levels of meat consumption seen in tropical hunter-gatherer societies 97 

(Watts, 2020). Therefore, it is likely that several shifts towards greater emphasis on animal 98 

consumption took place during the course of hominin evolution (Speth, 1989; Foley, 2001; Bunn, 99 

2007; Domínguez-Rodrigo and Pickering, 2017; Thompson et al., 2019; Pobiner, 2020). This 100 

 
1 The earliest reported cut-marks in the archaeological record derive from Dikika, Ethiopia, from 3.39 Ma (McPherron 

et al., 2010), but their identification has been contested on taphonomic grounds (e.g., Domínguez-Rodrigo and Alcalá, 

2016). 
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increasing reliance on higher-quality resources may have driven brain growth and physiological 101 

development (cf., Foley and Lee, 1991; Aiello and Wheeler, 1995). Resource provision may also 102 

have influenced the life history strategies of hominins (e.g., Hawkes et al., 1997), facilitating the 103 

required ontogenetic patterns for the development of increased neural complexity (cf., Hawkes and 104 

Finlay, 2018). 105 

We argue that seasonality is a critical framework for understanding hominin resource 106 

procurement strategies in the Early Pleistocene of East Africa, as recently explored by Hosfield 107 

(2020) in relation to the European Lower Paleolithic. In this paper, we first provide an overview 108 

of the seasonal scheduling of resource consumption in relation to fluctuations in availability and 109 

nutritional returns, with a view to generating hypotheses about the archaeological record. We 110 

subsequently apply these insights to Oldowan subsistence strategies at Kanjera South and FLK-111 

Zinj, two crucial sites for understanding the nature of hominin access to animal resources (Bunn 112 

and Pickering, 2010; Domínguez-Rodrigo et al., 2010; Blumenschine et al., 2012; Ferraro et al., 113 

2013; Parkinson, 2013; Parkinson, 2018; Oliver et al., 2019). We argue that seasonal changes in 114 

subsistence patterns and habitat selection would have profound implications for the predictability 115 

of resource distributions across the landscape and their dietary returns, influencing the nature of 116 

both food-procurement strategies and technological investment. We also discuss the seasonal 117 

relevance of freshwater resources at Oldowan sites, particularly FwJj20, in terms of both their 118 

potential contribution to hominin diets and as important paleoecological indicators.  119 
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2. Seasonal resource availability and food procurement preferences in tropical and 120 

subtropical environments 121 

There are a number of resources with seasonal fluctuations in availability which may have 122 

been exploited by hominins, such as honey, insects (including colonial and soft-bodied 123 

invertebrates), fruits and berries, roots and tubers, freshwater taxa, and terrestrial animal resources 124 

(e.g., Bunn et al., 1988; Stewart, 1994; Sato et al., 2012; Lesnik, 2014; Marlowe et al., 2014; Melin 125 

et al., 2014). Indeed, use-wear data on early bone technology from multiple South African Early 126 

Pleistocene sites indicate extractive foraging through termite fishing or digging for roots and tubers 127 

(Backwell and d'Errico, 2001; d'Errico and Backwell, 2009; Stammers et al., 2018). Here, we focus 128 

our review on the importance for hominins of three resource types in particular: underground 129 

storage organs (USOs), freshwater taxa, and terrestrial animal resources.  130 

The consumption of terrestrial USOs, including roots and tubers, is relatively common 131 

among certain chimpanzee communities, such as those of Ugalla and the Mahale Mountains, 132 

Tanzania, during the wet season (Hernandez-Aguilar et al., 2007; Yoshikawa and Ogawa, 2015). 133 

At Ugalla, this constitutes a period of low fruit availability (Hernandez-Aguilar et al., 2007). This 134 

wet season bias for terrestrial USO consumption is also documented among human foragers in 135 

tropical and subtropical environments, such as the Hiwi of the Venezuelan Amazon (Hurtado and 136 

Hill 1990) and the Baka of southeastern Cameroon (Sato et al., 2012). This pattern may be linked 137 

to lower procurement costs when the soil is softer, since the ground hardens during the dry season 138 

and becomes more difficult to penetrate in certain environments (e.g., the savanna of Ugalla; 139 

Hernandez-Aguilar et al., 2007). These acquisition costs may help to explain why the Aka of 140 

northeastern Congo show lowest tuber exploitation in the late dry season, despite this being the 141 

period where tubers are at their greatest size and return potential (Kitanishi, 1995). Among the 142 



8 
 

Hadza of northern Tanzania, tubers may be brought to the camp in greatest quantities during the 143 

wet season (Vincent, 1985; Marlowe and Berbesque, 2009), but procurement is fundamentally a 144 

year-round foraging activity, with the number of foraging trips dependent on the seasonal 145 

availability of preferred berries (Hawkes et al., 1989; Hawkes et al., 1995; Marlowe and 146 

Berbesque, 2009). This pattern highlights that when higher-ranked resources have tightly-147 

constrained seasonal signatures, there is a need to adaptively schedule the consumption of different 148 

resources to maintain nutritional quality throughout the year (Laden and Wrangham, 2005; 149 

Lambert, 2007; Marshall and Wrangham, 2007; Marshall et al., 2009). 150 

Freshwater fish represent one such seasonally-constrained but nutritious food source that 151 

carnivores and non-human primates occasionally exploit (Turnbull-Kemp, 1967; Goodall, 1971; 152 

Ewer, 1973; Kruuk, 1976; Hamilton and Tilson, 1985; Russon et al., 2014). Freshwater resources 153 

are often an important source of essential polyunsaturated fatty acids and proteins for tropical and 154 

subtropical hunter-gatherers, potentially playing an important role in human evolution (Broadhurst 155 

et al., 2002; Jerardino and Marean, 2010; Joordens et al., 2014; Kyriacou et al., 2016). 156 

Consumption of such resources may have emerged in the context of seasonal exploitation of USOs, 157 

sedges, seedless vascular plants, and aquatic macrophytes in mosaic riparian environments (Sept, 158 

1984; Wrangham et al., 2009; Stewart, 2010; Magill et al., 2016). For example, aquatic USOs 159 

(which are not subject to the same soil hardness constraints as terrestrial USOs) are exploited by 160 

yellow baboons (Papio cynocephalus), to the greatest extent during the dry season, when preferred 161 

foods are scarce (Wrangham et al., 2009). The transition between the late dry and early wet seasons 162 

is a particularly productive period in these environments for opportunistic human fishing (cf., 163 

Dufour, 1987; Sato et al., 2012). This is underpinned by a requirement for cognitive mapping of 164 

seasonal fluctuations in water bodies, and knowledge requirements pertaining to specific seasonal 165 
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fish behaviors in their habitual watercourses. In Eastern Africa, the late dry season is associated 166 

with migratory catfish (Clarias spp.) and nesting Cichlidae becoming trapped and exposed in 167 

shallow receding ponds (Leakey, 1971). In the early wet season, large quantities of catfish then 168 

migrate upriver during the early rains to spawn (Greenwood, 1955), and some perciforms, 169 

including cichlids, construct their nests in the shallows of river floodplains and lakes (Stewart, 170 

1994). Since cichlids are very territorial, African fisher communities of the Bangwelu Wetlands 171 

of northeastern Zambia often make spatial references on their recurrent nesting areas to ensure 172 

successful fishing encounters during the wet season (Brelsford, 1946). Thus, fish could have been 173 

a seasonally predictable and relatively easy to catch prey for Oldowan groups if they were able to 174 

become acquainted with the location and fluctuations of seasonal lakes and streams. 175 

On the other hand, primates and hunter-gatherer or fisher-forager groups also have the 176 

opportunity to target certain freshwater resources, such as turtles, shellfish or migratory fish, 177 

during the wider wet season, albeit at variable acquisition costs. Isolated instances of targeted wet 178 

season acquisition of fish and crabs in shallow, slow-flowing waters have been documented among 179 

long-tailed macaques (Macaca fascicularis) in Indonesia (Son, 2003; Stewart et al., 2008). Among 180 

the Hiwi hunter-gatherers of Venezuela, the capture of freshwater turtles is predominantly carried 181 

out during the late wet season, focused on the stable waters of oxbow lakes alongside river courses 182 

(Hurtado and Hill, 1990). Indeed, a heavy wet-season bias in chelonid exploitation relative to 183 

ungulate hunting by Kalahari San groups was used by Speth and Davis (1976) in one of the first 184 

attempts to infer the seasonality of selected Early Pleistocene sites in East Africa.  185 

Terrestrial animal resources present another dietary category particularly relevant to 186 

discussions of the Early Pleistocene archeological record. There is much evidence for a seasonal 187 

signature in chimpanzee hunting behaviors, but the same patterns are not consistently repeated 188 
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between sites in different ecological settings (Mitani and Watts, 2005). Of particular relevance to 189 

hominin behavior, chimpanzee hunting in open savanna environments focuses on the acquisition 190 

of small vertebrates with low individual return rates (Pruetz et al., 2015; Moore et al., 2017). In 191 

contrast, however, the targeting of larger animal carcasses is observed consistently within the 192 

hominin lineage from the Early Pleistocene (Domínguez-Rodrigo et al., 2005; Braun et al., 2010; 193 

Bunn and Pickering, 2010; Ferraro et al., 2013; Parkinson, 2018). As such, seasonal patterns of 194 

meat availability and/or preference in modern human hunter-gatherers may provide clearer insights 195 

about the intra-annual patterning of Oldowan food procurement strategies. 196 

In the diets of many modern tropical and subtropical hunter-gatherer populations, animal 197 

resources play a relevant role year-round, although meat consumption tends to be most frequent 198 

during the dry season. For example, among the Baka, and the Mbuti of the Ituri Forest 199 

(northeastern Congo), dry season procurement of mammals is consistently greater than during the 200 

wet season (Ichikawa, 1983; Sato et al., 2012). Similarly, the greatest period of meat consumption 201 

in the Hadza also occurs in the dry season, reaching ~40% of food brought back to camp by weight 202 

in the late dry, and dropping to as little as ~10% during the early wet (Marlowe and Berbesque, 203 

2009). Among the Ju/’hoansi, Botswana, this general pattern is replicated, with meat also observed 204 

to provide up to 80% of the diet during two months of one particularly severe dry season, when all 205 

other resources were rather scarce (Weissner and N!aici, 1998; Lee, 2013). This pattern is likely 206 

to result from the interplay between changes to overall resource abundance and to resource quality 207 

and ranking by season. 208 

The reduction of plant availability and the evaporation of rain-fed seasonal watercourses 209 

during the dry season in in arid and semi-arid regions of Africa often leads to the concentration of 210 

weakened herbivores around the few permanent water sources still present in the landscape, as 211 
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these animals require access to forage persisting around these areas as well as drinking water to 212 

compensate for the dehydration of plant foods (Thrash et al., 1995; Redfern et al., 2003; Chamaille-213 

Jammes et al., 2008; Valeix 2011). This spatial clustering of hunting and scavenging opportunities 214 

ensures that predators do not need to spend as much time searching for prey in the dry season, and 215 

have a greater success rate in locating them (Bunn et al., 1988; Hurtado and Hill, 1990; Foley, 216 

1993; O’Connell et al., 2002; Hawkes, 2016). These animal resources also have a greater dietary 217 

return than most individual available plants, which further encourages a shift towards their 218 

procurement (Pobiner, 2015). This ecological pattern can help explain why most meat tends to be 219 

consumed by the Hadza and other subtropical hunter-gatherers during the dry season, providing a 220 

greater dietary contribution in the face of seasonal and inter-annual fluctuations in plant resource 221 

availability (Vincent, 1985; Bunn et al., 1988; Hitchcock, 1989; Hawkes et al., 1991; O’Connell 222 

et al., 1992; Hawkes et al., 1997; Sherry and Marlowe, 2006; Marlowe and Berbesque, 2009; Lee, 223 

2013). 224 

At the same time, modern human populations have a limit for protein consumption of around 225 

30–40% of dietary calories, with consumption above this threshold exceeding the body’s ability 226 

to metabolize urea (Cordain et al., 2000). As a result, repeated consumption of lean meat results 227 

in a breach of the ‘protein ceiling’—which may lead to protein poisoning—thus placing relatively 228 

tight constraints on its consumption and rendering it an ineffective resource under food stress 229 

conditions (Binford, 1978; Speth, 1983; Cordain et al., 2000). Indeed, a pattern of fat-depleted 230 

animal avoidance is documented among hunters in semi-arid environments, who may even 231 

abandon whole carcasses if they are too lean (Tindale, 1972; Hayden, 1981; Speth, 1983). In a 232 

similar fashion, contemporary African fishers may throw fat-depleted fish back to the water 233 

(Brelsford, 1946; Jubb, 1967). 234 
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In contexts of marginal nutritional intake, fat and especially carbohydrates, have a protein-235 

sparing effect, as the body is also able to derive energy from these non-protein sources, thus 236 

reducing the metabolic demands associated with amino acid catabolism (Munro, 1964; Richardson 237 

et al., 1979; Speth and Spielmann, 1983; Bunn and Ezzo, 1993). During periods of fat-depletion 238 

in animal carcasses, Cordain et al. (2000) suggest that hunter-gatherers must either show a 239 

preferential selection for fattier individuals or carcass portions, hunt larger animals with greater 240 

proportions of body fat, or increase their consumption of plant resources, particularly those with 241 

high carbohydrate concentrations. A general preferential selection of fattier animals is reported by 242 

many different hunter-gatherer groups across different ecosystems (Tomita, 1966; Hart and Hart, 243 

1986; O’Dea et al., 1991). In particular, the hunting of different duiker (Cephalophus spp.) species 244 

predominantly during the dry season by the Mbuti corresponds to the only period of the year when 245 

these animals store substantial mesentery fat, as reflected in high kidney fat index (KFI) values 246 

(Ichikawa, 1983; Hart and Hart, 1986). Similarly, Lee (2013) reports that the Ju/’hoansi make their 247 

first cut of an ungulate carcass along the breastbone, in order to first check the extent of 248 

subcutaneous fat, and gain access to the viscera. This preference for fatty body parts is even a 249 

common finding among chimpanzees (e.g., Boesch and Boesch, 1989; Pruetz et al., 2015). For 250 

example, Gilby and Wawrzyniak (2018) report that chimpanzee consumption of primate prey at 251 

Gombe follows a predictable pattern based on immediate returns, in which energy-dense, fat-rich 252 

resources, such as viscerae and head-contents, were usually exploited first. This body of evidence 253 

strongly suggests that one of the main attractions of animal carcasses for human and non-human 254 

primates is fat-rich tissue (Hayden, 1981; Hill et al., 1984; Lee, 2013). Therefore, the interplay 255 

between physiological constraints and prey selection strategies makes body fat fluctuation a 256 
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critical aspect for modelling seasonal patterns of terrestrial ungulate consumption in the Early 257 

Pleistocene (Speth, 1987; Bunn and Ezzo, 1993; Cordain et al., 2000; Ben-Dor et al., 2011).  258 

As the dry season advances, the reduction in the quality and distribution of food resources 259 

leads to declines in body fat percentage among terrestrial ungulates (Speth, 1987). In modern 260 

African savannas, ungulates try to mitigate these trends through the deployment of seasonal dietary 261 

and mobility strategies that play a considerable role in regulating their abundance and population 262 

dynamics (Staver and Hempson, 2020). Ungulates of the Serengeti ecosystem (northern Tanzania) 263 

tend to subsist on sub-maintenance diets for most of the dry season, using the consumption of large 264 

amounts of low-quality forage as a way to slow the rate of utilization of their internal fat reserves 265 

(Sinclair, 1975). This pattern leads to a time lag between the point of lowest total caloric intake 266 

and the point of poorest condition (i.e., nutritional yield) of African ungulates (Sinclair, 1975; 267 

Speth, 1983). Total carcass fat is therefore at its lowest around the end of the dry season and the 268 

beginning of the rainy season (Speth, 1987).  269 

This time lag in ungulate physiology therefore has paramount implications for understanding 270 

the impact of seasonal food stress on Oldowan animal food procurement strategies, since it implies 271 

that the quality of animal resources will have declined less rapidly than that of plant resources in 272 

the dry season (Bunn and Ezzo, 1993). As such, we expect hominin consumption of meat resources 273 

to be greater during most of the dry season, excluding the very late dry. In the early wet season, 274 

ungulate carcasses would still exhibit a high degree of fat-depletion. Moreover, terrestrial 275 

ungulates tend to disperse in the face of wider plant biomass availability with the onset of the rains, 276 

resulting in lower encounter rates. At this time of the year, hominins should have therefore 277 

preferentially targeted carbohydrate-rich resources (berries, honey, and tubers), and energy-dense 278 

fatty resources, such as freshwater species or the brains, viscerae, and marrow of terrestrial 279 
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ungulates, alongside any protein intake (Table 1). Towards the second half of the wet season, we 280 

would expect animal carcasses to regain their overall nutritional attractiveness, although their 281 

dispersed pattern would entail higher search costs. 282 

Resource  

 

Dry season 

Seasonal Preferences 

 

Very late dry to early 

wet transition 

 

 

Wet 

season 

References 

Underground storage 

organs (USOs) 

  Terrestrial  Moderate Moderate High Hawkes et al. (1989, 1995); 

Kitanishi (1995); Hernandez-

Aguilar et al. (2007); Marlowe 

and Berbesque (2009); Sato et 

al. (2012) 

  Aquatic High Moderate Low Laden and Wrangham (2005); 

Wrangham et al. (2009); 

Stewart (2010) 

Freshwater resources Low High Moderate Leakey (1971); Speth and 

Davis (1976); Stewart (1994) 

Terrestrial animal 

resources 

Meat and 

marrow 

High Low Moderate Sinclair (1975); Speth and 

Davis (1976); Blumenschine 

(1987); Bunn et al. (1988); 

Blumenschine and Madrigal 

(1993); Bunn and Ezzo (1993) 

Viscerae and 

head contents 

Moderate High Moderate Bunn and Ezzo (1993); Speth 

and Spielmann (1983); 

Cordain et al. (2000); Gilby 

and Wawrzyniak (2018) 

Table 1: Hypothesized seasonal preferences (based on resource availability, constraints, and 283 

returns) for the main set of resources discussed in the text for Oldowan hominins. 284 

Lastly, we recognize the additional importance of inter-annual differences in the magnitude 285 

of fluctuations in resource quality and availability, and that these changes may limit our ability to 286 

confidently infer seasonality (e.g., Hawkes et al., 1991; Speth et al., 1991). Nonetheless, we 287 

propose that the intra-annual framework outlined here can still be broadly applied to the 288 

characterization of hominin adaptation to recurrent terrestrial animal resource variability, with 289 

seasonality being a key driver of this pattern at the yearly scale. 290 
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3. Carcass acquisition strategies by Oldowan hominins 291 

3.1. Hunting versus scavenging debate 292 

Early paleoanthropological research was quick to take for granted that hunting was a 293 

quintessential activity of early Homo, driving their socio-economic and technological organization 294 

(cf., Lee and DeVore, 1968). Glynn Isaac’s (1978; Isaac, 1984) work contributed to the shift of 295 

emphasis towards the underlying social organization, structured through cooperation, a gendered 296 

division of labor, and the subsequent sharing of food resources at home bases. This period also 297 

witnessed the first detailed zooarcheological and taphonomic research on Early Pleistocene faunal 298 

remains as sources of evidence (Behrensmeyer, 1978; Bunn et al., 1980; Binford, 1981; Bunn, 299 

1981; Potts and Shipman, 1981). When Binford (1985) analyzed skeletal part profiles and 300 

superficially assessed the nature of bone surface modifications at FLK-Zinj, he concluded that 301 

hominins appeared to have been marginal scavengers of carnivore kills. This interpretation 302 

fostered actualistic research assessing whether hominin exploitation of abandoned carnivore kills 303 

could have represented a reliable source of nutrients (Blumenschine, 1986; Blumenschine, 1987; 304 

Blumenschine, 1988; Domínguez-Rodrigo, 1994; Domínguez-Rodrigo, 1999; Pobiner, 2015). 305 

However, subsequent taphonomic and actualistic research amongst modern hunter-gatherers 306 

highlighted the relevance of an abundant representation of high-yielding skeletal parts bearing 307 

anthropogenic modifications, such as cut-marks and percussion marks, for identifying stone-tool 308 

mediated butchery at FLK-Zinj and Koobi Fora sites (e.g., Bunn, 1986; Bunn and Kroll, 1986; 309 

Shipman, 1986; Bunn et al., 1988; O’Connell et al., 1988a; O’Connell et al., 1992). 310 

The interpretation of the abundance, anatomical distribution, and overlap between bone 311 

surface modifications (cut-marks, percussion marks, and carnivore tooth marks) on mammal bones 312 

became the next major avenue of taphonomic and actualistic research (Blumenschine et al., 1994; 313 
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Domínguez-Rodrigo, 1994; Domínguez-Rodrigo, 2001). Several researchers have concluded that 314 

the tooth mark and percussion marks counts reported by Blumenschine et al. (1994) for FLK-Zinj 315 

fit a carnivore-hominin-carnivore model—whereby hominins scavenged carcasses abandoned by 316 

large felids, with bones subsequently ravaged by hyenids (Blumenschine, 1995; Capaldo, 1997; 317 

Pante et al., 2015). Nonetheless, a considerable proportion of the tooth-marks reported in 318 

Blumenschine et al. (1994) have been subsequently reassessed as having a natural biochemical 319 

origin unrelated to carnivore activity (Domínguez-Rodrigo and Barba, 2006; Parkinson, 2018). 320 

The pattern resulting from the new tooth mark estimates better fits Blumenschine's hammerstone-321 

to-carnivore model, indicating primary access of hominins to carcasses, either by hunting or 322 

confrontational scavenging, followed by secondary carnivore scavenging (Domínguez-Rodrigo 323 

and Barba, 2006). This revision is also more consistent with the anatomical placement and 324 

frequency of cut-marks and percussion marks (Bunn and Kroll, 1986; Bunn and Ezzo, 1993; 325 

Parkinson, 2013; Parkinson, 2018). Early access to carcasses following a hominin-first model has 326 

also been reported for other Oldowan sites, including DS (Olduvai Bed I; Cobo-Sánchez, 2020) 327 

and Kanjera South (Ferraro et al., 2013; Parkinson, 2013), and can therefore be considered a 328 

relevant feature of Early Pleistocene hominin dietary behaviors. 329 

At the same time, portraying early hominin carcass acquisition as an either/or dichotomy 330 

between the hunting of prime game and the scavenging of carnivore leftovers is likely misplaced 331 

(cf., Bunn and Kroll, 1986; Blumenschine, 1987; Potts, 1988). Indeed, insights from carnivore 332 

ethology suggest that most predators engage to an extent in both hunting and opportunistic 333 

scavenging by adaptively responding to seasonal fluctuations in prey distribution, prey body 334 

condition, and carrion availability, with the selected strategy reflecting an ecological trade-off 335 

between energetic investment and dietary output (Molinari-Jobin et al., 2004; Owen-Smith, 2008; 336 
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Pereira et al., 2014; Mattison et al., 2016). The Hadza provide a hunter-gatherer example of this 337 

phenomenon, as individuals are able to respond quickly to scavenging opportunities, including 338 

passive scavenging of within-bone nutrients, when they appear at localities where they actively 339 

capture ungulate prey (Bunn et al., 1988; O’Connell et al., 1988b; O’Connell et al., 2002; Hawkes, 340 

2016). We suggest that Oldowan hominins were also likely to have displayed the flexibility 341 

required to switch between different carcass acquisition and processing strategies (Speth, 1983; 342 

Bunn and Ezzo, 1993), particularly when facilitated by the deployment of lithic technologies 343 

(Foley, 1985; Ferraro, 2007).  344 

 345 

3.2. Seasonality, prey selection, and carcass acquisition strategies 346 

There are several possible methods of acquiring animal carcasses: scavenging the remains 347 

of animals that have died naturally or through predation (passive scavenging), ‘kleptoparasitism’ 348 

(confrontational/power scavenging) whereby predators are actively chased away from their kills, 349 

‘compensatory/cursorial predation’ of individuals already vulnerable to death due to age or 350 

disease, and ‘additive predation’ of healthy individuals (Schaller and Lowther, 1969; Schaller, 351 

1972; Pereira et al., 2014). These strategies are summarized in Table 2 (passive scavenging has 352 

been divided into facultative scavenging—feeding on earlier predator kills—and scavenging of 353 

natural death pulses), alongside their respective ecological patterning and archeological signatures 354 

as a framework for evaluating Pleistocene sites. We recognize that these discrete categories 355 

actually fall along an overlapping behavioral continuum of carcass acquisition behavior, and 356 

therefore hominins are likely to have employed these strategies at different points in time and in 357 

varying frequencies, depending on the potential returns, costs, and constraints in a given context. 358 
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Seasonality has a profound influence on these decision variables, due to changes in factors 359 

such as soil condition, maximum daily temperature, cloud cover, precipitation, animal 360 

physiological condition, and prey densities. A wide range of carnivores and human-hunter-361 

gatherers adopt compensatory prey selection strategies that are intrinsically linked to these 362 

predictable intra-annual changes. For example, lions (Panthera leo) of Hwange National Park, 363 

Zimbabwe, preferentially target buffalo (Syncerus caffer) year-round, but males show an increase 364 

in the hunting of vulnerable juveniles when they become more abundant during the wet season 365 

(Davidson et al., 2013). Furthermore, lions opportunistically exploited a range of other seasonally-366 

vulnerable animals, including juvenile elephants taken during very late dry season droughts 367 

(Davidson et al., 2013). Leopards (Panthera pardus) also actively adapt their prey selection 368 

strategies to take advantage of birthing seasons and ecosystem changes (Karanth and Sunquist, 369 

1995; Yang et al., 2018). 370 

Bunn and Ezzo (1993) argued that a flexible adoption of carcass procurement strategies 371 

based on intra-annual body condition variability could have provided hominins with a suitable 372 

supply of animal resources at different points of the year. Ethnographic accounts of hunting 373 

strategies by San groups in the Kalahari demonstrate a pattern of seasonally-vulnerable ungulate 374 

prey selection, targeting animals more prone to tiredness on the basis of attributes that fluctuate 375 

over different temporal scales such as reproductive status, age, injury, illness, hunger, or thirst. For 376 

example, !Xo and G/wi hunters of the Kalahari choose to pursue certain Bovidae, such as steenbok 377 

(Raphicerus campestris), common duiker (Sylvicapra grimmia) and gemsbok (Oryx gazella), 378 

during the rainy season, when the wet sand forces open their hoofs and stiffens the joints (Schapera, 379 

1930; Liebenberg, 2006). In the dry season, Kalahari hunters prefer to track greater kudu 380 

(Tragelaphus strepsiceros), eland (Taurotragus oryx), and red hartebeest (Alcelaphus caama) 381 
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males with heavy horns or pregnant females, who become exhausted faster when running on loose 382 

sand (Liebenberg 2006). In each case, the hunters identify and follow trails of isolated weaker 383 

individuals, who are exhausted and have splintered from the rest of the herd to hide in the bush 384 

(Liebenberg, 2006).  385 

The nature and temporality of carcass acquisition strategies determine the specific animal 386 

nutrients and skeletal parts available to Oldowan hominins at any given site (Schaller and Lowther, 387 

1969; Bunn and Ezzo, 1993). We can predict a focus on high-ranking (and fatty) viscerae whenever 388 

hominins had primary access to the carcass (e.g., Lee 2013; Gilby and Wawrzyniak, 2018), most 389 

clearly documented through cut-marks on the ventral side of ribs (cf., Nilsson, 2000). This would 390 

have been particularly important to hominins during seasonal fat-depletion in terrestrial ungulate 391 

carcasses (very late dry to early wet transition), where meat itself becomes very lean. Other 392 

elements with high fat availability that are often left by large felids, such as head contents or the 393 

marrow of limb bones (Pobiner, 2015), are likely to have been favored whenever available, 394 

regardless of the timing of access to the carcass (Thompson et al., 2019). This pattern may have 395 

been exacerbated seasonally, with focus shifting towards bones that retain the greatest overall 396 

amounts of fat, such as the tibiae, or those which deplete more slowly, such as the lower limb 397 

bones (Newlin and McCay, 1948; Turner, 1979; Speth, 1987; Speth, 1990; Blumenschine and 398 

Madrigal, 1993). 399 

 400 
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Table 2: Profile of different possible carcass acquisition strategies available to Oldowan hominins. Procurement costs include those 401 

incurred while procuring the carcass, its processing, and its defense.402 

Strategy Trophic 

engagement 

Access to 

carcass 

Returns Procurement 

costs 

Planning 

requirements 

Mortality 

profiles 

Taphonomic 

signature 

Relevant Oldowan 

references 

Facultative 

scavenging 

Passive Secondary Meat scraps and 

within-bone 

nutrients 

Low: late access 

to carcasses 

reduces initial 

competition 

Low Representative of 

primary 

carnivore(s) 

Abundant tooth-

marks 

Cut-marks on low-

ranking parts 

Binford (1981); Blumenschine 

(1987); Pante et al. (2012) 

Scavenging of 

natural death pulses 

Passive Primary Multiple whole 

carcasses 

Poor 

physiological 

condition 

Low- 

Intermediate: 

competition can 

be high 

Low- 

Intermediate: 

predictable 

carrion pulses 

Attritional,  

occasionally 

catastrophic 

Mass nearby 

concentration of 

natural deaths 

Emphasis on 

evisceration and 

within-heads 

contents 

Capaldo and Peters (1995); 

Lam (2008) 

Confrontational 

scavenging 

Passive Early Near-complete 

carcasses 

Intermediate: 

involves 

carnivore 

encounters 

Intermediate: 

anticipation of 

carnivore 

behavior and 

chasing away 

Representative of 

primary 

carnivore(s) 

Low evisceration cut-

mark counts 

High-incidence of 

defleshing cut-marks 

Medium to large carcasses: 

Bunn and Ezzo (1993); Bunn 

(2001); O’Connell et al. (2002) 

Compensatory 

hunting 

Active Primary Complete 

carcasses 

High High Seasonally 

vulnerable 

demographics 

Evisceration and 

defleshing cut-marks 

Small Carcasses: Bunn and 

Pickering (2010); Oliver et al. 

(2019) 

Additive hunting Active Primary Complete 

carcasses 

Highest Highest Prime adults Evisceration and 

defleshing cut-marks 

Medium to large carcasses: 

Bunn and Pickering (2010); 

Bunn and Gurtov (2014) 
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The availability of certain terrestrial animal nutrients and skeletal parts to Early Pleistocene 403 

hominins would have nonetheless been partially reliant on the carcass acquisition strategies 404 

followed (Table 2). Thus we can predict an initial focus on viscerae, whenever hominins had 405 

primary access to the carcass, as well as the head contents and within-bone nutrients of skeletal 406 

elements with high marrow contents at that time (such as the tibiae) and/or those with delayed 407 

depletion (such as the lower limb bones), regardless of carcass acquisition strategy (Newlin and 408 

McCay, 1948; Turner, 1979; Speth, 1987; Speth, 1990; Blumenschine and Madrigal, 1993). As 409 

such, we hypothesize that dry season Oldowan sites may show a greater dependence on animal 410 

tissue, with most parts of the carcass (including meat) providing an attractive resource (cf., 411 

Blumenschine, 1987; Bunn et al., 1988; Bunn and Ezzo, 1993). On the other hand, during periods 412 

of greatest ungulate physiological stress (most commonly the very late dry season and the early 413 

wet season), we would expect to see an increased emphasis on skeletal parts that retain the greatest 414 

proportions of fatty nutrients (cf., Cordain et al., 2000). For example, the fat contents of brain and 415 

viscerae, particularly the liver, remain relatively constant throughout the year, while adipose tissue 416 

mass and bone marrow gradually become depleted under conditions of nutritional stress (Cordain 417 

et al., 2002; Kuipers et al., 2010). Nonetheless, the marrow of distal appendicular bones, 418 

particularly metapodials—which contain the highest proportion of digestible low-melting-point 419 

fatty acids—tends to become depleted last among ungulates (Speth, 1987; Blumenschine and 420 

Madrigal, 1993).  421 
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4. Seasonally-mediated behavioral variability at Kanjera South and FLK-Zinj 422 

Carcass acquisition strategies at Early Pleistocene sites are frequently assessed 423 

taphonomically, but limited faunal preservation or a lack of a clear association with co-occurring 424 

lithic assemblages often prevent an accurate assessment of hominin behavior (Domínguez-425 

Rodrigo, 2009). Nonetheless, it may be possible to demonstrate a relationship between resource 426 

exploitation strategies, seasonality, and the nature of lithic assemblages at certain Oldowan sites, 427 

such as Kanjera South, Kenya (2.0 Ma), and FLK-Zinj (FLK Level 22), Olduvai Gorge, Tanzania 428 

(1.84 Ma; Bunn, 1981; Bunn and Ezzo, 1993; de la Torre and Mora, 2005; Braun et al., 2009b; 429 

Domínguez-Rodrigo, 2009; Ferraro et al., 2013; Parkinson, 2013; Oliver et al., 2019; Figure 1). 430 

 431 

Figure 1. Map depicting the location of FLK-Zinj and Kanjera South, the two main Oldowan case-432 

studies discussed in the paper. 433 
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In terms of the lithic assemblages, Kanjera South frequently evidences bifacial centripetal 434 

schemes, including on relatively large flakes, while 28% of the raw materials exploited were 435 

selectively transported >10 km from conglomerates in the neighboring Awach drainage basin 436 

(Braun et al., 2008; Braun et al., 2009a; Braun et al., 2009b). This may also be reflected in the 437 

underrepresentation of cores in relation to flakes at the site, suggesting cores were transported into 438 

the site for flake production, and then removed from the site for future use (Plummer and Bishop, 439 

2016). Unidirectional unifacial methods were often restricted to local fenetized Nyanzian rhyolites 440 

or dacites and Homa limestone or phonolite of poorer quality (Braun et al., 2009a; Reeves et al., 441 

2021), with transported materials being more heavily worked, and were selected according to the 442 

durability of their cutting edge over flaking predictability (Braun et al., 2009a; Braun et al., 2009b; 443 

Reeves et al., 2021). Flakes from these non-local raw materials also occasionally display secondary 444 

retouch, something that is extremely rare for the Oldowan (Plummer and Bishop, 2016; Gallotti, 445 

2018). These patterns of relatively long-distance transport and elongated reduction sequences are 446 

suggestive of a considerable planning of activity across the landscape, potentially related to 447 

predictability of resource exploitation. 448 

In contrast, the FLK-Zinj lithic assemblage is characterized by unidirectional and unifacial 449 

reduction on local quartzite raw materials, resulting in a greater impression of expediency than 450 

Kanjera South (Leakey, 1971; de la Torre and Mora, 2005; Braun et al., 2009a; Gallotti, 2018). 451 

Immediately local lava (particularly basalt) cobbles are abundant in Leakey’s (1971) unmodified 452 

‘manuport’ assemblage, but represent a much smaller proportion of exploited cores, suggesting a 453 

preference for the quartzite material (de la Torre and Mora, 2005). This pattern suggests selection 454 

for cutting ability over durability (Key et al., 2020). Retouched flakes are also very rare, despite 455 

flakes and flake fragments representing the focus of the assemblage (Leakey, 1971; de la Torre 456 
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and Mora, 2005; Gallotti, 2018). Taken together, the raw material transport distances at FLK-Zinj, 457 

similar to many other Olduvai Bed I sites (Gallotti, 2018), hint at a directional movement into the 458 

Olduvai paleolandscape via an appropriate raw material source (i.e. Naibor Soit). 459 

The taphonomic evidence from the faunal assemblages, which we discuss in more detail 460 

below, suggests that hominins had primary access to carcasses at both Kanjera South and FLK-461 

Zinj (e.g., Bunn, 1981; Domínguez-Rodrigo, 2009; Bunn and Pickering, 2010; Ferraro et al., 2013; 462 

Parkinson, 2013; but see Pante et al., 2012). However, we would argue that paleoecological and 463 

taphonomic data illustrate differences in the nature and seasonality of resource procurement 464 

strategies between Kanjera South and FLK-Zinj. 465 

 466 

4.1. Kanjera South 467 

The site of Kanjera South (western Kenya) is centrally located within the northern margins 468 

of the alluvial fans that cover the carbonatite geology of the Homa Peninsula, by the shore of 469 

Winam Gulf, Lake Victoria (Behrensmeyer et al., 1995; Plummer et al., 1999; Plummer and 470 

Bishop, 2016). The presence of lithic and faunal remains in the colluvial and alluvial silts and 471 

sands of beds KS1–3 has been dated to 2.30–1.92 Ma through magneto- and bio-stratigraphy 472 

(Ditchfield et al., 2019). The gentle nature of the deposition and the high sedimentation rates at 473 

the lake margin, as suggested by minimal bone weathering and absence of both fluvial rounding 474 

and debris-flow accumulations, favored the good preservation of archeological remains (Ditchfield 475 

et al., 2019). The primary context of the site is further reinforced by the existence of several artifact 476 

refits and the diversity of skeletal parts with differing water transport potential (Plummer et al., 477 

2009; Parkinson, 2013). The recurrent sedimentation cycles have afforded researchers an 478 

opportunity to explore the nature of Oldowan hominin behavior through the time-lapse represented 479 
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in the KS1–3 beds, since humans were the primary biotic agent responsible for the accumulation 480 

of archeological materials (Ferraro et al., 2013). Another interesting paleoecological component 481 

of the Kanjera ecosystem is the predominance of open C4
 grassland habitats, alongside some 482 

indications of woodland/grassland ecotones and a permanent watercourse, as inferred from the 483 

δ¹³C values of soil carbonates and herbivore enamel (Plummer et al., 2009). This existence of 484 

nearby watercourses is reinforced by the presence of water-dependent taxa, such as hippotamids, 485 

crocodilians, and reduncine bovids, although they are relatively rare in the sequence (Oliver et al., 486 

2019). The stability of resource exploitation strategies throughout the three archeological levels at 487 

Kanjera South attests to the consistently productive nature of the landscape and repeated seasonal 488 

attraction of the site over hundreds or even thousands of years (Ferraro et al., 2013; Lemorini et 489 

al., 2014; Ditchfield et al., 2019). 490 

In terms of zooarcheological data, the Kanjera South assemblage shows an even 491 

representation of skeletal part profiles for small bovids (e.g., Antidorcas sp., Gazella granti), which 492 

indicates procurement and processing of whole carcasses. In relation to the mortality profiles, 493 

dental eruption and epiphyseal fusion rates suggest that a high proportion (50%) of both size 1–2 494 

and size 3 bovids were young or subadult at the time of death (Parkinson, 2013; Plummer and 495 

Bishop, 2016; Oliver et al., 2019; Table 3). The anatomical distribution of bone surface 496 

modifications indicates that hominins had early access to the small prey size carcasses (Parkinson, 497 

2013). The presence of cut-marks on small bovid remains, such as a metatarsal (KJS 7472) or the 498 

proximal epiphysis of a femur (KJS 2565), is associated with limb disarticulation (Ferraro et al., 499 

2013), with the restricted intensity and frequency of carnivore damage indicating an only 500 

occasional incidence of secondary scavenging (Parkinson 2013; Plummer and Bishop 2016). This 501 

aligns well with the conclusions of Oliver et al. (2019) that the accumulation of size 1–2 bovids in 502 
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the Kanjera South assemblage results from a hominin strategy of hunting vulnerable juvenile 503 

individuals, which granted them complete and early primary access. 504 

 505 

Bovid category Young juveniles Subadult juveniles Prime adults Old adult Total MNI 

Small bovids (sizes 1–2) 7 (31.8%) 4 (18.2%) 8 (36.4%) 3 (13.6%) 22 

Larger bovids (sizes 3a/3b) 8 (20.0%) 12 (30.0%) 18 (45.0%) 2 (5.0%) 40 

Abbreviations: MNI = minimum number of individuals. 506 

Table 3: Bovid mortality profiles from Kanjera South, in terms of MNI (%). Data derived from 507 

Oliver et al. (2019: Table 2). 508 

We can better understand the seasonal relevance of the Kanjera South mortality profiles by 509 

using analogues derived from extant bovid ecology (Foley, 1983). The temporality and 510 

synchronicity of African bovid births are considerably variable, based on the timing of food supply 511 

growth (in relation to both protein peak and overall biomass), the length of time food is available, 512 

and anti-predator behavior exhibited (Jarman, 1974; Rutberg, 1987; Ims, 1990; Sinclair et al., 513 

2000; Kingdon, 2015). According to Sinclair et al. (2000), most small bovid species living in small 514 

groups with non-precocial calves give birth during the wet season, although they do not exhibit a 515 

high degree of birth synchronicity. Gazella spp. for example, tend to produce their young early in 516 

the wet season, ahead of the high protein peak (Sinclair et al., 2000). In contrast, bovids living in 517 

larger herds with precocial young tend to have more tightly synchronized birth periods (Sinclair et 518 

al., 2000). Of particular relevance to the Kanjera South zooarcheological assemblage —where 519 

Alcelaphini (3a) play an important role (Ferraro et al. 2013; Oliver et al. 2019)—topi (Damaliscus 520 

lunatus) births also tend to peak around the onset of the wet season (Sinclair et al., 2000). As such, 521 

the number of juveniles from a range of bovid species is likely to peak during the wet season 522 
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(Pereira et al., 2014; Kingdon, 2015). This abundance makes them a paramount seasonal resource 523 

that is most frequently exploited by omnivorous, rather than obligate, carnivores (Pereira et al., 524 

2014). 525 

Small African antelope species, such as Gazella spp. and dik-dik (Madoqua spp.), follow a 526 

‘hider’ strategy (cf., Jarman, 1974), through which mothers conceal their calves rather efficiently 527 

in the tall grass, out of sight from stalking cheetahs and other predators (Murdock et al., 1983; 528 

Ralls et al., 1986; FitzGibbon, 1993). However, hominins would have been able to overcome these 529 

anti-predator strategies and turn them into a predictable source of compensatory hunting 530 

opportunities by investing time into learning how to track the maternal vocalizations of gazelles 531 

prior to their daily feeding instances (Lent, 1974). This knowledge would, in turn, reveal the 532 

location of vulnerable nursing juveniles to the hominin groups that were actively monitoring the 533 

behavior of these species (cf., Oliver et al., 2019). Gaining access to small bovid calves could have 534 

provided hominins with a mechanism to attract and capture adult females as well: recent 535 

observations of Hadza hunting practices documented how a hunter deliberately distressed a 536 

recently-captured kudu calf so it would call its mother for help (Corey, 2021). On the basis of prey 537 

ethology, we argue that the active human hunting of juvenile bovids in the grassland environment 538 

of Kanjera South evidences hominin presence during at least the early-mid wet season at the site. 539 

Such a seasonal pattern would be consistent with observations of wet season Hadza hunting 540 

patterns (Hawkes and O’Connell, pers. comm.), the relatively low levels of carnivore competition 541 

documented at the site (Parkinson, 2013), and the paleoecological relevance attributed to 542 

seasonally moist soils and ephemeral streams (Ditchfield et al., 2019). At the same time, more 543 

analytical data is needed to confirm the season of death of ungulates acquired at the site, with 544 

research into bovid tooth microwear patterns underway (T. Plummer and J. Oliver, pers. comm.). 545 
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If a pattern of broadly wet season ecology holds for the wider occupation of Kanjera South, we 546 

would predict hominins to be preferentially targeting fat-rich animal products when available, 547 

while also focusing on abundant and accessible plant resources, such as USOs. 548 

Such a preference for fatty resources may be hinted at in the exploitation of larger ungulates 549 

in the Kanjera South faunal assemblage. In comparison to the smaller bovid size classes, the 550 

mortality profiles for size 3 bovids at Kanjera South are still biased towards young and sub-adult 551 

individuals (see Table 3 above), although they show an increase in the proportion of prime-aged 552 

individuals with regards to the minimum number of individuals (MNI; Oliver et al., 2019). This 553 

pattern has been suggested to be representative of a combined strategy of compensatory hunting 554 

of younger individuals as well as the scavenging of carcasses from other carnivore kills (Oliver et 555 

al., 2019). The zooarcheological evidence for the medium-large bovid assemblage at Kanjera 556 

exhibits an uneven skeletal part representation that reflects a weight-minimizing carcass transport 557 

strategy (Ferraro et al., 2013). Selective body part transport should reflect an attempt to maximise 558 

net nutritional returns, although the overrepresentation of bovid crania and mandibles at Kanjera 559 

South, differs from usual patterns documented among the Hadza and other hunter-gatherers 560 

(Binford, 1978; Bunn et al., 1988; O’Connell et al., 1988a; O’Connell et al., 1990; Metcalfe and 561 

Barlow, 1992; O’Connell et al., 1992; Schoville and Otárola-Castillo 2014). We speculate this 562 

deviation may be a consequence of a) a potentially greater reliance on passive scavenging when 563 

acquiring cranial remains, resulting in reduced access to the yields of other body parts, and/or b) 564 

that ethnographic observations of carcass acquisition and transport often take place in the dry 565 

season, which may not account for seasonal fluctuations in the nutritional quality of different body 566 

parts. In this context, marked asymmetries in skeletal part profiles of prime-aged individuals in the 567 

Kanjera medium-large bovid assemblage—potentially derived from overlapping and very 568 
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different acquisition and butchery events (cf., Lupo, 2001)—may also skew the overall MNI 569 

patterns away from juvenile specimens, which still represent 50% of individuals in this bovid size 570 

class (Table 3).  571 

 The taphonomic signatures of post-cranial remains of medium-large bovids highlight the 572 

presence of cut-marks on ribs and limb bones, occurring alongside a limited number of carnivore 573 

tooth marks (Ferraro et al., 2013; Parkinson, 2013). This taphonomic pattern indicates that 574 

hominins had access to viscera and highly-prized cuts of meat. These body parts are usually 575 

consumed quickly by lions and other carnivores following a kill (O’Connell et al., 1988b; 576 

Domínguez-Rodrigo, 1999). This pattern would suggest that the role of primary carcass acquisition 577 

methods in the formation of the post-cranial faunal assemblage was quite considerable, perhaps 578 

resembling more closely the pattern of hunting young and subadult individuals suggested by Oliver 579 

et al. (2019) for the smaller bovid size class. A recent comparative multivariate discriminant 580 

analysis of Oldowan mortality patterns further indicates that Kanjera South hominins had early 581 

access to medium-sized bovids (Cobo-Sánchez, 2020). 582 

With regards to post-cranial within-bone nutrients, Parkinson (2013) notes that percussion 583 

marks in the entire bovid assemblage are predominantly found on tibiae (c.40%)—the highest-584 

ranked bone for marrow extraction in terms of calorific output (Blumenschine and Madrigal, 585 

1993)—while their overall count across all main long limb bones is low (n = 15/6%, consistent 586 

with the 6–9% values on midshaft fragments reported by Ferraro et al., 2013). This pattern of low 587 

percussion mark counts despite high bone fragmentation might have been caused by a breakage 588 

pattern in which hominins broke the bones against an anvil (Oliver, 1992; Parkinson, 2013). 589 

Nonetheless, the low emphasis on within-bone nutrients of limb bones at the site may have also 590 

been related to the seasonal temporality of marrow fat depletion (Sinclair, 1975; Speth, 1987; 591 
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Speth et al., 1991). In this context, we also note that the proportion of midshafts with percussion 592 

marking increases with bovid size class in the KJS-1 and KJS-2 units (Parkinson, 2013). This 593 

pattern is consistent with observations that larger animals preserve increased quantities of fat for 594 

longer during periods of nutritional depletion (Cordain et al., 2000). 595 

The overabundance of isolated cranial and mandibular remains seems to suggest a 596 

preferential transport of these elements to the site, with the presence of clear percussion striae 597 

confirming that hominins targeted the consumption of their contents (Ferraro et al., 2013). The 598 

excess cranial elements in proportion to post-cranial MNI counts may imply a different 599 

procurement strategy, perhaps involving some extent of scavenging on skeletal parts left 600 

untouched by primary predators (Ferraro et al., 2013; Oliver et al., 2019). Alternatively, their 601 

presence may reflect the selective exploitation of natural deaths derived from late dry season 602 

carrion pulses, and/or the hunting of these animals primarily to target their crania and mandibles 603 

before an early abandonment of the rest of the fat-depleted carcass. Regardless, the procurement 604 

and exploitation of cranial remains would be consistent with an attempt to maximize consumption 605 

of fatty and energy-dense animal resources, such as brain matter and the mandibular nerve and/or 606 

marrow (Blumenschine, 1987; Speth, 1987; Cordain et al., 2000; Ferraro et al., 2013). Since fatty 607 

brain tissue contains one of the lowest protein percentages of any animal tissue (Jayathilakan et 608 

al., 2012), their consumption would have assisted Kanjera South hominins in avoiding the ‘protein 609 

ceiling’. The behavioral patterns inferred for the hominins at Kanjera South can be integrated into 610 

a coherent animal exploitation strategy using insights from observations of modern hunter-611 

gatherers. In their ethnoarcheological study of a Kua rainy season camp (//oabe I)—occupied by 612 

14 people for 7 nights—Bartram et al. (1991) noted that all nine ungulates procured were juvenile 613 

or neonatal, easily obtained once their hiding places were located, and the juvenile carcasses were 614 
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brought back whole to the camp. Furthermore, the Kua processed the skulls at the site to extract 615 

the brains and cranial pulps (Bartram et al., 1991). The acquisition of younger complete carcasses, 616 

alongside the larger bovid skulls, may have provided the Kanjera hominins with a similar 617 

opportunity to intensively exploit fat resources from younger carcasses and to obtain fat-rich 618 

material from both the complete juveniles and isolated skulls, including the fatty cranial matter. 619 

As well as the evidence for the targeting of fatty animal resources, there is evidence for the 620 

exploitation of non-animal resources at Kanjera South. Indeed, use-wear analysis of the lithics 621 

reveals that, while around a third of tools were associated with butchery, the majority show signs 622 

of use related to the processing of medium-hard plant material, including wood and USOs 623 

(Lemorini et al., 2014; Lemorini et al., 2019). The processing and consumption of USOs at Kanjera 624 

South may match our predictions that they were a seasonally-relevant resource for hominins during 625 

times of reduced preferred food availability, such as when terrestrial ungulates are dispersed and/or 626 

fat-depleted (e.g., Speth, 1987; Laden and Wrangham, 2005; Hernandez-Aguilar et al., 2007; 627 

Marlowe and Berbesque, 2009; Wrangham et al., 2009; Sato et al., 2012).  628 

The use-wear data also highlight a preferential use of non-local quartzites and rhyolites in 629 

plant processing, with the four analyzed retouched flakes of these materials showing evidence of 630 

cutting and scraping activities on medium-hard surfaces. At least three of these flakes were used 631 

on wood or hard herbaceous plants (Lemorini et al., 2014; Lemorini et al., 2019). This use-wear 632 

evidence for wood processing may be related to the production of organic tools, potentially 633 

including digging sticks for the extraction of USOs and hunting spears (Lemorini et al., 2014; 634 

Lemorini et al., 2019). Chimpanzees are known to use a diverse set of manufactured wooden tools, 635 

predominantly during the (early) wet season, for these purposes (Hernandez-Aguilar et al., 2007; 636 

Pruetz and Bertolani, 2007; Wynn et al., 2011), as well as for colonial invertebrate fishing 637 
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(McGrew et al., 1979; Goodall, 1986; Stewart and Piel, 2014; Hicks et al., 2019; Pascual-Garrido 638 

and Almeida-Warren, 2021). The Hadza also use wooden digging sticks to access USOs (Vincent, 639 

1985). While preservation of wood is rare in the archeological record, recent finds from 640 

Gantangqing, China, indicate that hominins in subtropical environments were (seasonally) 641 

manufacturing such pointed implements and using them to obtain USOs, at least by the Late 642 

Middle Pleistocene (Gao et al., 2021). Investment in the production of wooden implements at 643 

Kanjera South is consistent with an attempt to minimize acquisition and processing costs of a 644 

desirable and predictable resource to maximize return yields (Ferraro, 2007; Clark and Linares-645 

Matás, 2020). Although similar use-wear analyses at other sites are required for comparative 646 

purposes, we suggest that plant resource exploitation at this site  may have played a greater role in 647 

governing the intensive exploitation of raw materials and the movement of lithics throughout the 648 

landscape than is conventionally discussed in the Oldowan literature. 649 

 650 

4.2 FLK-Zinj 651 

Frida Leakey Korongo-Zinjanthropus (FLK-Zinj) is a site located in Olduvai Gorge, 652 

Tanzania, situated within a very tight geographic cluster with most of Mary Leakey’s (1971) sites 653 

in the Upper Member of Bed I. This pattern may be coincidental, or a reflection of specific features 654 

of the Olduvai landscape which were particularly attractive for the subsistence activities of 655 

hominins and carnivores (Domínguez-Rodrigo et al., 2010). Indeed, paleogeographic 656 

reconstruction of the Olduvai landscape emphasizes the presence of a saline-alkaline lake and a 657 

perennial freshwater spring, the latter of which lies very close to the known cluster of Bed I sites 658 

(Ashley et al., 2010; Domínguez-Rodrigo et al., 2010; Blumenschine et al., 2012). The presence 659 

of the perennial spring amidst lower lake levels fostered the development of a biodiverse 660 
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freshwater wetland at Olduvai (Ashley et al., 2009; Ashley et al., 2010; Domínguez-Rodrigo et al., 661 

2010). This ecological setting would have been extremely attractive to dehydrated herbivores 662 

throughout the dry season—and by extension to hominins and carnivores, due to both their needs 663 

for drinking water and the opportunities for the active procurement of prey (Speth and Davis, 1976; 664 

Domínguez-Rodrigo et al., 2010; Hawkes, 2016; Domínguez-Rodrigo et al., 2019a). 665 

On the basis of paleoecological reconstructions, the location of FLK-Zinj, on a topographical 666 

elevation by the edge of a lake floodplain, may have enjoyed a mosaic woodland vegetation pattern 667 

which could have offered hominins some degree of protection from carnivores (Ashley et al., 2010; 668 

Blumenschine et al., 2012; Uribelarrea et al., 2014; Arráiz et al., 2017). The skeletal part profiles 669 

of the site show a diverse taxonomic composition and near-complete representation of skeletal 670 

parts, although with an underrepresentation of the axial skeleton. Bunn (1986) suggests the high 671 

proportion of cranial remains and long bones suggests selective transport of high-ranking body 672 

parts into the site, whereas Blumenschine (1991) suggested that the pattern could reflect hominin 673 

transport of skeletal remains from scavenged carnivore kills. Other authors have suggested that the 674 

underrepresentation of axial elements and the limited evidence for disarticulation at FLK-Zinj 675 

derives from processes resulting in density-mediated differential preservation, such as secondary 676 

carnivore ravaging (Marean et al., 1992). From this perspective, near-complete carcasses would 677 

have been originally transported to the site from procurement spots located relatively short 678 

distances away (O’Connell et al., 2002; Faith et al., 2009; Domínguez-Rodrigo et al., 2010). Some 679 

degree of carcass transport towards a more sheltered spot mitigated carnivore competition at FLK-680 

Zinj, evidenced by the presence of tooth marks on bovids and even on at least one hominin 681 

individual, bearing crocodile and leopard tooth marks (Domínguez-Rodrigo et al., 2010; 682 

Blumenschine et al., 2012; Njau and Blumenschine, 2012; Egeland, 2014; Aramendi et al., 2017). 683 
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While most Bed I lithic assemblages are associated with fauna of initial carnivore origin 684 

(Domínguez-Rodrigo et al., 2007), the functional association of lithics and faunal remains at FLK-685 

Zinj is reinforced by taphonomic evidence suggesting hominins had primary access to the 686 

carcasses (e.g., Bunn, 1981; Domínguez-Rodrigo, 1997; Domínguez-Rodrigo and Barba, 2006; 687 

Parkinson, 2018). These factors indicate that carcass procurement and processing were co-688 

occurring spatially at FLK-Zinj (Domínguez-Rodrigo and Cobo-Sánchez, 2017). Nonetheless, 689 

there is debate as to whether the dense concentrations of lithic artifacts and exploited faunal 690 

remains during the accumulation of the sedimentary unit at this focal point for hominin activity 691 

reflects prolonged occupations (e.g., Ashley et al., 2010), or a series of brief but recurrent visits 692 

limited to feeding (e.g., Blumenschine et al., 2012) within an extremely productive environment.  693 

The taxonomic composition of the FLK-Zinj anthropogenic faunal assemblage mostly 694 

reflects local, non-migratory species, such as Kobus, Antidorcas, and Parmularius (Domínguez-695 

Rodrigo et al., 2019b). Springbok (Antidorcas sp.) dominates the small-medium (size 1–2) 696 

assemblage, while waterbuck (Kobus sp.) is the most common amongst the size 3 bovids (Bunn 697 

and Pickering, 2010). Nowadays, migratory taxa (i.e., wildebeest [Connochaetes gnou]) are 698 

present in the Olduvai landscape mostly during the short wet season (Domínguez-Rodrigo et al., 699 

2019b), although resident subpopulations may remain in the region year-round. Thus, if these 700 

actualistic patterns are relevant for understanding Early Pleistocene paleoecological patterns, the 701 

underrepresentation of migratory taxa would primarily suggest a dry season occupation 702 

(Domínguez-Rodrigo et al., 2019a). Models of calorific return from the marrow of different long 703 

bones at FLK-Zinj suggest that the exploited animals had suffered only very limited fat depletion 704 

(Blumenschine and Madrigal, 1993). This observation would also be consistent with a broadly dry 705 

season occupation.  706 
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While sample sizes are currently small, meso-wear and micro-wear patterns on ungulate 707 

teeth from the site suggest that the anthropogenic components of the FLK-Zinj assemblage likely 708 

formed during a single seasonal occupation, in contrast to the carnivore-accumulated Olduvai 709 

assemblage of FLK-N, which reflects more prolonged periods of carcass acquisition throughout 710 

the year (Domínguez-Rodrigo et al., 2019b). The tooth wear pattern could also represent repeated 711 

occupations in the same season over time, but the limited subaerial weathering documented on 712 

bone surfaces is more suggestive of relatively rapid sedimentary deposition (Domínguez-Rodrigo 713 

et al., 2007; Domínguez-Rodrigo et al., 2019b). Waterbuck teeth, the best-represented size 3 bovid 714 

at the site, exhibit a microwear pattern consistent with a mixed feeding diet (Domínguez-Rodrigo 715 

et al., 2019b). This pattern would better fit the dry season dietary preferences of waterbuck, since 716 

reduncines tend to follow a predominantly grazer regime during the wet season (Child and Richter, 717 

1969; Herbert, 1972; Spinage, 1982; Gagnon and Chew, 2000; Kassa et al., 2007). Assuming FLK-718 

Zinj was indeed primarily occupied during the dry season, we suggest that procurement of 719 

terrestrial animal resources, including meat, should represent an important part of the dietary 720 

strategy at the site. 721 

The mortality profiles of size 1 and 2 bovids at FLK-Zinj are old-dominated (5/7, 71%; Bunn 722 

and Pickering 2010; Table 4). This pattern differs from leopard ambush hunting strategies, mostly 723 

focused on prime adults, meaning it is unlikely that size 1 and 2 bovids were confrontationally 724 

scavenged (Bunn and Pickering, 2010). Furthermore, primary hominin access is inferred 725 

taphonomically on the basis of the distribution of cut-marks on the high meat-yielding proximal 726 

and intermediate limb bones, complemented by the presence of percussion marks for marrow 727 

extraction, particularly on the tibiae (Parkinson, 2018). Early access is also supported by the nature 728 

of tooth mark density distribution on the tibiae and other hindlimb bones, which closely resembles 729 
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an experimental model in which the carnivore access follows hominin hammerstone use 730 

(Parkinson, 2018). Taken together, we would argue that the age profile seen amongst the small-731 

medium bovids at FLK-Zinj is most consistent with compensatory hunting of vulnerable 732 

individuals. 733 

Bovid category Young 

juveniles 

Subadult 

juveniles 

Early prime 

adults 

Late prime 

adults 

Old adults Total 

MNI 

Smaller bovids (sizes 1–2) 0 (0.0%) 1 (14.3%) 1 (14.3%) 0 (0.0%) 5 (71.4%) 7 

Larger bovids (sizes 3a/3b/4) 2 (10.0%) 4 (20.0%) 8 (40.0%) 4 (20.0%) 2 (10.0%) 20 

Waterbuck (Kobus sigmoidalis) 2 (22.2%) 0 (0.0%) 3 (33.3%) 4 (44.4%) 0 (0.0%) 9 

Abbreviations: MNI = minimum number of individuals. 734 

Table 4: Bovid mortality profiles from FLK-Zinj, in terms of MNI (%). Data derived from Bunn 735 

and Pickering (2010: Table 1). 736 

 Large bovid procurement strategies at FLK Zinj have been variously interpreted as evidence 737 

of selective ambush hunting (e.g., Bunn and Pickering, 2010; Domínguez-Rodrigo and Pickering, 738 

2017), non-selective (living structure), ambush hunting resembling Hadza and Kua practices 739 

(Bunn and Gurtov, 2014), passive scavenging of felid-exploited carcasses (e.g., Blumenschine et 740 

al., 2012; Pante et al., 2015), confrontational scavenging of carnivore kills (e.g., Bunn, 2001; Bunn, 741 

2007; O'Connell et al., 2002), or exploitation of carrion pulses (Capaldo and Peters, 1995; Lim, 742 

2008). These strategies have also been evaluated with taphonomic evidence for hominin 743 

engagement with the carcasses, as well as the mortality profiles of the large bovid remains. With 744 

regards to the latter, the age profiles reported by Bunn and Pickering (2010) show a predominance 745 

of prime-aged individuals (12/20; 60%), with the proportion increasing to 77.8% (7/9) for 746 

waterbuck (Kobus sigmoidalis, size 3b). 747 
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Carrion pulses due to natural mortality are common towards the end of the dry season, when 748 

large herbivores are most likely to succumb to severe physiological stress (Sinclair et al., 2003; 749 

Pereira et al., 2014). However, they are unlikely to have provided extensive amounts of edible 750 

meat for hominins at FLK-Zinj, since these carcasses would be severely fat-depleted and thus not 751 

metabolically profitable (Speth, 1987; Blumenschine, 1987). Moreover, the mortality profiles at 752 

the site, especially the underrepresentation of old-age individuals, are substantially different to 753 

modern mass death events (Bunn and Gurtov, 2014). This is supported by systematic sampling 754 

carried out by The Olduvai Palaeoanthropology and Palaeoecology Project (TOPPP), which did 755 

not document large quantities of carcasses near the perennial spring at the time of FLK-Zinj 756 

occupation. This suggests that the hominin presence in the landscape was not coeval with any 757 

sizable carrion pulse (Domínguez-Rodrigo et al., 2010). 758 

The proposal of a marginal and passive interaction with exploited and abandoned carnivore 759 

kills is undermined by evidence for recurrent early hominin access to the flesh of these 760 

medium/large animals (e.g., Domínguez-Rodrigo et al., 2007; Parkinson, 2013). Both femora and 761 

radio-ulnae show dense clusters of cut-marks in ‘hot zones’ (cf., Domínguez-Rodrigo, 1999), 762 

demonstrating that hominins had primary access to fleshed carcasses (Oliver, 1994; Parkinson, 763 

2018). Confrontational scavenging has been proposed as one way of reconciling evidence for 764 

primary access without implying hominin hunting, since carnivore kills were a recurrent feature 765 

of the Olduvai Bed I paleolandscape (Bunn and Kroll, 1986; Bunn, 2001; O’Connell et al., 2002) 766 

and carnivore predation is a major source of mortality for medium-sized ungulates in the Serengeti 767 

(Sinclair et al., 2003). These suggestions are, however, also difficult to reconcile with the cut-mark 768 

distribution data discussed above, since the same elements of size 3 bovids with abundant cut-769 

marks at FLK-Zinj tend to be defleshed quickly by lions (O’Connell et al., 1988b; Domínguez-770 
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Rodrigo, 1999; Bunn and Pickering, 2010; Gidna et al., 2014). Furthermore, the mortality profiles 771 

of lion kills are significantly different to that seen at FLK-Zinj, and the penecontemporaneous site 772 

of DS, as the former tend to include substantially fewer prime adults (Bunn and Pickering, 2010; 773 

Bunn and Gurtov, 2014; Cobo-Sánchez, 2020). Lastly, studies on the behavioral ecology of 774 

carnivore predation have shown that extant lions tend to preferentially target larger prey sizes when 775 

they are available, especially buffalo (size 4), across a range of ecosystems (Funston and Mills, 776 

2006; Davidson et al., 2013; Dublin and Ogutu, 2015). This contrasts with the predominance of 777 

size 1–3b bovids in anthropogenic Olduvai Bed I assemblages (Bunn and Pickering, 2010; Cobo-778 

Sánchez, 2020), further emphasizing that large felids were unlikely to have been the main agent 779 

of accumulation at FLK-Zinj. 780 

At FLK-Zinj, there is a single high-density cluster of faunal remains (Leakey, 1971). While 781 

bone refuse in modern hunter-gatherer campsites tends to display a multi-cluster distribution that 782 

differs from the FLK-Zinj pattern (Domínguez-Rodrigo and Cobo-Sánchez, 2017), the high 783 

density of remains at the site mirrors the abundance of bone leftovers noted for dry season Kua 784 

camps in the Kalahari (Bartram et al., 1991). While ca. 23% of the analyzed assemblage exhibits 785 

tooth-marks (Domínguez-Rodrigo et al., 2007; Parkinson, 2018), their distribution is not clustered 786 

on primary-access areas, and thus they do not challenge the predominantly anthropogenic origin 787 

of the assemblage (Parkinson, 2018). Instead, on the basis of the morphometry of tooth marks on 788 

cancellous bone and the deletion of epiphyses, ribs, and pelvis fragments, it appears that hyenids 789 

subsequently ravaged the FLK-Zinj faunal assemblage, which would account for the high tooth 790 

mark frequencies (Domínguez-Rodrigo and Barba, 2006; Parkinson, 2018). These secondary 791 

scavengers were likely attracted to the high concentration of bone refuse, scattering some of the 792 
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remains away from the main cluster in the process (cf., Camarós et al., 2013; Domínguez-Rodrigo 793 

and Cobo-Sánchez, 2017).  794 

In addition to the zooarcheological and taphonomic data, actualistic insights from bovid 795 

ecology can help elucidate further the nature of hominin carcass acquisition at the site. Since Kobus 796 

sigmoidalis is the most abundant size 3 bovid at FLK-Zinj (Bunn and Pickering, 2010), we center 797 

our discussion around it. This extinct waterbuck species is similar in size and phenotype to the 798 

extant Kobus ellipsiprymnus in East Africa, presumably occupying similar habitats (Spencer, 799 

1997). The species is gregarious and non-migratory (Foley, 1983), living in groups of 6–30 800 

individuals. Waterbuck stay near active water sources, particularly during the dry season, since 801 

waterbuck do not tolerate dehydration well (Taylor et al., 1969; Foley, 1983; Estes, 2004).  802 

Females and their offspring form nursery herds, whereas young males unite in bachelor 803 

herds, roaming the landscape in pursuit of an opportunity to displace the prime territorial male, 804 

which is most dominant at 6–9 years of age (Kingdon and Hoffman, 2013). However, territorial 805 

competition between bachelor herds and dominant males often results from the decrease in food 806 

availability associated with the dry season (Tomlinson, 1979; Tomlinson, 1981). These tensions 807 

lead to increases in activity which, alongside the decrease in food intake, is known to result in a 808 

substantial decline in body condition in impala and other antelope species during periods of 809 

competition, such as the rut (Murray, 1982; Van Rooyen, 1993). Around the age of ten, the primacy 810 

of territorial males is often irrevocably challenged and they are replaced. After losing their status 811 

and territory, these late prime males recede to small and unprotected areas of the landscape, which 812 

renders them more vulnerable to predators (Kingdon and Hoffman, 2013). These late prime 813 

individuals, however, are not yet ontogenetically old, since waterbuck live around 18 years in the 814 

wild. As such, dry season hunting strategies should have avoided the acquisition of territorial, 815 
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prime-aged males, not only because they might have been more difficult to hunt, but also because 816 

they would have experienced fat depletion much quicker than other age and sex groups, such as 817 

late prime males and especially pregnant waterbuck females. Kidney fat indices for many species, 818 

such as impala (Aepyceros melampus) and nyala (Tragelaphus angasii), tend to be higher in 819 

pregnant than non-pregnant individuals (Spinage, 1984).  820 

A detailed examination of the waterbuck adult sample at FLK-Zinj (n = 7) shows that there 821 

is a complete absence of peak prime-aged males (Bunn and Pickering, 2010). The sexual 822 

dimorphism of this species allows the identification of three smaller, early prime females and four 823 

larger, late prime males, which Bunn and Pickering (2010) suggest could represent these older, 824 

non-territorial individuals. Furthermore, on the basis of unworn upper and lower deciduous 825 

premolars, at least two, likely three, fetal individuals are present in the assemblage, which suggests 826 

that the early prime females were captured during late gestation (Bunn and Pickering, 2010). 827 

During this stage, pregnant female ungulates are most vulnerable to predation (Molinari-Jobin et 828 

al., 2004; Owen-Smith, 2008). Furthermore, adult waterbuck females are observed in open forested 829 

environments much more often than expected when compared to territorial and bachelor males 830 

(Wirtz and Kaiser, 1988), perhaps making their presence in the woodland surrounding FLK-Zinj 831 

more likely. Therefore, while the adult waterbuck individuals were ontogenetically prime, the 832 

overrepresentation of pregnant females and late prime males suggests that hominins at FLK-Zinj 833 

were more successful when targeting nursery herds and lone individuals as they passed through 834 

woodland on approach to the perennial spring. Increases in hunting success rates would have 835 

ensured that more individuals within the group obtained access to meat-derived nutrients (Kaplan 836 

and Hill, 1985; Speth, 1990; Tennie et al., 2009). 837 
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As such, we argue that Oldowan hominins enjoyed higher success rates when engaging in 838 

compensatory hunting strategies targeting seasonally-vulnerable prey demographics. The active 839 

exploitation of fleshed carcasses during the dry season would have provided hominins with early 840 

access to energy-dense resources, such as meat (~15% of bone specimens at FLK-Zinj display cut-841 

marks; Parkinson, 2018) and within-bone nutrients, such as marrow (22–23% exhibit percussion 842 

marks; Domínguez-Rodrigo et al., 2007; Parkinson, 2018). The resulting composition of the 843 

assemblage, biased towards individuals who would subsequently be more likely to succumb to 844 

physiological stress later in the dry season, may also help explain the degree of overlap in mortality 845 

profiles between FLK-Zinj and the mostly non-anthropogenic ‘background’ assemblages at other 846 

Olduvai Bed I sites (Bunn and Pickering, 2010: Figure 3). 847 

We also suggest that dry season hunting patterns may have played a role in the expedient 848 

nature of the lithic toolkit at FLK-Zinj, suggested by the overall predominance of relatively simple 849 

unidirectional and unifacial reduction schemes and the lack of retouch on flakes (de la Torre and 850 

Mora, 2005; Gallotti, 2018). Our seasonality framework would suggest that the meat and within-851 

bone nutrients of terrestrial ungulates were important resources for hominins throughout most of 852 

the dry season, as they are for the Hadza (Bunn et al., 1988; Hawkes et al., 1991; O’Connell et al., 853 

1992; Marlowe and Berbesque, 2009). Future use-wear analysis will help to test this at FLK-Zinj 854 

(cf., Bello-Alonso et al., 2019). Nevertheless, successful carcass acquisition endeavors may have 855 

been rather unpredictable at the daily scale (Hawkes, 2000), making it more difficult to time the 856 

use of tools throughout the landscape. In this context, we note the finding of Binford (1979) that 857 

the lithics produced by the Nunamiut for an immediate need were notably less complex than those 858 

used in pre-planned activities. Moreover, Kua hunter-gatherer groups in the Kalahari tend to 859 

consume carcasses almost immediately during the hot dry season, and transport them only across 860 
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short distances, to minimize their exposure to heat and predators (Bartram et al., 1991). Therefore, 861 

while short-distance movement of carcasses from acquisition spots to the woodland ecotone at 862 

FLK-Zinj provided some relative safety, these hazards would have fostered an expedient toolkit 863 

that could be produced quickly to extensively process carcasses in a minimized amount of time. 864 

The butchery activities documented taphonomically at FLK-Zinj heavily emphasize filleting 865 

rather than disarticulation (Parkinson, 2018), and slicing meat offers little resistance to lithics 866 

(Bello-Alonso et al., 2019). As such, the task can be achieved as successfully with unretouched 867 

than with retouched flakes (Jones, 1994), thus discouraging the additional investment required by 868 

the latter. That lithics and faunal remains at FLK-Zinj are functionally associated is further 869 

supported by their correlated spatial distributions (Domínguez-Rodrigo and Cobo-Sánchez, 2017). 870 

Risk-buffering processes may also explain investment in directional quartzite transport into the 871 

site from the Naibor Soit, rather than use of the local lava cobbles which predominate in Leakey’s 872 

(1971) unmodified manuports (de la Torre and Mora, 2005). Quartzite flakes display greater initial 873 

edge sharpness despite their reduced durability, and thus its selection suggests a desire to maximize 874 

efficiency in short-term tasks (Key et al., 2020). In this context it is interesting to note that such a 875 

preference for quartzite over basalt flakes (and handaxes) is directly associated with butchery 876 

practices at the Bed II sites of FLK-W and BK (Yravedra et al., 2017a; Yravedra et al., 2017b). 877 

Hominins were thus likely to have been planning their repeated visits to the site following 878 

acquisition of carcasses during the dry season (Domínguez-Rodrigo et al., 2010). This behavioral 879 

scheduling would have provided an opportunity to minimize the costs of transporting quartzite 880 

across the landscape during hunting forays by maintaining a raw material presence at a known 881 

processing spot, and quickly producing usable flakes when carcasses were brought to the site (cf., 882 

Potts, 1984; Potts, 1991). 883 
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5. Discussion 884 

5.1. Seasonality and Oldowan behavioral flexibility at Kanjera South and FLK-Zinj 885 

As outlined above, we argue that the available data from Kanjera South (Kenya) and FLK-886 

Zinj (Olduvai Gorge, Tanzania) evidence a pattern of seasonal variation in Oldowan subsistence 887 

strategies, which underscores the behavioral flexibility of early Homo. The term ‘behavioral 888 

flexibility’ has a long history of use in relation to animal learning and adaptation in the fields of 889 

behavioral psychology and behavioral ecology (e.g., Dickinson, 1981; Kummer and Goodall, 890 

1985; Tebbich et al., 2010; Navarrete et al., 2016; Audet and Lefebvre, 2017). The term is used 891 

here simply to highlight the problem-solving skills of Oldowan hominins, for whom seasonal shifts 892 

would have constantly re-structured acquisition priorities on the basis of resource quality and 893 

availability. 894 

Using the nature of resource acquisition and processing at FLK-Zinj and Kanjera South as a 895 

lens to study these phenomena, we suggest that seasonality played a profound role in the 896 

subsistence strategies of Oldowan hominins, mirroring observations made in extant nonhuman 897 

primates and modern human hunter-gatherers. Regarding terrestrial animal consumption 898 

specifically, compensatory hunting strategies targeting vulnerable prey demographics emerged at 899 

both sites, but differ in ways consistent with predictable seasonal cycles. At Kanjera South, small 900 

bovid hunting focused on the exploitation of young individuals (Ferraro et al., 2013), perhaps 901 

through the location and pursuit of newborn calves in the longer grasses (Oliver et al., 2019). On 902 

the basis of small savanna bovid ecology, we argue that such a hunting strategy is more likely to 903 

have been undertaken during the wet season, since most births tend to take place around the onset 904 

of the rains (Sinclair et al., 2000; Kingdon, 2015; Pobiner, 2020). As such, this strategy would not 905 
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have been as readily available at FLK-Zinj during the dry season. Instead, these hominins 906 

predominantly targeted the vulnerability of pregnant or older individuals. 907 

Meanwhile, carcass processing at Kanjera South was generally less intensive than at FLK-908 

Zinj, both in terms of defleshing and limb bone marrow processing (Domínguez-Rodrigo et al., 909 

2007; Ferraro et al., 2013; Parkinson, 2013; Parkinson, 2018). Instead, hominins at Kanjera South 910 

preferentially targeted the brains and/or cranial pulp of large bovid skulls as well as mandibular 911 

nerve and marrow (Ferraro et al., 2013), resources that would have maintained a greater fat content 912 

into the early wet season (Sinclair, 1975). In this context, we suggest that activities enabling access 913 

to consistently fat-rich resources, such as evisceration and brain extraction, would have been 914 

particularly important during these periods of ungulate depletion. In contrast, the utility of 915 

defleshing and marrow extraction would have been much greater when bovid fat stores were more 916 

substantial. We also speculate that disarticulation may have been more relevant throughout the wet 917 

season as a whole, as ungulate dispersal and hominin movement through the landscape were 918 

generally more extensive. Nonetheless, we note that ethnoarcheological assessments of differential 919 

body part transport by animal condition (pregnant, juvenile, feeble) or season of acquisition are 920 

limited by small sample sizes (Lupo, 2006), meriting further research. 921 

As ungulate carcasses exhibit fat depletion from the very late dry season into the wet season 922 

(Sinclair, 1975; McNaughton and Georgiadis, 1986), a contextual paleoecological assessment 923 

(Table 5) can assist in discerning seasonality when taphonomic research indicates a degree of meat 924 

and marrow avoidance (Speth, 1987; Blumenschine and Marean, 1993; Bunn and Ezzo, 1993). For 925 

example, within the Lower Augitic Sandstone (LAS) unit of HWK-EE (Olduvai Gorge), Pante et 926 

al. (2018) report a pattern of fat-depleted marrow and epiphyseal grease avoidance by both 927 

carnivores and hominins, characterized by high epiphyseal to shaft fragment ratios (0.23; cf., 928 
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Blumenschine and Marean, 1993) alongside low tooth mark (5.4%) and percussion mark values 929 

(7.8%). The proportion of midshaft fragments with percussion marks closely mirrors the 6–9% 930 

values reported for Kanjera South and are well below those from FLK-Zinj (Ferraro et al., 2013; 931 

Parkinson, 2018). This relatively limited engagement with within-bone nutrients occurs alongside 932 

cut-marked hippopotamid remains, a considerable number of shed crocodile teeth (Pante et al., 933 

2018), and a notable concentration of fish remains suggesting a catastrophic mortality episode 934 

(Bibi et al., 2018). This mortality profile is expected from modern observations of fish becoming 935 

trapped in pools as the water recedes in the late dry season (Leakey, 1971; Stewart, 1994). Extant 936 

crocodiles also tend to congregate within increasingly isolated pools of water towards the end of 937 

the dry season (Njau, 2012), a time they are known to share them with hippopotami (Kofron, 938 

1993). This suggests an occupation of LAS at HWK-EE that encompassed the very late dry season, 939 

which would be consistent with the more general dry season indication given by bovid tooth micro- 940 

and meso-wear data (Rivals et al., 2018). 941 

Given the patterns of marrow and grease avoidance, it is perhaps surprising that pounding 942 

and/or percussive tools at HWK-EE (found in greater number than at any other Olduvai Bed I–II 943 

site) are most abundant within the LAS (n = 283; 81.1%; Arroyo and de la Torre, 2018). The 944 

intensity of contact on the active areas of most of these tools suggest a direct percussive motion 945 

and use in hard hammer lithic manufacture (Arroyo and de la Torre, 2016, 2018). Many 946 

hammerstones with active edges (HAE), anvils, and subspheroids, however, have lower-intensity 947 

wear patterns (Arroyo et al., 2018). Experimental tools used to open nuts, tenderize meat, extract 948 

marrow from limb bones, and process tubers show low-intensity wear (de la Torre et al., 2013; 949 

Sánchez-Yustos et al., 2015; Arroyo et al., 2016). In this regard, the limited evidence for percussive 950 

breakage of bone shafts in this late dry season context (Pante et al., 2018) may suggest that these 951 
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pounding tools may have targeted resources other than marrow. In particular, nuts and seeds can 952 

represent an attractive seasonal source of unsaturated fats, often linked with the ripening (and 953 

rotting) of fruits and grasses at seasonal transitions (Testart, 1982; Hitchcock et al., 1996; Eaton et 954 

al., 1997; Lee 2013; Lombard and Kyriacou 2018). Procurement and consumption of nuts 955 

throughout the dry season is amply documented among African hunter-gatherers in both tropical 956 

rainforests and more open environments (Kitanishi 1994; Hitchcock et al., 1996; Sato et al., 2012; 957 

Lee, 2013; Remis and Jost Robinson 2014; Gómez et al., 2016; Ingram et al., 2017). Nuts and 958 

seeds may therefore have been possible resources requiring pounding that could compensate for 959 

fat depletion in Oldowan food procurement strategies, particularly during the very late dry season.  960 

Table 5: Summary of predictions discussed in the text for assessing seasonality of site use in the 961 

Oldowan, derived from the comparison of Kanjera South and FLK-Zinj and incorporating insights 962 

from other Early Pleistocene localities discussed in the text. Presence or absence of migratory taxa 963 

may also be a relevant seasonal, landscape-specific paleoecological signature. Note that hominin 964 

occupation at some Oldowan sites may span more than one season or a seasonal transition 965 

(potentially including FwJj20), while natural site formation processes may also result in the 966 

deposition of background material from successive seasons. With regards to assessments of 967 

mortality profiles, skeletal part profiles, and spatial distribution of faunal remains, it is important 968 

to consider the impact of secondary carnivore ravaging, post-depositional transport, and bone 969 

preservation biases due to biogeochemical processes. Any of these factors would compromise the 970 

integrity of the faunal assemblage, making inferences regarding the specific nature and intra-971 

annual timing of hominin activity more difficult. 972 
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973 Season Paleoecological signatures Taphonomic patterns Habitat selection Lithic evidence 

Dry season Broadly dry 

season 

Clustering of water-

dependent taxa 

Higher carnivore 

competition 

Greater emphasis on 

defleshing 

High-density, clustered 

distribution of faunal 

remains 

Perennial springs and 

watercourses 

Mosaic woodlands 

offering tree cover 

 

Shorter transport distances 

More expedient reduction 

schemes 

Limited emphasis on flake 

retouch 

Greater use-wear emphasis 

on animal butchery Very late 

dry season 

Shed crocodile teeth 

Mass fish concentrations 

High co-occurrence of 

crocodile and hippopotamus 

remains 

Marrow and meat 

avoidance 

Wet season Broadly 

wet season 

High plant biomass 

availability 

Lower carnivore competition 

Abundance of testudine 

remains 

Greater emphasis on 

evisceration  

Lower densities of 

faunal remains 

Fluvial contexts and 

seasonal watercourses 

Grasslands 

Increased transport 

distances 

More intensive reduction 

schemes 

Greater emphasis on flake 

retouch 

Greater use-wear emphasis 

on plant processing 

Early wet 

season 

Abundance of bovid juveniles 

Catfish in fluvial contexts 

Emphasis on head 

contents 

Limited emphasis on 

meat and marrow 
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In contrast to HWK-EE, we would suggest that palaeoecological indicators suggest that the 974 

bulk of hominin activity at Kanjera South likely occurred in the wet season. The opportunistic 975 

availability of medium-large bovid heads from carrion pulses and/or carnivore kills may mean that 976 

occupation of the site began in the very late dry, but only the early wet would account for the 977 

abundance of juvenile bovids in the context of the renewal of plant biomass in this grassland 978 

ecosystem. Furthermore, the aforementioned rarity of water-dependent reduncines at Kanjera 979 

South stands in contrast to the predominance of Kobus at FLK-Zinj (Oliver et al., 2019), despite 980 

both sites having a perennial water source nearby. Waterbuck are known to show a tight 981 

relationship between habitat quality and population density, with feeding areas clustering around 982 

water sources in the dry season and dispersing into well-watered open grasslands with the onset of 983 

the rains (Tomlinson, 1981; Spinage, 1982; Wirtz and Kaiser, 1988). Therefore, the contrasting 984 

patterns of reduncine abundance at FLK-Zinj and Kanjera South are consistent with a broadly wet 985 

season attribution to the latter. 986 

The prevailing character of the FLK-Zinj lithic assemblage is one of expediency, as indicated 987 

by the predominance of unifacial, unidirectional reduction strategies, and only very limited 988 

secondary retouch (Leakey, 1971; de la Torre and Mora, 2005; Gallotti, 2018). Some of this 989 

reduced investment may be related to the relatively reduced cost of abandoning a local raw 990 

material, and indeed different Oldowan sites at Olduvai show a linear reduction in the weight, 991 

density, proportion, and reduction intensity of quartzite raw material in the assemblage with 992 

distance from the Naibor Soit (Blumenschine et al., 2008). However, there are clear deviations 993 

from this trend which may suggest additional ecological influences on the lithic assemblages, with 994 

Blumenschine and colleagues (2008) suggesting that the magnitude of the deviations from the 995 

distance-decay trend may be related to the extent of task-specific raw material utility 996 
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(Blumenschine et al., 2008). Indeed, the functional expediency at FLK-Zinj is underlined by the 997 

likely selection of quartzite materials (over the more durable and immediately local lava) for their 998 

cutting efficiency (Key et al., 2020). 999 

This contrasts with the pattern at Kanjera South, where selection of materials emphasized 1000 

durability over flaking predictability (Braun et al., 2009a). Had Kanjera South shared a similar 1001 

emphasis on the fast production and use of raw material with FLK-Zinj, we would have expected 1002 

flaking predictability to have been a more important factor in the knapping of material. Instead, 1003 

the hominins at the site were willing to accept a greater risk of shorter flakes with less sharp edges 1004 

and a greater chance of hinge and step fractures in order to produce more durable cutting edges 1005 

(Braun et al., 2009a). This emphasis on tool durability at Kanjera occurs alongside the 1006 

aforementioned increased frequency of investment in reduction (particularly bifacial centripetal 1007 

reduction schemes), producing longer cutting edges relative to flake mass, and in secondary 1008 

retouch, with certain raw materials being transported into the site from >10 km away (Braun et al., 1009 

2008; Braun et al., 2009a; Braun et al., 2009b; Reeves et al., 2021). This implies a decoupling of 1010 

lithic use from specific points on the landscape (cf., Braun and Harris, 2003). In addition, non-1011 

local materials at Kanjera tend to be among the most durable, and show the most retouch (Braun 1012 

et al., 2009a; Braun et al., 2009b; Lemorini et al., 2014), a technological strategy that would have 1013 

enhanced further the potential use-life of the tools (Jones, 1981). This trade-off implies that 1014 

hominins were planning more abrasive or time-consuming activities such as skinning and/or the 1015 

processing of medium-hard plant tissues (Braun et al., 2009a). Indeed, use-wear evidence at 1016 

Kanjera South confirms that a substantial quantity of lithic implements were primarily devoted to 1017 

the processing of plant resources (Lemorini et al., 2014; Lemorini et al., 2019). Recent 1018 

experimental studies have shown that flake retouch and larger flake sizes, which increase force 1019 
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loading and manipulability, enhance wood processing efficiency, suggesting that plant resource 1020 

manipulation directly influences lithic investment (Bencomo Viala et al., 2020; Gürbüz and Lycett, 1021 

2021). These patterns may reflect the establishment of a processing chain to enhance resource 1022 

procurement through organic tool use (cf., Pascual-Garrido and Almeida-Warren, 2021). 1023 

We use these observations as an empirical basis from which to develop predictions regarding 1024 

the relationship between seasonality and technological investment in the Oldowan. According to 1025 

evolutionary optimality theory, organisms attempt to maximize a particular currency variable, such 1026 

as nutrient return rates, with decisions made according to the costs and benefits of a particular 1027 

action, in the context of available constraints (Hawkes et al., 1982; Foley 1985; Stephens and 1028 

Krebs, 1986; Winterhalder and Smith, 1992; Ferraro, 2007; Kelly, 2013). In this context, we 1029 

emphasize the relevance of seasonal variables, such as competition risk, resource type and quality, 1030 

acquisition costs, and resource predictability, for understanding the level of expected technological 1031 

investment in lithic assemblages. In Figure 2, these seasonal variables can be considered intra-1032 

annual constraints on technological development, informing the relative costs (processing 1033 

requirements) and benefits (expected returns) on such investment. 1034 



51 
 

 1035 

Figure 2. Expected relationship between resource seasonal resource procurement and 1036 

technological outcomes in the context of Oldowan. 1037 

Faunal acquisition during the Oldowan relied on the relatively unpredictable exploitation of 1038 

sparse and mobile resource patches, at least partially through compensatory hunting at both 1039 

Kanjera and FLK-Zinj. The use of such hunting strategies is likely to have reduced the 1040 

unpredictability of return yields associated with other carcass acquisition strategies, but it still 1041 

would not have approached the predictability of distribution and returns seen in plant resources, 1042 

particularly during the wet season. Indeed, modern observations of the Hadza suggest men only 1043 

succeed in obtaining large carcasses in 1 in 30 hunter-days, remaining as low as 1 in 3 when small 1044 

game hunting and trapping was carried out (Hawkes et al., 1991; Hawkes et al., 2001). Given that 1045 

Oldowan hominins lacked the technological complexity observed in the Hadza, particularly bows 1046 
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and arrows, we can envisage even greater failure rates in the Early Pleistocene. Furthermore, 1047 

experimental studies have suggested that retouched flakes are not more effective in this task than 1048 

unretouched flakes (Jones, 1994), suggesting that increased investment for predominantly 1049 

defleshing purposes will not always produce a corresponding dietary return. In this context, returns 1050 

on investment towards carcass processing beyond expedient unretouched flakes upon procurement 1051 

would have been minimal relative to costs and relatively unpredictable. Furthermore, the 1052 

spatiotemporal co-occurrence of hominins and carnivores in the ecosystem during the dry season 1053 

demanded the evaluation of trade-offs between defending or abandoning a carcass before complete 1054 

exploitation. Time constraints associated with predation risk have been suggested to directly 1055 

influence lithic reduction sequences and Oldowan tool use at Swartkrans, South Africa (Caruana, 1056 

2020). Taken together, we would expect a greater emphasis instead on an expedient flake toolkit 1057 

capable of fast carcass processing in dry season contexts, as observed at FLK-Zinj. 1058 

In contrast, investment in increased handling efficiency is most effective when search costs 1059 

are minimal in relation to time spent harvesting and processing a resource (Hawkes and O’Connell, 1060 

1992; Hawkes et al., 2018). In the context of increased plant availability and diversity in the wet 1061 

season (Sept, 1984), knowledge regarding the abundance and predictability of visible and 1062 

embedded resource distributions may have minimized search times and reduced resource 1063 

procurement competition (cf., Foley, 1985; Clark and Linares-Matás, 2020). In addition, given the 1064 

greater energy density of animal resources (particularly fat: 9 kcal/gram), plant carbohydrates will 1065 

generally produce lower caloric return per unit of weight (4 kcal/gram) and unit of handling time 1066 

(US National Research Council on Diet and Health, 1989; Stewart, 2014). This further elongates 1067 

the required amount of time spent handling these resources to meet caloric requirements (Hawkes 1068 

et al., 1982). These factors would have fostered investment towards minimizing handling costs 1069 
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and maximizing overall return rates, while also allowing for the ability to foreplan the use of lithic 1070 

technology throughout the landscape (Clark and Linares-Matás, 2020). Taken together, we would 1071 

therefore expect greater investment in raw material selection and transport (where high-quality 1072 

local materials are not available) at wet season sites. This should result in a corresponding increase 1073 

in lithic reduction intensity and in the diversity of final forms, including an extent of secondary 1074 

retouch. We argue that these patterns are reflected in the relative lithic complexity observed at 1075 

Kanjera South (Braun et al., 2009b; Lemorini et al., 2014; Reeves et al., 2021). 1076 

 1077 

5.2. Seasonality and habitat selection in the Oldowan 1078 

A recent comparison of faunal exploitation between Kanjera South and FLK-Zinj 1079 

emphasized that the affordances of different habitat types, such as grasslands and woodlands, 1080 

heavily influenced specific modes of hominin resource acquisition (Oliver et al., 2019). While this 1081 

is certainly true, seasonal constraints and opportunities would have actively influenced Oldowan 1082 

habitat selection patterns. Predictable response patterns to seasonality-mediated changes in habitat 1083 

composition, suitability, and the spatial distribution of preferred resources have been documented 1084 

for a wide range of genera across a diversity of heterogeneous ecosystems (e.g., Fleming et al., 1085 

1987; Van Schaik et al., 1993; Pape and Löffler, 2015; Vélez et al., 2017; Stanley et al., 2021), 1086 

including chimpanzees in forest-woodland mosaic environments (Collins and McGrew, 1988; 1087 

Pennec et al., 2020). Moreover, modern human hunter-gatherers show clear patterns of seasonal 1088 

movement, with camps tending to be located near perennial water sources during the (late) dry 1089 

season (e.g., Hawkes et al., 1997; Lee, 2013). Among the Hadza, wet season camps are more 1090 

ephemeral, with repeated camp movement determined by relatively frequent fluctuations in the 1091 

spatio-temporal distribution of berries and honey (Hawkes et al., 1997). 1092 
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We argue that predictable fluctuations in the spatio-temporal distribution of resources would 1093 

have encouraged Oldowan groups to schedule their food-procurement strategies, technological 1094 

investment, and preferred habitats on the basis of seasonal constraints and opportunities. The 1095 

lakeshore grassland environment at Kanjera South would have enjoyed moist soils and ephemeral 1096 

watercourses during the wet season (Ditchfield et al., 2019), which would have profound 1097 

implications for plant resource availability and seasonal habitat attractiveness for Oldowan 1098 

hominins and other animals. In the context of modern hunter-gatherer seasonal foraging strategies, 1099 

the Hadza specifically target environments rich in berries, such as the floodplain of the Barai River 1100 

near Lake Eyasi (Vincent, 1985), with the availability of these berries even dictating the location 1101 

of many wet season camps (Hawkes et al., 1997). We also note that the probability of finding 1102 

medium- to large-sized carcasses with scavenging potential during the wet season in the Serengeti 1103 

increases along erosion embankments and the margins of riparian woodlands (Blumenschine, 1104 

1987; Hopcraft et al., 2005). In contrast, the mosaic woodland with perennial springs around FLK-1105 

Zinj (Ashley et al., 2010) would have been an attractive dry season hotspot for ungulates, 1106 

carnivores, and hominins seeking water and other resources (Hopcraft et al., 2005; Hawkes, 2016).  1107 

We also emphasize that our proposed model regarding the nature of lithic investment at 1108 

Oldowan sites may be reinforced by raw material management strategies in relation to the length 1109 

of site occupation in the face of seasonal variability in habitat selection. In the context of the Late 1110 

Pleistocene, Riel-Salvatore and Barton (2004) point out that longer-term occupation of a site, 1111 

especially where raw material has been cached, should be associated with reduced intensity of 1112 

reduction and curation, as the pressure on preserving raw material is lower. In turn, this should 1113 

result in greater artifact densities at such a site, but with an overwhelming focus on unretouched 1114 

flakes. Thus, site-level raw material provisioning in the context of a longer duration of 1115 
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occupation(s) near perennial water sources during the dry season may have contributed to the 1116 

patterns observed at FLK-Zinj. In contrast, in contexts of higher mobility across the landscape and 1117 

shorter occupations, hominins should be faced with greater constraints on raw material availability, 1118 

resulting in a need to more efficiently utilize (transported) raw material through intensive core 1119 

reduction and flake maintenance through edge retouch. This may relate to the technological 1120 

patterns observed at Kanjera South (Reeves et al., 2021), in the context of wet season foraging 1121 

activities. 1122 

 1123 

5.3. Seasonality and freshwater resource exploitation in the Oldowan 1124 

Terrestrial animal and plant resources were certainly not the only components of Oldowan 1125 

diets. In particular, freshwater resources such as crocodiles, testudines, fish, or shellfish would 1126 

have offered rich polyunsaturated and Omega-3 fatty acids, as well as trace minerals and vitamins 1127 

(Stewart, 1994; Braun et al., 2010; Archer et al., 2014; Cáceres et al., 2017). These resources 1128 

exhibit relatively predictable distribution patterns and availability peaks, being most easily 1129 

captured during the very late dry and early wet seasons (Stewart, 1994), the periods when terrestrial 1130 

animal resources would have been most fat-depleted. Furthermore, the intra-annual patterns of 1131 

behavior in many freshwater taxa can act as important paleoecological information for inferring 1132 

the seasonality of site formation. 1133 

At Olduvai, the fish assemblages (n = 4000) of Bed I and II sites exhibit low taxonomic 1134 

diversity, likely due to the high salinity and alkalinity values of the Olduvai paleolake (Greenwood 1135 

and Todd, 1970; Stewart, 1994). At FLK-Zinj, the assemblage (number of identified specimens 1136 

[NISP] = 110) comprises predominantly catfish (83.3%) and cichlids (16.7%; Stewart, 1994). 1137 

While most Olduvai Bed I fish assemblages are likely the result of natural depositional processes, 1138 
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FLK-Zinj and FLK-NN have a relatively greater density than natural lacustrine fish scatters, and 1139 

an overrepresentation of head versus axial fragments, which may indicate that hominins were 1140 

acquiring and processing them (cf., Stewart, 1994). Nonetheless, since the fish assemblage at FLK-1141 

Zinj represents a small proportion of the overall faunal assemblage, fish procurement may have 1142 

been opportunistic (Stewart, 1994), perhaps based on the capture of stranded specimens as the 1143 

paleolake and seasonal watercourses to the south of the site (Uribelarrea et al., 2014) were receding 1144 

during the dry season. Catfish and cichlids are also present within the Kanjera South fish 1145 

assemblage (Plummer et al., 1999; Archer et al., 2014), but they do not bear diagnostic surface 1146 

modification damage (J. Ferraro, pers. comm.). 1147 

A key site for understanding the combined freshwater and terrestrial resource exploitation in 1148 

the Oldowan is FwJj20, Koobi Fora Formation, Kenya (1.95 Ma; Braun et al., 2010; Archer et al., 1149 

2014; see Figure 1 above), located within the fluctuating Il Dura fluvio-lacustrine system (Gathogo 1150 

and Brown, 2006). Water-dependent species, such as reduncines, tragelaphines, hippopotamids, 1151 

and rhinocerotids dominate the terrestrial assemblage, while the sizeable freshwater assemblage 1152 

includes turtle, fish, and crocodiles (Braun et al., 2010; Archer et al., 2014). Taphonomic evidence 1153 

indicates primary hominin access to the carcasses, with cut-mark distribution data indicating the 1154 

practice of evisceration, disarticulation, and defleshing (Braun et al., 2010). Viscera extraction on 1155 

terrestrial carcasses is inferred on the basis of cut-marks on the ventral side of a rhinoceros rib (cf., 1156 

Nilssen, 2000), and disarticulation is evident from the presence of cut-marks on a hippopotamus 1157 

astragalus and on the glenoid fossa of a bovid scapula (Braun et al., 2010). Flesh removal was 1158 

documented on the palmar surface of a crocodile phalanx, which Braun et al. (2010) suggest would 1159 

have granted hominins access to the manus muscle mass. The abundance of plastron and carapace 1160 

elements indicates that the chelonian assemblage at FwJj20 is anthropogenic in nature (cf., 1161 
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Sampson, 2000), while the presence of cut-marks on the ventral surface of a turtle costal carapace 1162 

element indicates that evisceration was also being carried out on turtle carcasses (cf., Blasco, 2008; 1163 

Braun et al., 2010). With regards to fish, the FwJj20 assemblage (NISP = 405) is dominated by 1164 

catfish (NISP = 365, MNI = 49). The catfish skeletal part profiles show an over-representation of 1165 

cranial fragments (ca. 75%; Stewart, 1994; Braun et al., 2010; Archer et al., 2014). Archer et al. 1166 

(2014) notes that head over-representation is often the result of butchery processes, as further 1167 

evidenced by the presence of cut-marks (mostly on cranial fragments), as well as intentional 1168 

fragmentation. 25.5% of cranial fragments have green breakage planes—with 27.5% of these 1169 

initiated along sutures—and 2.5% exhibit percussion marks and associated notches (Archer et al., 1170 

2014). On the basis of catfish butchery experiments engaging local Turkana fishing communities, 1171 

cranial breakage along sutures using a hammerstone appears to be strongly associated with access 1172 

to the fat-rich brain matter (Archer et al., 2014).  1173 

Archer et al. (2014) suggest that the main drivers of hominin exploitation of freshwater 1174 

resources may have been attempts to reduce energetic investment in resource acquisition, to reduce 1175 

technological costs, or to reduce carnivore competition. Additionally, their exploitation may have 1176 

been related to seasonal periods of animal depletion and diminishing body fat percentages (Archer 1177 

et al., 2014). Carnivore tooth mark patterns on limb bone fragments at FwJj20 (1.9% NISP) 1178 

indicates that carnivore competition in this riparian woodland setting (Bamford, 2011) was lower 1179 

than at both the dry season mosaic woodland environment at FLK-Zinj or the wet season open 1180 

grassland environment at Kanjera South. As such, rather than representing primarily an attempt to 1181 

avoid carnivore competition, we concur that low procurement costs may have facilitated the 1182 

seasonal exploitation of fat-rich freshwater resources by hominins. Hominins at FwJj20 appear to 1183 

have exploited terrestrial animal resources rather selectively, given the evidence for evisceration 1184 
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and skeletal part selection through disarticulation alongside comparatively little evidence for 1185 

terrestrial carcass filleting at the site (Braun et al., 2010). Similarly, percussion marks on terrestrial 1186 

limb bones are low (n = 4), suggesting little emphasis on limb bone marrow nutrients of terrestrial 1187 

animals (Braun et al., 2010: Table 2), confirming the overall signature of less intensive carcass 1188 

processing than at FLK-Zinj. These taphonomic insights are consistent with a pattern of seasonal 1189 

fat-depletion in the flesh and marrow of African ungulates (cf., Sinclair, 1975; Speth, 1987).  1190 

On the basis of fish ecology, the reliance on catfish exploitation within a humid fluvio-1191 

lacustrine context at FwJj20 may also be used to infer seasonality of occupation, as the 1192 

aforementioned catfish engage in mass riverine migration towards the onset of the early rainy 1193 

season to spawn (Stewart, 1994). Intensive catfish exploitation in a fluvial context has also been 1194 

reported at BK in Olduvai Bed II, and was used by Stewart (1994) to infer a very late dry to early 1195 

wet season context, potentially allowing the same deduction to be applied to FwJj20. A hominin 1196 

presence spanning this seasonal transition would also be consistent with the diverse 1197 

paleoecological signatures observed at the site. For example, the high density of water-dependent 1198 

reduncine remains and the co-occurrence of abundant crocodile and hippopotamid remains would 1199 

indicate late dry season, while the high proportion of chelonid, in relation to bovid NISP values 1200 

would be suggestive of wet season (cf., Speth and Davis, 1976). Embedded fish resources, such as 1201 

the energy-dense head content of catfish, appear to have been particularly desirable to the FwJj20 1202 

hominins (Archer et al., 2014). Since catfish brains have a similar metabolic composition to 1203 

mammalian brains (Du et al., 2018), they likely performed a similar dietary function at FwJj20 to 1204 

the large bovid heads and mandibles processed at Kanjera South (Ferraro et al., 2013) in the 1205 

seasonal food-procurement schedules of early Homo. It is also possible that the cut-marks found 1206 

on a crocodile skull fragment at Gona OGS-6 (Cáceres et al., 2017) may have similarly been 1207 
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produced during butchery processes that targeted within-head contents, in addition to adhering 1208 

flesh. We anticipate that further publications on the technological sequences and use-wear of the 1209 

lithics of FwJj20 will allow for more holistic comparisons with other Oldowan sites. 1210 

 1211 

6. Conclusions 1212 

In this paper, we have attempted to derive a framework for interpreting the influence of 1213 

seasonality on hominin behavior within the Oldowan record, using patterns of resource 1214 

consumption and lithic investment at FLK-Zinj and Kanjera South as a lens through which 1215 

behavioral variability can be studied. On the basis of zooarcheological assessments of mortality 1216 

profiles and the taphonomic evidence for early hominin access to carcasses, we argue that at least 1217 

some extent of compensatory hunting is a shared feature of both sites. Nonetheless, there are 1218 

differences in prey demographics that can be related to seasonal cycles of vulnerability, matching 1219 

expectations derived from actualistic observations of carnivore feeding behavior (Owen-Smith, 1220 

2008; Pereira et al., 2014; Arriaza et al., 2015). The ability to achieve primary access to terrestrial 1221 

ungulates in different seasons may be indicative of novel foraging behaviors that enhanced overall 1222 

resource yields from patchy resources. Late Oldowan hominins may have relied on social networks 1223 

to identify and pursue carcass acquisition opportunities, while keeping predators away in the 1224 

process. At the same time, we emphasize that the relative relevance of certain animal resources in 1225 

Oldowan diets was a distinctly seasonal phenomenon. For example, fat-depleted meat would have 1226 

been less attractive during periods of nutritional stress (cf., Speth, 1987), such as the very late dry 1227 

season and the early wet season. In these contexts, energy-dense resources such as ungulate head 1228 

contents, plant carbohydrates, nuts, and freshwater taxa would have been particularly desirable.  1229 
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We further argue that seasonal changes to food-procurement strategies, partially mediated 1230 

through habitat selection, would have contributed to the patterning of techno-economic behavior. 1231 

Embedded social landscape knowledge would have been an underlying requirement in hominin 1232 

awareness of changing resource distribution patterns and the ability to successfully track and 1233 

exploit those resources (Clark and Linares-Matás, 2020). Animal resource exploitation involving 1234 

fast and comprehensive carcass processing upon procurement encouraged greater lithic 1235 

expediency at dry season sites, especially when facilitated by raw material place provisioning, as 1236 

interpreted for FLK-Zinj. In contrast, the nutritional constraints associated with the consumption 1237 

of fat-depleted terrestrial animal resources during the very late dry season and the early wet season 1238 

actively encouraged hominins to engage in the preferential selection of fat-rich skeletal parts, such 1239 

as head contents, mandibular nerve and marrow, and viscerae. Freshwater aquatic resources would 1240 

have also provided a source of fatty acids at this time of the year, as discussed in relation to FwJj20. 1241 

The availability, predictability, and dietary relevance of plant resources during the early-mid wet 1242 

season would have encouraged hominins to shift their overall dietary emphasis towards 1243 

carbohydrate-rich plants. In this context, planning of subsistence behaviors through the landscape 1244 

and investment in raw material transport and/or lithic reduction schemes may have allowed for 1245 

reduced resource acquisition and processing costs, either directly or for the production of suitable 1246 

tools on organic materials. We propose that these seasonal dynamics could help explain the 1247 

archeological record of Kanjera South. We suggest that the consolidation and subsequent 1248 

elaboration of these behavioral patterns allowed early Homo to more successfully negotiate 1249 

seasonal variability in resource predictability and habitat structure from the Early Pleistocene 1250 

onwards. 1251 

 1252 
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