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Abstract 18 

Trust is fundamental in building meaningful social interactions. With the advance of social 19 

robotics in collaborative settings, trust in Human-Robot Interaction (HRI) is gaining more and 20 

more scientific attention. Indeed, understanding how different factors may affect users’ trust 21 

toward robots is of utmost importance. In this study, we focused on two factors related to the 22 

robot’s behavior that could modulate trust. In a two-forced choice task where a virtual robot 23 

reacted to participants’ performance, we manipulated the human-likeness of the robot’s motion 24 

and the valence of the feedback it provided. To measure participant’s subjective level of trust, 25 

we used subjective ratings throughout the task as well as a post-task questionnaire, which 26 

distinguishes capacity and moral dimensions of trust. We expected the presence of feedback to 27 

improve trust toward the robot and human-likeness to strengthen this effect. Interestingly, we 28 

observed that humans equally trust the robot in most conditions but distrust it when it shows no 29 

social feedback nor human-like behavior. In addition, we only observed a positive correlation 30 

between subjective trust ratings and the moral and capacity dimensions of trust when robot was 31 

providing feedback during the task. These findings suggest that the presence and human-32 

likeness of feedback behaviors positively modulate trust in HRI and thereby provide important 33 

insights for the development of non-verbal communicative behaviors in social robots. 34 
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1 Introduction 39 

Trust is a fundamental component in human interactions. For social robots to fulfill their 40 

intended roles in a variety of applications, it is important that users consider them trustworthy 41 

[1-3]. According to Wagner and Arkin [3], trust can be defined as a belief that the trustee will 42 

act in a manner that mitigates the trustor’s risk. Of interest to this paper are situations in which 43 

the human takes the role of the trustor and the robot the trustee. Trust toward the robots needs to 44 

be taken into consideration in situations where the robot is either acting as a teammate or as an 45 

autonomous agent. In both scenarios, trust should ideally match the capabilities of the machine 46 

to be considered appropriate [4]. Inappropriate trust, either by over-trusting the machine [5] or 47 

by distrusting it and rejecting its help [6], could lead to the misuse or disuse of a robotic agent 48 

[7].  Therefore, understanding what may cause humans to trust or distrust robots is of utmost 49 

importance.  50 

 51 

People’s trust toward robots may be affected by a variety of factors. Building on research from 52 

human-automation and human-human trust, Hancock and colleagues [8] proposed to group 53 

such factors into three categories, based on whether they are related to the robot (e.g., level of 54 

autonomy, robot behavior), to the human (e.g., expectations) or to the environment (e.g., task 55 

duration). The focus of this paper is on robot-related factors. Previous studies showed that the 56 

behavior of the robot could affect human trust in many different ways (see [9], for a brief 57 

review). For instance, participants were found to disclose more personal information to a robot 58 

greeting them in a likable manner, namely, using kind and empathetic words compared to rude 59 

and selfish expression [10]. Another study reported higher levels of trust and disclosure when 60 

the robot exhibited higher verbal vulnerability and non-verbal expressiveness respectively [11]. 61 

Indeed, trust and disclosure are shown to be key factors in improving human-robot interaction 62 

and create positive relationship between them [11]. 63 

 64 

Social feedback is known to play an important role in human interactions. Studies showed that 65 

participants who received feedback about the execution of a task performed better [12], more so 66 

with negative feedback than with positive feedback [13, 14, 15]. The reason could be that 67 

people interpret positive feedback as an indication that their strategy is adequate and negative 68 

feedback that they need to update their strategy [15]. Beside performance, feedback can also 69 

influence affective states [16]. Since trust is at least partly derived from affect [17], there seems 70 

to be a link between social feedback and interpersonal trust.  71 

 72 

Some studies have also investigated social feedback in Human-Robot Interaction (HRI). In the 73 

context of robot-assisted training, no difference was found between flattering, positive, and 74 

negative verbal feedback in terms of physical performance or trust [18]. However, social 75 

feedback was shown to impact participants’ decisions related to energy consumption, with a 76 

stronger effect when the robot provided negative feedback [19]. Participants also exhibited 77 

higher acceptance for a robot-instructor when it provided positive feedback [20] and lower 78 

social trust toward a robot who blamed them in a collaborative game [21]. While many studies 79 

focused on verbal robot feedback, people also heavily rely on non-verbal cues to infer other’s 80 

trustworthiness [22]. For instance, gaze following from a human face was found to increase 81 

subjective trust [16]; an effect that was modulated by the valence of the non-social feedback 82 

received about participants’ performance. In HRI, previous studies showed that non-verbal 83 

behavior had an impact on participants’ trust toward robots as implicitly measured through their 84 

choices during economic games [22, 23]. Nevertheless, how robots’ non-verbal feedback may 85 



 

 

affect human decision processes and subjective trust remains understudied and poorly 86 

understood. 87 

 88 

Whether people respond similarly to social feedback from humans and robots is likely to 89 

depend on the human-likeness of the robot. Studies reported higher levels of trust toward robots 90 

with more anthropomorphic appearance [24, 25]. Mathur and Reichling [26] suggest that trust 91 

follows an “Uncanny valley”-like curve where machines that look too much like humans are 92 

perceived as less trustworthy. However, a recent systematic review – which did not include the 93 

latter studies – found no clear evidence that trust changed as a function of robots’ appearance 94 

[27]. Furthermore, it is likely that in real-time interactions, the quality of the behavior displayed 95 

by the robot, not just its appearance, play a role in how much humans trust it. Previous studies 96 

showed that exhibiting more non-verbal cues elicited higher trust toward the robot [22, 23, 28]. 97 

Yet, it remains unclear how trust could be influenced by the human-likeness of such non-verbal 98 

socio-affective behavior. 99 

 100 

The aim of this study was to better understand how robot non-verbal feedback could influence 101 

human decision processes and subjective trust. To do so, we developed a decision-making task 102 

where, upon seeing the outcome of their choices, participants could receive additional social 103 

feedback consistent with the outcome. The experimental manipulation consisted of two 104 

independent variables: valence of the robot’s feedback and human-likeness of the feedback.  105 

The first independent variable was manipulated block-wise, with three levels: positive social 106 

feedback, negative social feedback or no social feedback at all. The second independent 107 

variable was manipulated between-subjects and aimed at examining possible effects of the 108 

human-likeness of such social feedback. In particular, we aimed to compare behaviors that 109 

follow the characteristics of human-like biological motion with jerky, mechanistic movements 110 

that are more typical of robots. Because mechanical constraints make it difficult to implement 111 

biological motion on real, embodied robots, we designed this study in a virtual environment. 112 

The environment incorporated a 3D avatar modeled after the humanoid robot iCub, which 113 

moved in a human-like manner in one condition, and in more robot-like fashion in the other. 114 

Thereby, we were able to manipulate both the human-likeness and the valence of the robot’s 115 

non-verbal feedback, and to evaluate the effects on participants’ performance – response time 116 

and accuracy – and subjective trust – measured via subjective ratings throughout the task and a 117 

post-test questionnaire taken from the literature [29]. 118 

 119 

Based on the abovementioned literature on human-human and human-robot interactions, we 120 

hypothesized that: (H1) The robot’s feedback would improve performance, and more so in case 121 

of negative feedback; (H2) The robot’s feedback would increase subjective trust, and more so in 122 

case of positive feedback; (H3) The human-likeness of the robot’s behavior would modulate the 123 

effects of the feedback, with better performance and higher trust in the human-like condition 124 

compared to the robot-like; and (H4) Trust ratings would be positively correlated with the level 125 

of trust measured by the post-test questionnaire. 126 

2 Methods and Materials 127 

2.1 Participants 128 

Forty-one participants (M/F: 15/25; age: 26±7) took part in the study. Participants were 129 

recruited through a mailing list they previously registered in and received a monetary incentive 130 

to participate in the study.  All participants had normal or corrected-to-normal vision and were 131 

not informed about the purpose of the experiment. All the participants gave their informed 132 



 

 

written consent. The experiment was conducted under the ethical standards (Declaration of 133 

Helsinki, 1964) and approved by the local Ethical Committee (Comitato Etico Regione 134 

Liguria). The data of one participant have been excluded because they did not complete the 135 

experiment. Therefore, data of forty participants were included in the final analysis.  136 

2.2 Apparatus 137 

Participants were seated facing two 22’’ LCD monitors. The first screen displayed the virtual 138 

environment for the decision task running on a computer with an AMD Ryzen Threadripper 139 

2950X 16-core 3.5 GHz CPU, 128 GB of RAM and a NVIDIA GeForce GTX 1060 3GB video 140 

card. The 3D-animated virtual environment including avatars with the appearance of the iCub 141 

robot [30] was developed using Unreal Engine (Epic Games: www.unrealengine.com). An ad-142 

hoc Python program (version 3.9.5) handled stimulus presentation and data collection. 143 

Participants responded by pressing the ‘a’ and ‘d’ keys (left and right respectively) on the 144 

QWERTY keyboard. The second monitor was used to display the trust ratings and 145 

questionnaires, which were administered through SoSci (https://www.soscisurvey.de) 146 

2.3 Procedure  147 

After providing consent, participants were instructed about the experiment structure (see Figure 148 

1.A). Participants were randomly assigned to one of the two experimental groups. In one group, 149 

the behavior of the iCub avatar in the decision task was characterized by human-like 150 

movements and reactions (human-like iCub). In the other group, the iCub avatar was exhibiting 151 

the same types of behaviors but moving mechanically, in a typical robotic fashion (robot-like 152 

iCub). Moreover, in the decision task, there were 3 types of blocks distinguished by the valence 153 

of feedback that the iCub avatar provided (positive, negative, no feedback).  Participants 154 

performed 9 blocks of the decision task, 3 of each type and each consisting of 20 trials. 155 

Similarly to Duan and colleagues (2020), each block was followed by a trust-rating question. A 156 

short practice of 8 trials preceded the task. At the end of the task, participants were asked to 157 

complete the Multi-Dimensional Measure of Trust (MDMT) Questionnaire [29] and then they 158 

were debriefed1. Participants were asked to respond as accurately as possible. Each part of the 159 

experiment is described more in detail in the following sections. 160 

 161 

In summary, the experiment included two independent variable consisting in one between-162 

subjects manipulation related to the human-likeness of the avatar behavior and one within-163 

subject manipulation related to the valence of the feedback received by participants. Moreover, 164 

there was four dependent variables: responses times and accuracy rates collected during the 165 

Decision task, trust ratings collected after each block of the Decision task, and responses to the 166 

MDMT questionnaire collected at the end of the experiment. 167 

 168 

                                                 

1 
The InStance Test was also administered before and after the experiment to examine the effect of behavior human-likeness on 

the attribution of mental states. This question is out of the scope of this paper, therefore these data will not be reported nor 

discussed here.  
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Figure 1. Experiment structure and snapshots of the feedback animations. A) Experiment structure. The 

top row shows the trial structure of the decision task. The second row shows the full experimental 

procedure. After being assigned to either the Human-like or the Robot-like group, participants performed 

the decision task. After each of the 9 task blocks, participants answered the trust rating question using a 

slider. The text displayed in this figure is a literal translation of the question originally written in Italian 

during the experiment. After that, participants were asked to complete the trust questionnaire (MDMT). B) 

Feedback. The top line shows the two positive feedback behaviors used in P blocks of the decision task. 

Bottom line shows the two negative feedback behaviors used in N blocks of the decision task. 
 169 

 170 

2.4 Decision Task 171 

The decision task was loosely inspired by the Shell Game [31]. In our version, the game 172 

required the presence of a game partner (here the robot) and a player (here the participant) to 173 

guess the position of a ball hidden under one of the cups. The game and the instructions were 174 

not explicitly framing the task as collaborative or competitive. In the virtual environment 175 

displayed on the monitor, the robot was facing the participant on the other side of a table on 176 

which two identical red cups and one ball were placed. As in typical cups and ball games, the 177 

cups shuffle to hide the ball position then the player had to guess under which of the two cups 178 

the ball was hidden. 179 

 180 

Each trial began with iCub looking at the participants and then the shuffle of the cups on the 181 

table game began (Figure 1.A). The cups were shuffling autonomously on the table and iCub 182 

was looking at them moving during this step. After the cups stopped moving, they turned green 183 

to indicate to participants the possibility to respond. The maximum time allowed to respond 184 

was 2000 ms.  If no response was recorded within that period, the cups turned black for 500 ms 185 

to indicate a time-out. Participants were asked to press ‘a’ to choose the cup on their left and ‘d’ 186 

to choose the cup on their right. We collected participants’ decisions and responses times, where 187 

the latter were recorded from the moment the cups turned green until participant’s keypress. 188 

After this decision step, cups were lifted to show the ball position and thus the outcome of the 189 

trial (i.e. hit or miss). Depending on the block, iCub then provided a social feedback based on 190 

the outcome (see below). At the end of each block, the task screen went darker to indicate a 191 

break between blocks.  192 

 193 



 

 

The task consisted of 9 blocks of 20 trials each, each block followed by a trust rating question. 194 

In each block, the trial sequence was controlled so that the probability of the ball being on one 195 

side was always 60% (e.g., right cup 60% and left cup 40%). The 60:40 probability ratio was 196 

determined through a preliminary study to ensure that participants were able to identify the 197 

most rewarding option within 20 trials (see Supplementary material). This ratio was kept 198 

constant throughout the experiment while the most rewarding side changed randomly between 199 

blocks.  The block sequence was also controlled so that all participants were exposed to the 200 

same sequence of Positive feedback block (P), negative feedback block (N) and no feedback 201 

block (NO). As a result, in both groups the same block sequence occurred (P – N – NO – N – 202 

NO – P – NO – P – N). In P blocks, participants were receiving a positive feedback from the 203 

avatar when correctly finding the ball while no feedback when missing. In N blocks, 204 

participants were only receiving negative feedback from the avatar when missing and no 205 

feedback when hitting. In NO blocks, no feedback was presented after hit or miss. 206 

 207 

The iCub avatars were able to perform different types of positive and negative feedback in 208 

reaction to the outcome of the trial (Figure 1.B). The human-like and the robot-like versions 209 

performed the same behaviors (e.g. applaud or nodding), only differing in the human-likeness 210 

of the motion as described above. In the current study, we selected feedback animations based 211 

on the results of a previous study [32] in which participants separately rated the avatars 212 

animated behaviors on scale from 0 (“the movement is totally human-like”) to 100 (“ the 213 

movement is totally robot-like”). Out of 5 positive and 5 negative feedback behaviors included 214 

in that study, we selected two for each valence that were rated as the most different in terms of 215 

human-likeness: Nodding and Applauding as positive feedbacks and Shaking the head and 216 

Punching the table as negative feedbacks. Video clips of these animations can be found at the 217 

Open Science Framework link:  218 

https://osf.io/gxzjf/?view_only=e4bab9ed502049d98841844e9b3d3f0b 219 

 220 

2.5 Trust Ratings 221 

During the break in between the decision task blocks, participants were asked to rate their level 222 

of trust in iCub. A slider was presented under a picture of iCub face and participant were asked 223 

to place the slider from “Little” (coded as 0) to “Much” (coded as 100) trust toward the robot 224 

(see Figure 1.A). The labels on the two sides of the slider are literally translated from Italian, 225 

where there original version showed the words “Poco” meaning low level of trust and “Molto” 226 

meaning high level of trust. Participants were instructed that a value of 50 represented a neutral 227 

response (middle of the slider). The face and torso of iCub on the picture were colored 228 

differently depending on the type of block to increase the chance that trust ratings would take 229 

into account the feedback provided by the robot during the decision task. Colors were coherent 230 

with the type of block within participants but randomized across participants to avoid color as 231 

an extraneous variable potentially affecting the trust ratings. 232 

2.6 Trust Questionnaire 233 

The Multidimensional Measure of Trust (MDMT) measures the level of trust that participants 234 

attribute to the robot. It is composed 16 items, four for each of the following four dimensions: 235 

Reliable, Capable, Sincere and Ethical. The 16 items load onto two distinct factors, one related 236 

to performance trust and one associated to moral trust. Participants could rate each item on a 7-237 

point scale, how well the word apply to the robot. Participants could also specify that the 238 

https://osf.io/gxzjf/?view_only=e4bab9ed502049d98841844e9b3d3f0b


 

 

specific item “Does not apply”. We averaged the items scores to get a value of performance and 239 

moral trust for each participant ranging from 0 to 7. 240 

2.7 Data Analysis 241 

We excluded from analyses the trials in which participants were faster than 100 ms or not 242 

giving an answer (3.9 % of the administered trials) [33]. Trials in which response times (RTs) 243 

were slower than 2.5 standard deviations than the sample mean were considered outliers and 244 

removed from final analysis (0.7 % of the administered trials). RTs were averaged for each 245 

block. Given that in each block a side had a probability of 60% to hide the ball, we define 246 

accuracy as a measure of how many times participants were choosing the side with the highest 247 

probability. In this perspective, accuracy represents the ability of the participant to spot the best 248 

side. Accuracy was also averaged for each block. Averaged RTs and accuracy were submitted to 249 

a mixed analysis of variance (ANOVA), including type of avatar (human-like vs robot-like) as a 250 

between-subject factor and type of feedback (P, N and NO) as a within-subject factor. Trust 251 

ratings were averaged for each type of block within each participant and then submitted to a 252 

mixed ANOVA with type of feedback as a within-subject factor and type of avatar as a 253 

between-subject factor. The relation between Trust ratings and MDMT was measured through 254 

correlation analysis. Throughout the paper, multiple comparisons were corrected and p-values 255 

were reported according to Tukey's correction. Cohen’s d and eta-squared equations were used 256 

to calculate effect sizes respectively for t-test and ANOVA. Behavioral analysis were examined 257 

using R (version 4.0.2. (RStudio Team (2010): www.rstudio.com)). Plot were created using 258 

ggplot2 package in R (https://ggplot2.tidyverse.org/).  259 

3 Results 260 

3.1 Response times and accuracy 261 

RTs and Accuracy were separately submitted to a mixed ANOVA with Type of feedback as a 262 

within-subject factor (P, N, NO feedback) and Type of avatar as a between-subject factor 263 

(human-like vs robot-like iCub). Results associated to RTs showed a main effect of the type of 264 

avatar (F(1,38) = 6.4, p = 0.015, η² = 0.127) where RTs for the human-like group (M = 0.615) 265 

were slower compared to the robot-like group (M = 0.546) (see Figure 2.A). No main effect of 266 

the type of feedback (F(2,76) = 1.913, p = 0.155) nor interaction (F(2,76) = 1.404, p = 0.252) 267 

were revealed.  268 

 269 

Accuracy was defined as the percentage of trials where participants’ chose the side with the 270 

highest probability. The analysis showed a main effect of type of feedback (F(2,76) = 6.130, p = 271 

0.003, η² = 0.085). Post hoc comparisons showed that participants were significantly less 272 

accurate in the block with positive feedback (P) compared to negative (N) and no feedback 273 

(NO) blocks (P vs N: t = -3.158, p = 0.007; P vs NO: t = -2.889, p = 0.01) (see Figure 2.B). On 274 

the other hand, there was no significant main effect of human-likeness (F(1,38) = 1.265, p = 275 

0.268) nor interaction (F < 1). 276 

 277 

http://www.rstudio.com)/


 

 

 
 

Figure 2. Participants’ RTs (A) and Accuracy (B) during the decision Task. A: Responses times were longer for 

participants playing with the human-like iCub avatar compared to the robot-like avatar. B: Participants were less 

accurate in blocks where iCub was giving positive feedback at the end of successful trials, relative to negative and 

no feedback blocks. 
 278 

3.2 Trust 279 

Results of the mixed ANOVA highlighted a significant between-subject main effect 280 

(F(1,38)=6.634, p=0.014, η² = 0.061) where the mean of the Trust for robot-like avatar (M = 281 

60.139) was lower than human-like avatar (M = 71.583). Results also revealed a significant 282 

within-subjects main effect (F(2,76)=14.338, p<0.001, η²=0.131) where Trust in NO block (M 283 

= 54.1) was significantly lower than P (M = 72.3) and N blocks (M = 71.3). A significant 284 

interaction between the two factors was observed (F(2,76) = 11.917, p < 0.001, η² = 0.109) and 285 

post hoc comparisons highlighted that the interaction effect was driven by a significant 286 

difference (t = 5.257, ptukey < 0.001) between the human-like (M = 70.517) and the robot-like 287 

(M = 37.583) groups in NO blocks (see Figure 3). Moreover, a one-sample t-test showed that 288 

Trust toward robot-like iCub during NO blocks (M = 37.583) was significantly different from 289 

50, which represents the neutral trust response (t(19) = -2.54, p = 0.02, Cohen’s D = 1.633). 290 

 291 

 
Figure 3. Trust ratings the decision task. Participants reported a significantly lower level of trust 

toward the robot-like iCub avatar when it was providing no feedback at all during the decision task. 
 292 

Regarding the MDMT questionnaire, we first looked for between-subjects difference using an 293 

independent t-test and found no difference between the human-like and the robot-like group, 294 

neither on the capacity scale (t(37) = -0.171, P = 0.866) nor on the moral scale (t(37) = -0.179, 295 

P = 0.859). Then, we performed a correlation analysis to examine possible associations between 296 



 

 

these two measures of trust (Trust Ratings and Questionnaire). The analysis showed a positive 297 

correlation between trust ratings in P and N blocks and both dimensions of MDMT, i.e. 298 

performance and moral trust (all Pearson’s r > 0.41, all p < 0.01; see Figure 4). However, trust 299 

ratings in NO blocks were not associated with any of the two MDMT scales (all Pearson’s r > -300 

0.07, all p > 0.643).  301 

 
Figure 4. Correlation between trust ratings and MDMT scores. Trust ratings following blocks in which iCub was 

providing a positive or negative social feedback were positively correlated with trust scores measured by the moral 

and performance scales of the MDMT questionnaire. However, no correlation between MDMT scores and ratings 

following blocks with no social feedback. 

4 Discussion 302 

The aim of this study was to assess whether non-verbal social feedback expressed by a robot 303 

modulates participants’ performance in a decision task and subjective trust, and whether this 304 

depends on the human-likeness of the robot’s behaviors. To do so, we asked participants to play 305 

a game in a virtual environment where an iCub avatar could react to the outcome of their 306 

choices with non-verbal behaviors. This allowed us to manipulate the valence of the feedback 307 

(i.e., positive, negative or none) as well as the human-likeness of the robot movements: one 308 

condition had smooth, human-like gestures following a biological motion profile, the other 309 

displayed more jerky, robot-like movements. In addition to participants’ performance (accuracy 310 

and response times), we measured their subjective trust toward the robot by asking them to rate 311 

their level of trust throughout the game [16] and by administering the Multi-Dimensional 312 

Measure of Trust (MDMT) questionnaire [29] at the end of the experiment. 313 

 314 

We found that participants were more accurate when they received negative compared to 315 

positive feedback from the robot. This partially validates our first hypothesis H1 and is in line 316 

with the literature on human feedback [13, 14, 15]. However, contrary to what we expected, 317 

participants also performed better in blocks with no social feedback than in those with positive 318 

feedback, at levels similar to blocks with negative feedback. It is worth noting that participants 319 

knew that the robot could provide feedback in this task. Vollmeyer and Rheinberg [12] 320 

suggested that feedback expectation itself could improve performance. Moreover, in our 321 



 

 

experiment, two out of three blocks with no social feedback came after blocks with negative 322 

feedback. Thus, higher-than-expected accuracy in no-social-feedback blocks could be driven by 323 

feedback expectation and/or a carryover effect due to our blocked design. This design may also 324 

have prevented differences in response times from arising. For instance, if negative feedback 325 

facilitates learning, one could expect participants to get faster over time in this condition. Yet, 326 

we found no difference in response times between feedback types, possibly because the number 327 

of trial in each block was not enough for such difference to appear. A follow-up study with a 328 

between-subjects manipulation of feedback valence could help to further examine these effects 329 

on decision processes and performance. 330 

 331 

Our second hypothesis H2 was also partially confirmed. Indeed, we found that trust ratings 332 

were significantly lower after blocks in which the robot was not providing any feedback at all. 333 

Interestingly, this effect was driven by the group exposed to the robot-like behavior. This 334 

condition was in fact the only one with ratings significantly lower than neutral, indicating 335 

distrust rather than a merely lower level of trust. These results suggest that humans may not 336 

trust robots that behave in a machine-like manner and provide no social feedback. On the other 337 

hand, endowing robots with more human-like movements or richer socio-affective behaviors 338 

(e.g. including social feedback) could be equally effective in increasing humans’ trust in them. 339 

This could even be the case regardless of the valence of the social signals, since we found no 340 

difference between positive and negative feedback. However, it is worth noting that in our 341 

experiment, negative feedback could be perceived to be not so much directed toward the 342 

participant, but rather as expressing disappointment about the outcome. A decrease in trust 343 

could be observed as a result of negative reactions in which the robot would more directly 344 

blame the human for a failure [21]. 345 

 346 

Regarding the effect of the human-likeness of the robot’s behavior on trust ratings, we observed 347 

lower trust ratings in the robot-like condition driven by the no-social-feedback blocks. In 348 

contrast, trust ratings in the human-like condition were equally high for all types of feedback. 349 

This partially confirms our third hypothesis H3. However, the MDMT questionnaire revealed 350 

no difference between the human-like and the robot-like group. Further investigation is needed 351 

to disentangle the possible influence of motion human-likeness on subjective trust toward 352 

robots. In terms of performance, while human-likeness did not affect accuracy, it did modulate 353 

response times. Indeed, participants were slower in the human-like group. This effect appears to 354 

be separate from the one more linked to our hypotheses where feedback improves performance 355 

thereby leading to faster responses (see paragraph 1 of the Discussion). Here, rather than being 356 

related to the type of feedback, the observed effect seems to result from the overall quality of 357 

the behavior exhibited by the robot. We could speculate that the human-like condition elicited 358 

additional cognitive processes, related to social cognition for example (e.g. reasoning about the 359 

robot’s intentions and actions). Anecdotally, during informal discussions that followed the 360 

experiment, some participants reported that they were trying to infer the ball’s position from the 361 

robot’s gaze during the cups shuffling. It could be that participants were more likely to adopt a 362 

strategy relying on information from the robot when it behaved in a human-like manner – even 363 

though its behavior was in fact non-informative. Alternatively, it could be that its behavior was 364 

simply more distracting in the human-like condition. Future studies should further examine the 365 

possible causes of the delayed responses when robot behavior looks more human. 366 

 367 

Last, trust ratings after the negative and positive feedback blocks were positively correlated 368 

with both scales of MDMT. However, no correlation was found in blocks with no feedback. 369 

These findings partially validate our fourth hypothesis H4. Combining block-by-block trust 370 



 

 

ratings with MDMT allow us to better understand how feedback could influence different 371 

dimensions of trust. The first dimension of MDMT is related to characteristics such as 372 

reliability and capability. Given that the robot’s feedback in the positive and negative conditions 373 

was always congruent with the outcome, it seems reasonable for participants to find the robot 374 

reliable in those conditions and to trust it accordingly. In contrast, when it did not provide any 375 

feedback, the robot was merely observing the game and no information could help participants 376 

assess its reliability or capacity. The second dimension of MDMT is related to moral aspects 377 

such as the adherence to social norms. In this regard, participants may have considered the 378 

presence of social feedback as an indicator of the robot’s engagement in the interaction; and the 379 

absence of it as a transgression of social norms. Overall, our results indicate that social 380 

feedback may modulate humans’ level of trust toward robots. Thereby, they highlight the 381 

importance of designing adequate non-verbal communicative behaviors for social robots to be 382 

trusted and accepted by users. 383 

 384 

Although this study provides important insights on robot behaviors in relation to 385 

trustworthiness, it is important to point out also some limitations and ideas for future studies. 386 

The design of the decision task implies a relationship between accuracy and frequency of the 387 

feedback at the end of the trial. Given that participants were more accurate in negative feedback 388 

blocks and the robot only reacted to misses in negative feedback blocks, it is possible that 389 

participants were exposed to less feedback compared to positive feedback blocks. Indeed, in 390 

positive feedback blocks, participants were less accurate (around chance level) and thus they 391 

were exposed to feedback more often, compared to negative feedback blocks. This could be 392 

potentially more distracting compared to the other two types of blocks (negative and no 393 

feedback blocks). Future studies might systematically address the aspect of frequency of 394 

feedback on the one hand and its valence on the other, as these two factors might affect 395 

performance and trust independently. For future experiments, we also believe that including 396 

measures of anthropomorphism after each block (e.g. GSQ) could provide insights about the 397 

relationship between trust and behavioral cues in HRI. Furthermore, in terms of general future 398 

directions, it would be interesting to focus on the commonalities between interactions with a 399 

virtual robot avatar and a physically present robot to assess whether our findings can be 400 

generalizable to interactions with physically present embodied robots. 401 

5 Conclusion 402 

Would people trust robots more if they provide human-like social feedback? Overall, our results 403 

suggest that the presence and human-likeness of feedback gestures may modulate humans’ level 404 

of trust toward robots. Participants distrusted the robot when it was not providing any feedback 405 

and when it was moving in a robot-like manner. In addition, trust ratings correlated with 406 

capacity and moral dimensions of trust only when the robot was providing social feedback. 407 

Furthermore, participants relied on the feedback to learn the task and were more accurate in 408 

blocks where the robot provided negative feedback relative to positive feedback. These findings 409 

offer new piece of evidence that the human mind uses feedback signals from robots to develop 410 

trust as well as to perform a decision task. They provide important insights for the development 411 

of non-verbal communicative behaviors in social robots.  412 
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