Mis-perception of motion in depth originates from an incomplete transformation of retinal signals

Contributors:
  1. Philippe Lefèvre

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Depth perception requires the use of an internal model of the eye-head geometry to infer distance from binocular retinal images and extraretinal 3D eye-head information, particularly ocular vergence. Similarly for motion in depth perception, gaze angle is required to correctly interpret the spatial direction of motion from retinal images; however, it is unknown whether the brain can make adequate use of extraretinal version and vergence information to correctly transform binocular retinal motion into 3D spatial coordinates. Here, we tested this by asking participants to reconstruct the spatial trajectory of an isolated disparity stimulus moving in depth either peri-foveally or peripherally while participants’ gaze was oriented at different vergence and version angles. We found large systematic errors in the perceived motion trajectory that reflected an intermediate reference frame between a purely retinal interpretation of binocular retinal motion (not accounting for veridical vergence and version) and the spatially correct motion. We quantify these errors with a 3D reference frame model accounting for target, eye and head position upon motion percept encoding. This model could capture the behavior well, revealing that participants tended to underestimate their version by up to 17%, overestimate their vergence by up to 22%, and underestimate the overall change in retinal disparity by up to 64%, and that the use of extraretinal information depended on retinal eccentricity. Since such large perceptual errors are not observed in everyday viewing, we suggest that both monocular retinal cues and binocular extraretinal signals are required for accurate real-world motion in depth perception.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.