Main content
Observing painful events in others leads to a temporally extended general response facilitation in the self
Date created: | Last Updated:
: DOI | ARK
Creating DOI. Please wait...
Category: Project
Description: Excitability in the motor cortex is modulated when we observe other people receiving a painful stimulus (Avenanti et al., 2005). However, the task dependency of this modulation is not well understood, as different paradigms have yielded seemingly different results. Previous neurophysiological work employing transcranial magnetic stimulation (TMS) suggests that watching another person’s hand being pierced by a needle leads to a muscle specific inhibition, assessed via motor evoked potentials. Results from previous behavioural studies suggest that overt behavioural responses are facilitated due to pain observation (Morrison et al., 2007a; 2007b). There are several paradigmatic differences both between typical TMS studies and behavioural studies, and within behavioural studies themselves, that limit our overall understanding of how pain observation affects the motor system. In the current study, we combine elements of typical TMS experimental designs in a behavioural assessment of how pain observation affects overt behavioural responding. Specifically, we examined the muscle specificity, timing, and direction of modulation of motor responses due to pain observation. To assess muscle specificity, we employed pain and non-pain videos from previous TMS studies in a Go/No-Go task in which participants responded by either pressing a key with their index finger or with their foot. To assess timing, we examined response times for Go signals presented at 0ms or 500ms after the video. Results indicate that observation of another individual receiving a painful stimulus leads to a non-effector specific, temporally extended response facilitation (e.g., finger and foot facilitation present at 0ms and 500ms delays), compared to observation of non-pain videos. This behavioural facilitation effect differs from the typical motor inhibition seen in TMS studies, and we argue that the effects of pain observation on the motor system are state-dependent, with different states induced via task instructions. We discuss our results in light of previous work on motor responses to pain observation.