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Abstract

Some empirical results are more likely to be published than others. Selective

publication leads to biased estimates and distorted inference. We propose two

approaches for identifying the conditional probability of publication as a function

of a study’s results, the first based on systematic replication studies and the second

on meta-studies. For known conditional publication probabilities, we propose

bias-corrected estimators and confidence sets. We apply our methods to recent

replication studies in experimental economics and psychology, and to a meta-study

on the effect of the minimum wage. When replication and meta-study data are

available, we find similar results from both.
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1 Introduction

Despite following the same protocols, replications of published experiments frequently find

effects of smaller magnitude or opposite sign than those in the initial studies (cf. Open
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Science Collaboration, 2015; Camerer et al., 2016). A leading explanation for replication

failure is publication bias (cf. Ioannidis, 2005, 2008; McCrary et al., 2016; Christensen

and Miguel, 2016). Journal editors and referees may be more likely to publish results

that are statistically significant, that confirm some prior belief or, conversely, that are

surprising. Researchers in turn face strong incentives to select which findings to write up

and submit to journals based on the likelihood of ultimate publication, leading to what is

sometimes called the file drawer problem (Rosenthal, 1979). We refer to these behaviors

collectively as selective publication or publication bias. Left unaddressed, such selectivity

can lead to biased estimates and misleading confidence sets in published studies.

We first show how bias from selective publication can be corrected if the conditional

publication probability (i.e. the probability of publication as a function of a study’s results)

is known. We then show how the conditional publication probability can be nonparamet-

rically identified. Finally, we apply the proposed methods to several empirical literatures.

Correcting for publication bias After introducing our setup, Section 2 discusses the

consequences of selective publication for statistical inference. When selectivity is known

we propose median unbiased estimators and valid confidence sets for scalar parameters.1

Identification of publication bias Section 3 considers two approaches to identifica-

tion. The first uses data from systematic replications of a collection of original studies.

Following e.g. Camerer et al. (2016), by a replication we mean a study that applies the

same experimental protocol to a new sample from the same population as the correspond-

ing original study.2 When there is no selectivity and the original and replication studies

have the same sample size, the joint distribution of initial and replication estimates is

symmetric, in the sense that it is unchanged when we reverse the roles of the original

and replication results. Under the assumption that publication decisions depend only on

the original estimates, asymmetries in this joint distribution nonparametrically identify

conditional publication probabilities. While replication sample sizes often differ from those

in the initial study, we show that nonparametric identification extends to this case as well.

Our second identification approach uses data from meta-studies, by which we mean

1While our corrections eliminate bias due to selective publication, they cannot correct for problems
with the underlying studies. If a study suffers from omitted variables bias (cf. Bruns and Ioannidis,
2016; Bruns, 2017), for instance, our corrections provide median unbiased estimates for the sum of the
parameter of interest and the omitted variables bias. See Section 5.5 below.

2Clemens (2017) terms such studies “reproductions,” to distinguish them from “verifications” (cf.
Chang and Li, 2018; Gertler et al., 2018) which try to reproduce the same results as the original paper
based on the original sample.
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studies that collect estimates and standard errors from multiple published studies. Un-

der an independence assumption common in the meta-studies literature, if there is no

selectivity then we can write the distribution of estimates for high variance studies as

the distribution for low variance studies plus noise. Deviations from this prediction again

identify conditional publication probabilities.

Both approaches identify conditional publication probabilities up to scale. Multiplying

publication probabilities by a constant factor does not change the distribution of published

results, and so does not affect the behavior of estimators and confidence sets. Hence,

identification up to scale is sufficient to apply our bias corrections.

Applications Section 4 applies the theory developed in this paper to three empirical

literatures. Our first two applications use data from the experimental economics and

psychology replication studies of Camerer et al. (2016) and Open Science Collaboration

(2015), respectively. Estimates based on our replication approach suggest that results

significant at the 5% level are over 30 times more likely to be published than are insignifi-

cant results, providing strong evidence of selectivity. Estimation based on our meta-study

approach, which uses only the originally published results, yields similar conclusions.

Our third application considers the literature on the impact of minimum wages on

employment, where no replication estimates are available. Estimates based on data

from the meta-study Wolfson and Belman (2015) suggest that results corresponding to a

negative and significant effect of minimum wages on employment are about 3 times more

likely to be published than are insignificant results. Our point estimates suggest that results

showing a positive and significant effect of minimum wages on employment are less likely

to be published than negative and significant results, consistent with prior work by Card

and Krueger (1995) and Wolfson and Belman (2015), but we cannot reject that selection

depends only on significance and not on sign. In the supplement we discuss two additional

applications of our methods, using data from Croke et al. (2016) and Camerer et al. (2018).

Alternative approaches There is a large prior literature on publication bias. Section

5 discusses some of the alternatives from this literature, including meta-regression and

approaches based on the distribution of p-values or z-statistics, and relates them to

our framework. We further discuss the implications of “p-hacking” as studied by e.g.

Simonsohn et al. (2014) and Bruns and Ioannidis (2016) for our results.

Supplement A variety of supporting materials and extensions of our results are pro-

vided in the online supplement. Section A contains proofs for all results discussed in the
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main text. Section B provides additional discussion of the data and methods used in

our empirical applications, as well as a range of robustness checks. Section C contains

further empirical results, including estimates based on alternative GMM estimation ap-

proaches and results for the Croke et al. (2016) and Camerer et al. (2018) applications.

Finally, Section D discusses additional theoretical results, including on inference with

multidimensional selection and the impact of selection on Bayesian inference.

Notation Throughout the paper, upper case letters denote random variables and lower

case letters denote realizations. We observe normally distributed estimates X with mean

Θ and standard deviation Σ, where Θ and Σ may vary across studies.3 We condition on

Θ and Σ whenever frequentist objects are considered, while unconditional expectations,

probabilities, and densities integrate over the population distribution of Θ and Σ. Esti-

mates normalized by their standard deviation Σ are denoted by Z, and parameters Θ

normalized by Σ are denoted by Ω. Latent studies (published or unpublished) are marked

by a superscript ∗, while published studies have no superscript.

2 Setting

Throughout this paper we consider variants of the following data generating process.

Within an empirical literature of interest, there is a population of latent studies i. The

true effect Θ∗i in study i is drawn from distribution µΘ. Thus, different latent studies may

estimate different true parameters.4 Conditional on the true effect Θ∗i and the standard

deviation Σ∗i (which may also vary across studies), the result X∗i in latent study i is

drawn from the normal distribution N(Θ∗i ,Σ
∗2
i ). For simplicity of notation we suppress

the subscript i when possible.

Studies are published if D=1, which occurs with probability p(Z∗), where Z∗=X∗/Σ∗.

We observe the truncated sample of published studies (that is, we observe draws from the

conditional distribution of (X∗,Σ∗) given D=1 ) and denote observations in this sample

by (X,Σ). Publication decisions reflect both researcher and journal decisions; we do not

attempt to disentangle the two. We obtain the following model:

Definition 1 (Truncated sampling process)

3Note that we use Σ to denote the (scalar) standard deviation rather than a variance matrix.
4The case where all latent studies estimate the same parameter is nested by taking the distribution

µΘ to be degenerate.
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(Θ∗,Σ∗,X∗,D) are jointly i.i.d. across latent studies, with

(Θ∗,Σ∗)∼µΘ,Σ

X∗|Θ∗,Σ∗ ∼N(Θ∗,Σ∗2)

D|X∗,Θ∗,Σ∗ ∼Ber(p(Z∗)),

where Z∗=X∗/Σ∗. We observe i.i.d. draws (X,Σ) from the conditional distribution of

(X∗,Σ∗) given D=1. Define Z=X/Σ, Ω∗=Θ∗/Σ∗, Ω=Θ/Σ, and denote the marginal

distribution of Θ∗ by µΘ.

As we discuss in the proofs, many of our results can be extended to the case where

X∗ is non-normal. Our focus on the normal case is motivated by the fact that that X∗

represents the estimate in each study. Such estimates are approximately normal with a

consistently estimable variance under mild conditions. Moreover, approximate normality

of estimates is widely assumed in practice (for example to justify reporting standard

errors), including in all the papers discussed in our applications.

The truncated sampling process of Definition 1 implies the likelihood.

fZ|Ω,Σ(z|ω,σ)=fZ∗|Ω∗,Σ∗,D(z|ω,σ,1)=
p(z)

E[p(Z∗)|Ω∗=ω]
ϕ(z−ω), (1)

for ϕ(·) the standard normal density. Note that fZ|Ω,Σ(z|ω,σ)=fZ|Ω(z|ω). Moreover, the

scale of the publication probability does not affect the distribution of published results,

since for c>0, p(·) and c·p(·) imply the same fZ|Ω(z|ω).

2.1 Illustrative example: Selection on statistical significance

To illustrate our setting we consider a simple example to which we will return through-

out the paper. A journal receives a stream of studies reporting experimental estimates

X∗∼N(Θ∗,Σ∗2) of treatment effects Θ∗, where each experiment examines a different treat-

ment. The journal publishes studies with Z∗ in the interval [−1.96,1.96] with probability

p(Z∗)= .1, while results outside this interval are published with probability p(Z∗)=1. This

publication policy reflects a preference for “significant results,” where a two-sided z-test

rejects the null hypothesis Θ∗=0 (or equivalently, Ω∗=0) at the 5% level. This journal is

ten times more likely to publish significant results than insignificant ones. Consequently,

published results tend to over-estimate the magnitude of the treatment effect.5 Published

5See Ioannidis (2008) and Gelman (2018) for more discussion of this point.
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Figure 1: The left panel plots the median bias of the conventional estimator Θ̂j=Zj, while
the right panel plots the true coverage of the conventional 95% confidence interval, both for
p(z)= .1+.9·1(|Z|>1.96).

confidence intervals also under-cover the true parameter value for small values of Ω and

over-cover for somewhat larger values. This is demonstrated by Figure 1, which plots the

median bias, med(Ω̂|Ω=ω)−ω, of the usual estimator Ω̂=Z, as well as the coverage of

the conventional 95% confidence interval [Z−1.96,Z+1.96].6 While we have described

this example in terms of selection by the journal, it could equivalently be interpreted as

reflecting selection by researchers, or by both researchers and journals.

2.2 Corrected inference

If we know the form of selectivity we can correct the bias from selective publication. This

section derives median unbiased estimators and valid confidence sets for Ω, which can

immediately be turned into estimators and confidence sets for Θ via multiplication by

Σ. These results ensure unbiasedness and correct coverage conditional on (Θ,Σ) for all

(Θ,Σ), rather than just on average across the distribution of (Θ,Σ). For now we assume

p(·) is known up to scale; corrections accounting for estimation error in p(·) are discussed

in Section B.1 of the supplement.

Selective publication reweights the distribution of Z by p(·). To obtain valid esti-

mators and confidence sets, we need to correct for this reweighting. To define these

corrections, denote the distribution function for published results Z given true effect Ω

by FZ|Ω =
∫ z
−∞fZ|Ω(z̃|ω)dz̃, for fZ|Ω(z|ω) as in Equation (1). Recall that fZ|Ω is the same

6Note that med(Ω̂|Ω=ω)−ω=(med(Θ̂|Θ=θ,Σ=σ)−θ)/σ so the median bias of Ω̂ can be interpreted
as the median bias of X for θ, scaled by the standard error.
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for p(·) and c·p(·), so we only need to know p(·) up to scale to calculate FZ|Ω. We adapt

an approach previously applied by, among others, D. Andrews (1993) and Stock and

Watson (1998), and invert the distribution function as a function of ω to construct a

quantile-unbiased estimator. Let us define ω̂α(z) as the solution to

FZ|Ω(z|ω̂α(z))=α∈(0,1), (2)

so z lies at the α-quantile of the distribution implied by ω̂α(z). Using the monotonicity

properties of FZ|Ω, we prove that ω̂α(Z) is an α-quantile unbiased estimator for Ω.

Theorem 1

Suppose that p(z)>0 for all z, and p(·) is almost everywhere continuous. Then ω̂α(z) as de-

fined in (2) exists, is unique, and is continuous and strictly increasing for all z. Furthermore,

ω̂α(Z) is α-quantile unbiased for Ω under the truncated sampling setup of Definition 1,

P(ω̂α(Z)≤ω|Ω=ω,Σ=σ)=α for all ω.

These results allow straightforward frequentist inference that corrects for selective pub-

lication. In particular, using Theorem 1 we can consider the median-unbiased estimator

ω̂1
2
(z) for ω, as well as the equal-tailed level 1−α confidence interval

[
ω̂α

2
(Z),ω̂1−α

2
(Z)
]
.

This estimator and confidence set fully correct the bias and coverage distortions induced

by selective publication. In the special case where insignificant results are published with

probability zero while significant results are published with probability one, our corrected

confidence sets exclude zero if and only if the test of McCrary et al. (2016) rejects.

Illustrative example (continued) To illustrate these results, we return to the treat-

ment effect example discussed above. Figure 2 plots the median unbiased estimator,

as well as upper and lower 95% confidence bounds, as a function of Z, again for the

case with p(Z∗)=1 when |Z∗|>1.96 and p(Z∗)= .1 otherwise. We see that the median

unbiased estimator lies below the usual estimator ω̂=Z for small positive Z but that

the difference is eventually decreasing in Z. The truncation-corrected confidence interval

shown in Figure 2 has exactly correct coverage, is smaller than the usual interval for small

Z, wider for moderate values Z, and essentially the same for Z≥5.
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Figure 2: This figure plots 95% confidence bounds and the median unbiased estimator for
the normal model where results that are significant at the 5% level are ten times more likely
to be published than are insignificant results. The usual (uncorrected) estimator and confidence
bounds are plotted in grey for comparison.

3 Identifying selection

This section proposes two approaches for identifying p(·). The first uses systematic

replication studies, while the second uses meta-studies.

3.1 Systematic replication studies

The following theorem extends the model in Definition 1 above to incorporate a con-

ditionally independent replication draw Xr∗ which is observed whenever X∗ is. The

key assumption for this theorem is that selectivity of publication operates only on X∗

and not on Xr∗. This assumption is plausible for systematic replication studies such

as Open Science Collaboration (2015) and Camerer et al. (2016), but may fail in non-

systematic replication settings, for instance if replication studies are published only when

they “debunk” prior published results.

Theorem 2 (Nonparametric identification using replication experiments)
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Consider the data generating process of Definition 1. Assume that for each latent study

there exist a replication estimate and standard error (Xr∗,Σr∗) with

Xr∗|Θ∗,Σr∗,Σ∗,D,X∗∼N(Θ∗,Σ∗r2),

where we again observe the replication estimate and standard error only for published

studies. Then p(·) is identified up to scale, and µΘ is identified as well.

Intuition Consider the setup of Theorem 2, and define Zr = Xr/Σ, that is as the

replication estimate normalized by the original standard error. Assume for the moment

that Σr∗=Σ∗, so that the replication estimate Xr∗ has the same variance as X∗. Under

these assumptions, the marginal density of (Z,Zr) is

fZ,Zr(z,z
r)=

p(z)

E[p(Z∗)]

∫
ϕ(z−ω)ϕ(zr−ω)dµΩ(ω). (3)

This expression immediately implies that any asymmetries in the joint distribution of

(Z,Zr) must be due to the publication probability p(·). In particular,

fZ,Zr(b,a)

fZ,Zr(a,b)
=
p(b)

p(a)
,

whenever the denominators on either side are non-zero. Theorem 2 uses this identity to

show that p(·) is nonparametrically identified up to scale.7 That p(·) is only identified up

to scale is intuitive: Equation (1) above shows that the scale of p(·) does not affect the

distribution of published results, and Equation (3) shows that the same remains true once

we add replication results. Hence, the scale of p(·) is both unnecessary for bias corrections

and unidentified without data on unpublished results.

In general the replication standard error Σr∗ will differ from the original variance Σ∗,

which takes us out of the symmetric framework. Additionally, the distribution of Σr∗ might

depend on Z∗. Such dependence is present if power calculations are used to determine

replication sample sizes, as in both Open Science Collaboration (2015) and Camerer et al.

(2016). In that case, Σr∗ is positively related to the magnitude of Z∗, but conditionally un-

related to Θ∗. The proof of Theorem 2 shows that identification carries over to this setting,

since we can recover the symmetric setting by (de)convolution of Zr with normal noise.

7Note that this argument does not use normality of Z and Zr, and thus generalizes to other estimator
distributions.
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Figure 3: This figure illustrates the effect of selective publication in the replication experiments
setting using simulated data, where selection is on statistical significance, as described in
the text. The left panel shows the joint distribution of a random sample of latent estimates
and replications; the right panel shows the subset which are published. Results where the
original estimates are significantly different from zero at the 5% level are plotted in blue, while
insignificant results are plotted in grey.

Illustrative example (continued) To illustrate our identification approach using repli-

cation studies, we return to the illustrative example introduced in Section 2. In this setting,

suppose that the normalized true effect Ω∗ is distributed N(1,1) across latent studies. As

before, assume that p(Z∗)=1 when |Z∗|>1.96, and that p(Z∗)= .1 otherwise. Assume

finally that Σr∗=Σ∗=1, so original and replication estimates both have variance one.

This setting is illustrated in Figure 3. The left panel of this figure shows 100 random

draws (Z∗,Zr∗); draws where |Z∗|≤1.96 are marked in grey, while draws where |Z∗|>1.96

are marked in blue. The right panel shows the subset of draws (Z,Zr) that are published.

These are the same draws as (Z∗,Zr∗), except that 90% of the draws for which Z∗ is

statistically insignificant are deleted.

Our identification argument in this case proceeds by considering deviations from

symmetry around the diagonal Z =Zr. Let us compare what happens in the regions

marked A and B. In A, Z is statistically significant but Zr is not; in B it is the other way

around. By symmetry of the data generating process, the latent (Z∗,Zr∗) fall in either

area with equal probability. The fact that the observed (Z,Zr) lie in region A substantially

more often than in region B thus provides evidence of selective publication, and the exact

deviation of the distribution of (Z,Zr) from symmetry identifies p(·) up to scale.
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3.2 Meta-studies

Our approach using meta-studies restricts the model in Definition 1 by assuming that Θ∗

is statistically independent of Σ∗ across latent studies, so studies with smaller standard

errors do not have systematically different estimands. This is a strong assumption, but

is imposed by many popular meta-analysis techniques including in meta-regression (see

Section 5.2) and the “trim and fill” method (Duval and Tweedie, 2000). This assumption

holds trivially if Θ∗ is constant across latent studies. In our applications with replication

data, estimates for p(·) based on this assumption are similar to those based on our

replication approach, lending further support to this method.

Theorem 3 (Nonparametric identification using meta-studies)

Consider the data generating process of Definition 1. Assume additionally that Σ∗ and

Θ∗ are independent, and that the support of Σ contains an open interval. Then p(·) is

identified up to scale, and µΘ is identified as well.

Intuition Consider the setup of Theorem 2. The conditional density of Z given Σ is

fZ|Σ(z|σ)=
p(z)

E[p(Z∗)|Σ∗=σ]

∫
ϕ(z−θ/σ)dµΘ(θ).

This implies that, for σ2>σ1,

fZ|Σ(z|σ2)

fZ|Σ(z|σ1)
=
E[p(Z∗)|Σ∗=σ1]

E[p(Z∗)|Σ∗=σ2]
·
∫
ϕ(z−θ/σ2)dµΘ(θ)∫
ϕ(z−θ/σ1)dµΘ(θ)

, (4)

where the first term on the right hand side does not depend on z. Since fZ|Σ(z|σ2)/fZ|Σ(z|σ1)

is identified, this suggests we might be able to invert this equality to recover µΘ, which

would then allow us to identify p(·). The proof of Theorem 3 builds on this idea.

Illustrative example (continued) As before, assume that Θ∗ is N(1,1) distributed,

that p(Z∗)=1 when |Z∗|>1.96, and that p(Z∗)= .1 otherwise. Suppose further that Σ∗

is independent of Θ∗ across latent studies. This setting is illustrated in Figure 4. The

left panel of this figure shows 100 random draws (X∗,Σ∗); draws where |X∗/Σ∗|≤1.96

are marked in grey, while draws where |X∗/Σ∗|> 1.96 are marked in blue. The right

panel shows the subset of draws (X,Σ) that are published, where 90% of statistically

insignificant draws are deleted.

Compare what happens for two different values of the standard deviation Σ, marked

by A and B in Figure 4. By the independence of Σ∗ and Θ∗, the distribution of X∗
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Figure 4: This figure illustrates the effect of selective publication in the meta-studies setting
using simulated data, where selection is on statistical significance, as described in the text.
The left panel shows a random sample of latent estimates; the right panel shows the subset
of estimates which are published. Results which are significantly different from zero at the
5% level are plotted in blue, while insignificant results are plotted in grey.

for larger values of Σ∗ is a noised up version of the distribution for smaller values of Σ∗.

To the extent that the same does not hold for the distribution of published X given Σ,

this must be due to selectivity in the publication process. In this example, statistically

insignificant observations are “missing” for larger values Σ. Since publication is more

likely when |X∗/Σ∗|>1.96, the estimated values X tend to be larger on average for larger

values of Σ, and the details of how the conditional distribution of X given Σ varies with

Σ will again allow us to identify p(·) up to scale.

3.3 Estimation

The sample sizes in our applications are limited, which makes fully nonparameteric

estimation impractical. In the supplement we build on our identification arguments to

derive GMM estimators that assume a functional form for the conditional publication

probability p(·) but are nonparametric in the distribution µ of true effects. For simplicity

and ease of exposition, however, in the main text we specify parsimonious parametric

models for both p(·) and µ which we fit by maximum likelihood, similar to Hedges (1992).

Our nonparametric identification results suggest that there is hope for estimation robust

to functional form assumptions, and this is borne out by the similarity of the maximum

likelihood estimates reported here to the GMM results reported in the supplement.

We consider step function models for p(·), with jumps at conventional critical values,

and possibly at zero. Since p(·) is only identified up to scale, we impose the normalization
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p(z)=1 for z>1.96 throughout. This is without loss of generality, since p(·) is allowed to

be larger than 1 for other cells. We assume different parametric models for the distribution

of latent effects Θ∗, discussed case-by-case below. In our first two applications the sign of

the original estimates is normalized to be positive.8 We denote these normalized estimates

by W= |Z|, and in these settings we impose that p(·) is symmetric.

4 Applications

This section applies the results developed above to estimate the degree of selectivity

in three empirical literatures. We first consider data from the large scale replication

studies Camerer et al. (2016) and Open Science Collaboration (2015), which examine

experimental studies in economics and psychology, respectively. We then turn to the

meta-study Wolfson and Belman (2015) on the effect of the minimum wage on employment.

We consider two additional applications in the supplement, using replication data from

Camerer et al. (2018) on social-science experiments and meta-study data from Croke et al.

(2016) on the effect of deworming.

Plausibility of identifying assumptions The results of Section 3 imply nonparamet-

ric identification of both p(·) and µΘ. Our approach using replication data is based on

the assumption that selection for publication depends only on the original estimates and

not on the replication estimates. This assumption is highly plausible by design in the

two replication settings we consider, which use data from systematic replication studies.

These studies pre-specify and replicate a large number of results published in a given time

period and set of journals, and report all replication results together.

Our approach using meta-studies is based on the assumption that studies on a given

topic with different standard errors do not have systematically different estimands. While

we cannot guarantee validity of this assumption by design, its plausibility is enhanced

by our finding that it yields estimates very similar to the approach based on replication

studies in all our applications where both apply (Camerer et al. (2016), Open Science

Collaboration (2015), and Camerer et al. (2018)). Variants of this assumption (or the

strictly stronger assumption that Θ is constant) are common in existing meta-studies.

Finally, for both approaches we assume that conditional on (Θ∗,Σ∗) estimates are ap-

proximately normal, consistent with the inference methods used in the underlying studies.

8The studies in these datasets consider different outcomes, so the relative signs of effects across studies
are arbitrary. Setting the sign of the initial estimate in each study to be positive ensures invariance
to the sign normalization chosen by the authors of each study.
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4.1 Economics laboratory experiments

Our first application uses data from a recent large-scale replication of experimental eco-

nomics papers by Camerer et al. (2016). The authors replicated all 18 between-subject

laboratory experiment papers published in the American Economic Review and Quarterly

Journal of Economics between 2011 and 2014.9 Further details on the selection and

replication of results can be found in Camerer et al. (2016), while details on our handling

of the data are discussed in the supplement.

A strength of this dataset for our purposes, beyond the availability of replication

estimates, is the fact that it replicates results from all papers in a particular subfield

published in two leading economics journals over a fixed period of time. This mitigates

concerns about the selection of which studies to replicate. Moreover, since the authors

replicate 18 such studies, it seems likely that they would have published their results

regardless of what they found, consistent with our assumption that selection operates

only on the initial studies and not on the replications.

A caveat to the interpretation of our results is that Camerer et al. (2016) select the

most important statistically significant finding from each paper, as emphasized by the

original authors, for replication. This selection changes the interpretation of p(·), which has

to be interpreted as the probability that a result was published and selected for replication.

In this setting, our corrected estimates and confidence intervals provide guidance for

interpreting the headline results of published studies. For consistency with the rest of

the paper, however, we continue to shorthand p(·) as the publication probability.

Histogram Before we discuss our formal estimation results, consider the distribution of

originally published estimates W= |Z|, shown by the histogram in the left panel of Figure

5. This histogram suggests a large jump in the density fW (·) at the cutoff 1.96, and thus

a corresponding jump in the publication probability p(·) at the same cutoff; see Section

5.3 below. Such a jump is confirmed by both our replication and meta-study approaches.

Results from replication specifications The middle panel of Figure 5 plots the joint

distribution of (W,W r)=sign(Z)·(Z,Zr) in the replication data of Camerer et al. (2016).

9In their supplementary materials, Camerer et al. (2016) state that “To be part of the study a
published paper needed to report at least one significant between subject treatment effect that was
referred to as statistically significant in the paper.” However, we have reviewed the issues of the American
Economic Review and Quarterly Journal of Economics from the relevant period, and confirmed that
no studies were excluded due to this restriction.
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Figure 5: The left panel shows a binned density plot for the normalized z-statistics W= |X|/Σ
using data from Camerer et al. (2016). The grey line marks W=1.96. The middle panel plots
the z-statistics W from the initial study against the estimate W r from the replication study.
The grey lines mark W and W r =1.96, as well as W =W r. The right panel plots the initial
estimate |X|=W ·Σ against its standard error Σ. The grey line marks |X|/Σ=1.96.

To estimate the degree of selection in these data we consider the model

|Ω∗|∼Γ(κ,λ), p(Z)∝

βp |Z|<1.96

1 |Z|≥1.96.

This assumes that the absolute value of the normalized true effect Ω∗ follows a gamma distri-

bution with shape parameter κ and scale parameter λ. This nests a wide range of cases, in-

cluding χ2 and exponential distributions, while keeping the number of parameters low. Our

model for p(·) allows a discontinuity in the publication probability at |Z|=1.96, the critical

value for a 5% two-sided z-test. Fitting this model by maximum likelihood yields the esti-

mates reported in the left panel of Table 1. Recall that βp in this model can be interpreted

as the publication probability for a result that is insignificant at the 5% level based on a two-

sided z-test, relative to a result that is significant at the 5% level. These estimates therefore

imply that significant results are more than thirty times more likely to be published than in-

significant results. Moreover, we strongly reject the hypothesis of no selectivity, H0 :βp=1.

Results from meta-study specifications While the Camerer et al. (2016) data in-

clude replication estimates, we can also apply our meta-study approach using just the

initial estimates and standard errors. Since this approach relies on additional independence

assumptions, comparing these results to those based on replication studies provides a

useful check of the reliability of our meta-analysis estimates.

We begin by plotting the data used by our meta-analysis estimates in the right panel

15



Replication

κ λ βp
0.373 2.153 0.029

(0.267) (1.026) (0.027)

Meta-study

κ̃ λ̃ βp
1.343 0.157 0.038

(1.310) (0.076) (0.051)

Table 1: Selection estimates from lab experiments in economics, with robust standard errors
in parentheses. The left panel reports estimates from replication specifications, while the right
panel reports results from meta-study specifications. Publication probability βp is measured
relative to the omitted category of studies significant at 5% level, so an estimate of 0.029
implies that results which are insignificant at the 5% level are 2.9% as likely to be published
as significant results. The parameters (κ,λ) and (κ̃,λ̃) are not comparable.

of Figure 5. We consider the model

|Θ∗|∼Γ(κ̃,λ̃), p(Z)∝

βp |Z|<1.96

1 |Z|≥1.96.

noting that Θ∗ is the mean of X∗, rather than Z∗, and thus that the interpretation of (κ̃,λ̃)

differs from that of (κ,λ) in our replication specifications. Fitting this model by maximum

likelihood yields the estimates reported in the right panel of Table 1. Comparing these

estimates to those in the left panel, we see that the estimates from the two approaches are

similar, though the metastudy estimates suggest a somewhat smaller degree of selection.

Hence, we find that in the Camerer et al. (2016) data we obtain similar results from our

replication and meta-study specifications.

Bias correction To interpret our estimates, we calculate our median-unbiased estimator

and confidence sets based on our replication estimate βp= .029. Figure 6 plots the median

unbiased estimator, as well as the original and adjusted confidence sets, for the 18 studies

included in Camerer et al. (2016). Considering the first panel, which plots the median

unbiased estimator along with the original and replication estimates, we see that the

adjusted estimates track the replication estimates fairly well but are smaller than the

original estimates in many cases.10 The second panel plots the original estimate and

conventional 95% confidence set in blue, and the adjusted estimate and 95% confidence

set in black. As we see from this figure, twelve of the adjusted confidence sets include zero,

compared to just two of the original confidence sets. Hence, adjusting for the estimated

degree of selection substantially changes the number of significant results in this setting.

10Note, however, that even for p(·) known it is not the case that the conditional median of Zr given Z is
equal to the adjusted estimate. Indeed, the conditional distribution of Zr given Z does not depend on p(·).
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Figure 6: The top panel plots the estimates W and W r from the original and replication studies
in Camerer et al. (2016), along with the median unbiased estimate θ̂1

2
based on the estimated

selection model and the original estimate. The bottom panel plots the original estimate and 95%
confidence interval, as well as the median unbiased estimate and adjusted 95% confidence interval[
θ̂0.025(W),θ̂0.975(W)

]
based on the estimated selection model. Adjusted intervals not accounting

for estimation error in the selection model are plotted with solid lines, while endpoints for
intervals accounting for estimation error are marked with “p” – see Section B.1 of the supplement.
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4.2 Psychology laboratory experiments

Our second application is to data from Open Science Collaboration (2015), who conducted

a large-scale replication of experiments in psychology. The authors considered studies

published in three leading psychology journals, Psychological Science, Journal of Person-

ality and Social Psychology, and Journal of Experimental Psychology: Learning, Memory,

and Cognition, in 2008. They assigned papers to replication teams on a rolling basis,

with the set of available papers determined by publication date. Ultimately, 158 articles

were made available for replication, 111 were assigned, and 100 of those replications were

completed in time for inclusion in Open Science Collaboration (2015). Replication teams

were instructed to replicate the final result in each article as a default, though deviations

from this default were made based on feasibility and the recommendation of the authors

of the original study. Ultimately, 84 of the 100 completed replications consider the final

result of the original paper.

As with the economics replications above, the systematic selection of results for

replication in Open Science Collaboration (2015) is an advantage from our perspective.

A complication in this setting, however, is that not all of the test statistics used in the

original and replication studies are well-approximated by z-statistics (for example, some

of the studies use χ2 test statistics with two or more degrees of freedom). To address this,

we limit attention to the subset of studies which use z-statistics or close analogs thereof,

leaving us with a sample of 73 studies. Specifically, we limit attention to studies using z-

and t-statistics, or χ2 and F-statistics with one degree of freedom (for the numerator, in the

case of F-statistics), which can be viewed as the squares of z- and t-statistics, respectively.

To explore sensitivity of our results to denominator degrees of freedom for t- and F-

statistics, in the supplement we limit attention to the 52 observations with denominator

degrees of freedom of at least 30 in the original study and find quite similar results.

Histogram The distribution of originally published estimates W is shown by the

histogram in the left panel of Figure 7. This histogram suggests a large jump in the

density fW (·) at the cutoff 1.96, as well as possibly a jump at the cutoff 1.64, and thus of

corresponding jumps of the publication probability p(·) at the same cutoffs. Such jumps

are again confirmed by the estimates from both our replication and meta-study approaches.

Results from replication specifications The middle panel of Figure 7 plots the

joint distribution of W, W r in the replication data of Open Science Collaboration (2015).

Relative to the plot for Camerer et al. (2016), we see a larger fraction of studies where
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Figure 7: The left panel shows a binned density plot for the normalized z-statistics W= |X|/Σ
using data from Open Science Collaboration (2015). The grey line marks W=1.96. The middle
panel plots the z-statistics W from the initial study against the estimate W r from the replication
study. The grey lines mark |W | and |W r|= 1.96, as well as W =W r. The right panel plots
the initial estimate |X|=W ·Σ against its standard error Σ. The grey line marks |X|/Σ=1.96.

W > 1.96 for the original study while W r < 1.96 in the replication study (8 of the 18

of studies in Open Science Collaboration (2015), compared to 44 of the 73 studies in

Camerer et al. (2016)).11 This could be due to differences in selection or to differences

in the distribution of effects. To disentangle these issues, we fit the model

|Ω∗|∼Γ(κ,λ), p(Z)∝


βp,1 |Z|<1.64

βp,2 1.64≤|Z|<1.96

1 |Z|≥1.96.

This model again assumes that the absolute value of the normalized true effect |Ω∗| follows

a gamma distribution across latent studies. Given the larger sample size, we consider

a slightly more flexible model than before and allow discontinuities in the publication

probability at the critical values for both 5% and 10% two-sided z-tests.

Fitting this model by maximum likelihood yields the estimates reported in the left

panel of Table 2. These estimates imply that results that are significantly different from

zero at the 5% level are over a hundred times more likely to be published than results

that are insignificant at the 10% level, and nearly five times more likely to be published

than results that are significant at the 10% level but insignificant at the 5% level. We

strongly reject the hypothesis of no selectivity.

These results do not indicate a large difference in the degree of selection relative to

11Indeed 12 of the 73 studies in Open Science Collaboration (2015) have W>3 and W r<1.96, while
none of those in Camerer et al. (2016) do.
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Replication

κ λ βp,1 βp,2
0.315 1.308 0.009 0.205

(0.141) (0.331) (0.005) (0.088)

Meta-study

κ̃ λ̃ βp,1 βp,2
0.974 0.153 0.017 0.306

(0.549) (0.053) (0.009) (0.135)

Table 2: Selection estimates from lab experiments in psychology, with robust standard errors
in parentheses. The left panel reports estimates from replication specifications, while the right
panel reports results from meta-study specifications. Publication probabilities βp are measured
relative to the omitted category of studies significant at 5% level. The parameters (κ,λ) and
(κ̃,λ̃) are not comparable.

the Camerer et al. (2016) data.12 They suggest, however that the distribution of |Ω∗| may

be substantially smaller, with E[|Ω∗|]=0.41 (standard error 0.11) in the Open Science

Collaboration (2015) data compared to E[|Ω∗|]=0.8 (standard error 0.37) in the Camerer

et al. (2016) data. Hence, our estimates for E[|Ω∗|] are noisy but suggest that the larger

number of studies with W>1.96 and W r<1.96 in Open Science Collaboration (2015)

may be due to differences in the distribution of true effects, rather than to differences

in the degree of selection.

Our results for this setting are roughly consistent with those of Johnson et al. (2017),

who independently consider the Open Science Collaboration (2015) data and likewise esti-

mate a step function model for p(·), but allow a discontinuity only at the 5% significance

level. Johnson et al. (2017) estimate that insignificant results are only about 0.5% as

likely to be published as are significant results. The Johnson et al. specifications for µΩ

allow the possibility that Pr{Ω∗=0}>0 and they estimate that Ω∗=0 about 90% of the

time. Similarly, our estimated gamma distribution has mode equal to zero.

Results from meta-study specifications As before, we re-estimate our model using

our meta-study specifications, and plot the joint distribution of estimates and standard

errors in the right panel of Figure 7. Fitting the model yields the estimates reported

in the right panel of Table 2. As in the last section, we find that the meta-study and

replication estimates are broadly similar, though the meta-study estimates again suggest

a somewhat more limited degree of selection

Approved replications Gilbert et al. (2016) argue that the protocols in some of the

Open Science Collaboration (2015) replications differed substantially from the initial

studies. These arguments were disputed by many of the Open Science Collaboration

(2015) authors in Anderson et al. (2016), who note that many of the replications used

12If we instead estimate the model only with a discontinuity at the 5% level (as in the Camerer et al.
(2016) data), we estimate βp=0.024 with standard error of 0.011.
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Figure 8: This figure plots the estimates W and W r from the original and replication studies
in Open Science Collaboration (2015), along with the median unbiased estimate θ̂1

2
based on

the estimated selection model and the original estimate.

protocols approved in advance by the authors of the underlying papers. In Section B.6.2

of the supplement we report results based on the subset of approved replications and find

roughly similar estimates, though the estimated degree of selection is smaller.

Bias corrections To interpret our results, we plot our median-unbiased estimates based

on the Open Science Collaboration (2015) data in Figure 8. We see that our adjusted

estimates track the replication estimates fairly well for studies with small original z-statistics,

though unlike in Figure 6 differences are larger for studies with larger original z-statistics.13

Our adjustments again dramatically change the number of significant results, with

62 of the 73 original 95% confidence sets excluding zero, and only 28 of the adjusted

confidence sets (not displayed) doing the same.

4.3 Effect of minimum wage on employment

Our final application uses data from Wolfson and Belman (2015), who conduct a meta-

analysis of studies on the elasticity of employment with respect to the minimum wage.

In particular, Wolfson and Belman (2015) collect analyses of the effect of minimum wages

13Since we have sorted on the original estimates, patterns of this sort can arise from mean reversion.

21



-2 0 2
X

0

0.5

1

1.5

-6 -4 -2 0 2 4 6
X/

0

0.02

0.04

0.06

0.08

0.1
D

en
si

ty

Figure 9: The left panel shows a binned density plot for the z-statistics X/Σ in the Wolfson
and Belman (2015) data. The solid grey lines mark |X|/Σ=1.96, while the dash-dotted grey
line marks X/Σ=0. The right panel plots the estimate X against its standard error Σ. The
grey lines mark |X|/Σ=1.96.

on employment that use US data and were published or circulated as working papers

after the year 2000. They collect estimates from all studies fitting their criteria that

report both estimated elasticities of employment with respect to the minimum wage and

standard errors, resulting in a sample of a thousand estimates drawn from 37 studies, and

we use these estimates as the basis of our analysis. For further discussion of these data,

see Wolfson and Belman (2015).

Since the Wolfson and Belman (2015) sample includes both published and unpublished

papers, we evaluate our estimators based on both the full sample and the sub-sample

of published estimates. We find qualitatively similar answers for the two samples, so we

report results based on the full sample here and discuss results based on the subsample

of published estimates in the supplement. We define X so that X>0 indicates a negative

effect of the minimum wage on employment.

Histogram Consider first the distribution of the normalized estimates Z, shown by the

histogram in the left panel of Figure 9. This histogram is somewhat suggestive of jumps in

the density fZ(·) around the cutoffs −1.96, 0, and 1.96, and thus of corresponding jumps

in the publication probability p(·) at the same cutoffs; these jumps seem less pronounced

than in our previous applications, however.

Results from meta-study specifications For this application we do not have any

replication estimates, and so move directly to our meta-study specifications. The right
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panel of Figure 9 plots the joint distribution of X, the estimated elasticity of employment

with respect to decreases in the minimum wage, and the standard error Σ in the Wolfson

and Belman (2015) data.

We consider the model

Θ∗∼ θ̄+t(ν)·τ̃ , p(Z)∝



βp,1 Z<−1.96

βp,2 −1.96≤Z<0

βp,3 0≤Z<1.96

1 Z≥1.96.

Since the data are not sign-normalized, we model Θ∗ using a t distribution with degrees

of freedom ν̃ and location and scale parameters θ̄ and τ̃ , respectively. Unlike in our

previous applications, we allow the probability of publication to depend on the sign of

the z-statistic Z rather than just on its absolute value. This is important, since it seems

plausible that the publication prospects for a study could differ depending on whether it

found a positive (X<0) or negative (X>0) effect of the minimum wage on employment.

Our estimates based on these data are reported in Table 3, where we find that results

which are insignificant at the 5% level are about 30% as likely to be published as are

significant estimates finding a negative effect of the minimum wage on employment. Our

point estimates also suggest that studies finding a positive and significant effect of the

minimum wage on employment may be less likely to be published, but this estimate is quite

noisy and we cannot reject the hypothesis that selection depends only on significance and

not on sign. Unlike our other results, this is sensitive to the details of the specification: if we

instead restrict the distribution of true effects Θ∗ to be normal, our estimate for βp,1 drops

to 0.225 with a standard error of 0.118. On the other hand, our GMM approach discussed in

Section C.1 of the supplement returns a βp,1 estimate of 1.174 with a standard error of 0.417.

θ̄ τ̃ ν̃ βp,1 βp,2 βp,3
0.018 0.019 1.303 0.697 0.270 0.323

(0.009) (0.011) (0.279) (0.350) (0.111) (0.094)

Table 3: Meta-study estimates from minimum wage data, with standard errors clustered by
study in parentheses. Publication probabilities βp measured relative to omitted category of
estimates positive and significant at 5% level.

Since the studies in this application estimate related parameters, it is interesting to
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consider the estimate θ̄ for the mean effect in the population of latent estimates. The

point estimate is small but significantly different from zero at the 5% level, and suggests

that the average latent study finds a small negative effect of the minimum wage on

employment. This effect is about half as large as the “naive” average effect θ̄ we would

estimate by ignoring selectivity, .041 with a standard error of 0.011.

These results are consistent with the meta-analysis estimates of Wolfson and Belman

(2015), who found evidence of some publication bias towards a negative employment

effect, as well as the results of Card and Krueger (1995), who focused on an earlier,

non-overlapping set of studies.

Multiple estimates A complication arises in this application, relative to those con-

sidered so far, due to the presence of multiple estimates per study. Since it is difficult

to argue that a given estimate in each of these studies constitutes the “main” result,

restricting attention to a single estimate per study would be arbitrary. This somewhat

complicates inference and identification.

For inference, it is implausible that estimate standard-error pairs (X,Σ) are independent

within study. To address this, we cluster our standard errors by study.

For identification, the problem is somewhat more subtle. Our model assumes that the

latent parameters Θ∗i and Σ∗i are statistically independent across estimates i, and that Di

is independent of (Θ∗i ,Σ
∗
i ) conditional on Z∗i . It is straightforward to relax the assumption

of independence across i, provided the marginal distribution of (Θ∗i ,Σ
∗
i ,X

∗
i ,Di) is such that

Di remains independent of (Θ∗i ,Σ
∗
i ) conditional on Z∗i . This conditional independence

assumption is justified if we believe that both researchers and referees consider the merits

of each estimate on a case-by-case basis, and so decide whether or not to publish each

estimate separately. Alternatively, it can also be justified if the estimands Θ∗ within

each study are statistically independent (relative to the population of estimands in the

literature under consideration).

5 Alternative approaches

Many approaches to detecting selectivity and publication bias have been proposed in the

literature. Good reviews are provided by Rothstein et al. (2006) and Christensen and

Miguel (2016). In this section we analyze some of these approaches through the lens of

our framework and relate them to our results.
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5.1 Should results “replicate?”

The findings of recent systematic replication studies such as Open Science Collaboration

(2015) and Camerer et al. (2016) are sometimes interpreted as indicating an inability to

“replicate the results” of published research. In this setting, a “result” is understood to

“replicate” if both the original study and its replication find a statistically significant effect

in the same direction. The share of results which replicate in this sense is prominently

discussed in Camerer et al. (2016). Our framework shows that the probability of replication

in this sense might be low even without selective publication or other sources of bias.

Consider the setup for replication experiments of Theorem 2, with constant publication

probability p(·), so that publication is not selective and fZ,Zr =fZ∗,Zr∗. For illustration,

assume further that Σ∗=Σr∗ with probability 1. For Φ the standard normal distribution

function, the probability that a result replicates in the sense described above is

P(Zr∗·sign{Z∗}>1.96||Z∗|>1.96)=

∫
[Φ(−1.96−ω)2+Φ(−1.96+ω)2]dµΩ(ω)∫
[Φ(−1.96−ω)+Φ(−1.96+ω)]dµΩ(ω)

.

If the true effect is zero in all studies then this probability is 0.025. If the true effect in all

studies is instead large, so that |Ω∗|>M with probability one for some large M, then the

probability of replication is approximately one. Thus, any replication probability between

0.025 and one is consistent with no selection, and low replication frequencies are not

necessarily indicative of selective publication, but could instead be due to a large share

of small true effects. Strengths and weaknesses of alternative measures of replication are

discussed in Simonsohn (2015) and Patil and Peng (2016).

5.2 Meta-regressions

A popular test for publication bias in meta-studies (cf. Card and Krueger, 1995; Egger et al.,

1997) is based on meta-regression, which uses regressions of either of the following forms:

E∗[X|1,Σ]=γ0+γ1·Σ, E∗
[
Z|1, 1

Σ

]
=β0+β1· 1Σ,

where we use E∗ to denote best linear predictors. Under the assumptions of Theorem

3, if p(·) is constant then it follows immediately that

E∗[X|1,Σ]=E[Θ∗], E∗
[
Z|1, 1

Σ

]
=E[Θ∗]· 1

Σ
.
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Hence, testing that either γ1 =0 or β0 =0 delivers a valid test for the null hypothesis of no se-

lectivity, though there are some forms of selectivity against which such tests have no power.

Absent publication bias, β1 and γ0 recover the average of Θ∗ in the population of latent

studies. These coefficients are sometimes interpreted as selection-corrected estimates of the

mean effect across studies (cf. Doucouliagos and Stanley, 2009; Christensen and Miguel,

2016), but this interpretation is potentially misleading in the presence of publication

bias. In particular, the conditional expectation E[X|1,Σ] is nonlinear in both Σ and 1/Σ,

which implies that β0, γ1 are generally biased as estimates of E[Θ∗].14 We discuss a simple

example with one-sided significance testing in Section D.1 of the supplement.

A variety of generalizations to meta-regression have been proposed in the literature,

including by Stanley and Doucouliagos (2014), who propose to use power-weighted meta-

regressions to increase robustness to selective publication, and Stanley et al. (2017) who

consider non-linear meta-regressions. Meta-regressions have also been widely used in appli-

cations, including by Carter et al. (2017), Havránek (2015), and Ioannidis et al. (2017).15

5.3 The distribution of p-values and z-statistics

Another approach in the literature considers the distribution of p-values, or the corre-

sponding z-statistics, across published studies (cf. De Long and Lang, 1992; Schuemie

et al., 2014; Simonsohn et al., 2014; Brodeur et al., 2016, 2018). Assuming normality,

there is a one-to-one mapping between the distribution of p-values P and the distribution

of z-statistics Z, since P = 1−Φ(Z) for 1-sided tests of the null hypothesis θ = 0 or,

equivalently, ω=0.16 Under our model, absent selectivity in the publication process the

distribution fZ is equal to fZ∗. For Z∗|Ω∗∼N(Ω∗,1) and Ω∗∼µΩ, this implies that

fZ(z)=fZ∗(z)=(µΩ∗ϕ)(z)=

∫
ϕ(z−ω)dµΩ(ω).

This model implies that the density fZ∗ is infinitely differentiable. If selectivity is present,

by contrast, then fZ(z)= p(z)
E[p(Z∗)]

·fZ∗(z). Any discontinuity of fZ(z) (for instance at critical

values such as z=1.96) thus identifies a corresponding discontinuity of the conditional

14Stanley (2008) and Doucouliagos and Stanley (2009) note this bias but suggest that one can still
use H0 :γ1 = 0 to test the hypothesis of zero true effect if there is no heterogeneity in the true effect
Θ∗ across latent studies.

15Other recent work examining selective publication in economics and finance using non meta-regression
approaches includes Chen and Zimmermann (2017) and Hou et al. (2017).

16For two-sided tests, the mapping is between p-values and absolute z-statistics |Z|.
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publication probability p(z):

limz↓z0fZ(z)

limz↑z0fZ(z)
=

limz↓z0p(z)

limz↑z0p(z)
. (5)

If we impose that p(·) is a step function, this identifies p(·) up to scale.

The model without selectivity, fZ(z)=fZ∗(z)=(µΩ∗ϕ)(z), has testable implications

beyond smoothness. In particular, the density fZ∗ precludes excessive bunching, since

for all k≥0 and all z, ∂kzfZ∗(z)≤supz∂
k
zϕ(z) and ∂kzfZ∗(z)≥ infz∂

k
zϕ(z) so for example

fZ∗(z)≤ϕ(0) and f ′′Z∗(z)≥ϕ′′(0)=−ϕ(0) for all z. Spikes in the distribution of Z thus

likewise indicate the presence of selectivity or inflation.

5.4 Observability

The setup of Definition 1 assumes that we only observe the draws (X∗,Σ∗) for which D=1.

In some cases, however, additional information may be available. First, we might know

of the existence of unpublished studies, for example from experimental preregistrations,

without observing their results X∗. In this case, called censoring, we observe i.i.d. draws

of (Y,D), where Y =D·Z∗.17 The corresponding censored likelihood is

fY,D|Ω∗(y,d|ω∗)=d·p(y)·ϕ(y−ω)+(1−d)·(1−E[p(Z∗)|Ω∗=ω∗]).

Second, we might additionally observe the results Z∗ from unpublished working papers

as in Franco et al. (2014). The likelihood in this case is

fZ∗,D|Ω∗(z,d|ω)=p(z)d(1−p(z))1−d·ϕ(z−ω).

Even under these alternative observability assumptions, the truncated likelihood (1)

arises as a limited information likelihood that conditions on publication decisions and/or

unpublished results. Our identification and inference results therefore continue to apply.

That said, additional information allows identification of p(·) under weaker assump-

tions. With full observability of unpublished results Z∗, for example, p(·) is identified by

simply regressing D on Z∗, cf. Franco et al. (2014).

5.5 Bias and Pseudo-True Values

Bruns and Ioannidis (2016) and Bruns (2017) discuss an additional way in which selectivity

17We could also observe the standard error Σ for published studies, but suppress this for simplicity.
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may increase bias in observational studies. To cast their concern into our framework,

recall that we assume throughout that the distribution of X∗ in latent studies is normal

and centered on Θ∗. There are different ways this model can be interpreted.

A first interpretation is that Θ∗i is the “true” parameter of interest in study i. This

would for example be the case for randomized experiments where we have no reason to

doubt the internal validity of each study. In this case any variation of Θ∗i across studies i

considering the same question is due to issues of external validity, for instance to different

populations of experimental subjects, or to effects changing over time. In this setting our

corrections yield valid estimates and confidence sets for the parameters of interest.

A second interpretation of our model is that researchers consider different estimates X∗

of the same parameter. These estimates might for instance be based on different controls,

different outcome variables, different estimation methods, and so on. These estimates have

expectations Θ∗ that vary across specifications, so not all Θ∗ correspond to the “true” effect

of interest. Put differently, variation of Θ∗ across studies might be due to violations of

internal validity, in addition to issues of external validity.18 Under this second interpretation,

we have additional sources of bias. First, E[Θ] 6=E[Θ∗] in general, so selection can lead to

different average biases among published and latent studies. This effect can persist even

as sampling noise goes to zero.19 Second, even if we avoid this bias by using our approach

to identify µΘ and therefore E[Θ∗], there is no guarantee that E[Θ∗] corresponds to the

parameter of interest. Hence, while our corrections can undo selection bias and allow

inference on either the parameter Θ in a given study or the distribution µΘ of Θ∗ in the

population of latent studies, we cannot correct deficiencies in the underlying studies.

5.6 Manipulation and P-hacking

Some authors consider the possibility that researchers manipulate their results (Brodeur

et al., 2016; Furukawa, 2017), while others consider the selection of results within papers,

which Simonsohn et al. (2014) term “p-hacking.” Our primary focus in this paper is on

researchers decisions whether or not to submit findings, and journal decisions whether

or not to publish submissions, rather than on manipulation or p-hacking. Nonetheless,

depending on the form manipulation or p-hacking takes, it may still be consistent with

our baseline model.

To illustrate, consider an experimental setting where researchers run two independent

18If some studies are viewed as more credible than others, this highlights the value of conducting
inference on Θ for individual studies, rather than merely on the distribution µΘ.

19Consider for instance the case where E[Θ∗]=0 and positive results are more likely to be published.

28



versions of an experiment, or estimate two regression specifications for the same estimand.

Suppose first that they decide whether to report an estimate for each experiment or

specification separately. In this case our baseline model applies, save that Θ∗i is no longer

i.i.d. Suppose now alternatively that the researcher decides to always report only the more

significant of the two estimates. In this case, the probability of publication of the first

estimate depends on the underlying parameter via the second estimate, so publication

probabilities are of the form p(Z∗i ,Ω
∗
i ).

To accommodate such violations of our baseline model, we discuss the extension of

our approach to settings where the selection probability may depend on both Z and Ω in

Section D.3 of the supplement. Given normal replication estimates Xr, we show that in

this setting we can still identify enough features of the model to apply selection-corrections.

We also develop specification tests for our baseline model against this more general

alternative, however, and in no case do we reject our baseline model where p(·) does not

depend on Ω given Z.

6 Conclusion

This paper makes three contributions relative to the existing literature. First, we provide

methods to calculate bias-corrected estimators and confidence sets when the form of

selectivity is known. Second, we provide nonparametric identification results for selectivity

based on replications and meta-studies. Third, we apply the proposed methods to several

literatures, documenting the varying scale and kind of selectivity. In cases where both

our replication and meta-study approaches apply, they yield similar conclusions.

Implications for empirical research What can researchers and readers of empirical

research take away from this paper? First, when conducting a meta-analysis of the

findings of some literature, researchers may wish to apply our methods to assess the

degree of selectivity, and to apply appropriate corrections to individual estimates, tests,

and confidence sets. We provide code on our webpages which implements the proposed

methods for a flexible family of selection models.20

Second, our results provide guidance for how to interpret published empirical findings.

In particular, if a reader has a view about how the selection process operates in a given

literature, they can adjust published estimates and confidence sets as discussed in Section

4. Even if one is concerned that the selection model does not capture all sources of bias,

20We have also implemented out meta-study approach in a web app:
https://maxkasy.github.io/home/metastudy/

29



these corrections aid interpretation by showing how much selection, considered in isolation,

changes the interpretation of published results. A positive message from our results is

that published estimates remain informative even when publication is quite selective.

It should be emphasized that we do not advocate adjusting publication standards to

reflect our corrected critical values. If these cutoffs were to be systematically used in the

publication process, this would simply entail an “arms race” of selectivity, rendering the

more stringent critical values invalid again.

Optimal publication rules One might take the findings in this paper, and the debate

surrounding publication bias more generally, to indicate that the publication process

should be non-selective with respect to findings. This might for instance be achieved by

instituting some form of result-blind review (see for example American Society of Health

Economists (2015)). The hope would be that non-selectivity of the publication process

might restore the validity (unbiasedness, size control) of standard inferential methods.

Note, however, that optimal publication rules may depend on results. This is for

instance the case in models where policy decisions are made based on published findings.

Section D.6 in the supplement provides a stylized example of such a setting. Alternatively,

given evidence that experts can forecast experimental results quite well (cf. DellaVigna

and Pope, 2018), excessively surprising findings might be interpreted as evidence of

implementation problems and so weigh against publication. A broader study of the question

of optimal publication from a journal’s perspective can be found in Frankel and Kasy (2018).

Supplement The supplement contains a wide variety of results to complement those

discussed in the main text. Section A provides proofs, while Section B gives additional

details for our empirical applications and considers a range of robustness checks, including

allowing publication probabilities to depend on covariates such as the journal or the

year in which a paper was initially circulated. Section C derives novel GMM estimation

approaches that leave the distribution of true effects unrestricted, and reports results

for our applications. Section C also reports ML estimates for the Croke et al. (2016)

and Camerer et al. (2018) applications. Finally, Section D reports additional theoretical

results, including extensions of our identification results to allow publication probabilities

to depend on Σ (to reflect a preference for precise estimates) and on Ω (to nest violations of

our baseline model). This section also extends our inference results to cases where selection

is driven by multiple variables, and discusses the effect of selection on Bayesian inference.
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This appendix contains proofs and supplementary results for the paper “Identification

of and correction for publication bias.” Section A collects proofs for the results stated

in the main text. Section B discusses several details and extensions of the applications,

including accounting for estimation error in p(·), identification with sign-normalized data,

conditioning on covariates, and a range of robustness checks. Section C contains further

empirical results, including moments and results for our GMM approaches which leave the

distribution of true effects unrestricted, and empirical results for the Camerer et al. (2018)

and Croke et al. (2016) applications. Finally, Section D gathers additional theoretical

results on topics including the extension of our identification results to cases where publi-

cation probabilities depend on Σ and Ω, the interpretation of meta-regression coefficients

in the presence of selectivity, the extension of our inference results to multivariate settings,

the effect of selection on Bayesian inference, and optimal selection in a stylized model.
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A Proofs

Proof of Equation 1: By construction, and Bayes’ rule

fZ|Ω,Σ(z|ω,σ)=fZ∗|Ω∗,Σ∗,D(z|ω,σ,1)

=
P(D=1|Z∗=z,Ω∗=ω,Σ∗=σ)

P(D=1|Ω∗=ω,Σ∗=σ)
·fZ∗|Ω∗(z|ω)

=
p(z)

E[p(Z∗)|Ω∗=ω]
ϕ(z−ω).

�

Proof of Theorem 1: We divide the proof of this theorem into two lemmas which

might be of independent interest. In the first lemma we do not impose the assumptions

of Theorem 1, so this result holds outside of the normal case. The second lemma then

shows that the conditions of Theorem 1 imply the conditions of the first lemma. We omit

conditioning on Σ throughout, since it makes no difference as shown by Equation (1).

Lemma 1

If for all z, FZ|Ω(z|ω) is continuous and strictly decreasing in ω, tends to one as ω→−∞,

and tends to zero as ω→∞, then ω̂α(z) as defined in (2) exists, is unique, and is continuous

and strictly increasing for all z. If, further, FZ|Ω(z|ω) is continuous in z for all ω then

ω̂α(Z) is α-quantile unbiased for ω under the truncated sampling setup of Definition 1,

P(ω̂α(Z)≤ω|Ω=ω)=α for all ω.
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Proof: For the first claim, note that since FZ|Ω(z|ω) tends to zero as ω→−∞ and

tends to one as ω→∞, for any z and any α∈(0,1) there exist ωl(z) and ωu(z) such that

FZ|Ω(z|ωu(z))<α<FZ|Ω(z|ωl(z)),

where since FZ|Ω(z|ω) is decreasing in ω we know that ωl(z) < ωu(z). Thus, since

FZ|Ω(z|ω) is continuous in ω, the intermediate value theorem implies that there exists

ω̂α(z)∈(ωl(z),ωu(z)) such that FZ|Ω(z|ω̂α(z))=α. Since FZ|Ω(z|ω) is strictly decreasing

we know this ω̂α(z) is unique, while its strict monotonicity and continuity likewise follow

from strict monotonicity and continuity of FZ|Ω in both arguments.

For the second claim, note that since FZ|Ω(z|ω) is strictly decreasing in ω, ω̂α(z)≤ω
if and only if FZ|Ω(z|ω)≤ α. Continuity of FZ|Ω(z|ω) in z, however, means that Z is

continuously distributed conditional on Ω = ω for all ω, and thus that FZ|Ω(Z|ω) is

uniformly distributed conditional on Ω=ω. Thus,

P
(
FZ|Ω(z|ω)≤α|Ω=ω

)
=α,

so

P(ω̂α(Z)≤ω|Ω=ω)=α for all ω,

as we aimed to show. �

Lemma 2

If the distribution of latent draws Z∗ conditional on (Ω∗,Σ∗) is N(Ω∗,1), p(z)>0 for all z,

and p(·) is almost everywhere continuous, then the assumptions of Lemma 1 are satisfied.

Proof: Under the stated assumptions, Z is continuously distributed under all ω∈R,
with density given by Equation (1). To prove the strict monotonicity of FZ|Ω(z|ω) in ω,

we adapt the proof of Lemma A.1 in Lee et al. (2016).

In particular, note that for z1>z0 and ω1>ω0,

fZ|Ω(z1|ω1)

fZ|Ω(z0|ω1)
>
fZ|Ω(z1|ω0)

fZ|Ω(z0|ω0)
,

as can be verified from multiplying out these expressions. This means, however, that

fZ|Ω(z1|ω1)fZ|Ω(z0|ω0)>fZ|Ω(z1|ω0)fZ|Ω(z0|ω1).
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Integrating both sides with respect to z0 from −∞ to z<z1, and with respect to z1 from

z to∞, we obtain that

(1−FZ|Ω(z|ω1))FZ|Ω(z|ω0)>(1−FZ|Ω(z|ω0))FZ|Ω(z|ω1),

and thus that FZ|Ω(z|ω0)>FZ|Ω(z|ω1). Since this argument applies for all z and all ω0,

ω1, we have shown that FZ|Ω(z|ω) is strictly decreasing in ω for all z.

To prove that FZ|Ω(z|ω)→0 as ω→∞, note that by our assumption that p(z) is almost

everywhere continuous, for any z0 there exists a point z1>z0, and an open neighborhood

(z1−ε,z1+ε) of z1 such that p(·) is continuous on the closure of this neighborhood, and

z0<z1−2ε. Note, however, that for ω>z1 +ε, fZ|Ω(z|ω) for z≤ z0 is bounded above

by ϕ((z−ω)/σ)/(σ·E[p(Z)|Ω∗=ω]). On the other hand, the infimum of fZ|Ω(z|ω) over

(z1−ε,z1+ε) is bounded below by pl ·ϕ((z1−ε−ω)/σ)/(σ·E[p(Z)|Ω∗=ω]) for

pl= inf
z∈[z1−ε,z1+ε]

p(z)>0.

Integrating and taking the ratio, we see that

P(z≤z0|Ω=ω)

P(z∈(z1−ε,z1+ε)|Ω=ω)
≤ Φ((z0−ω)/σ)

2εpl ·ϕ((z1−ε−ω)/σ)/σ
.

This expression can in turn be bounded above by

Φ((z0−ω)/σ)

2εpl ·ϕ((z0−ω)/σ)/σ
,

which is proportional to Mill’s ratio and tends to zero and ω→∞ (see, for example,

Baricz (2008)). This immediately implies that FZ|Ω(z0|ω)→0, as we aimed to show. The

claim that FZ|Ω(z|ω)→1 as ω→−∞ can be proved analogously. �

Proof of Equation (3): By construction, when Σ≡Σr,

fZ,Zr(z,z
r)=fZ∗,Zr∗|D(z,zr|d=1)

=
P(D=1|Z∗=z,Zr∗=zr)

P(D=1)
·fZ∗,Zr∗(z,zr)

=
p(z)

E[p(Z∗)]
fZ∗,Zr∗(z,z

r),
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and, since Z∗⊥Zr∗|Ω∗,

fZ∗,Zr∗(z,z
r)=

∫
ϕ(z−ω)ϕ(zr−ω)dµΩ(ω).

�

Proof of Theorem 2: Denote

∆∗=
Σr∗

Σ∗
=
√

Var(Zr|Ω),

and similarly for ∆. Consistent with our convention of using lower case variables for

realizations, let us denote realizations of ∆ by δ.

We first show identification of p(·) conditional on ∆. We begin by considering the

symmetric case, where σ = σr and thus δ = 1. We then allow σ 6= σr, recovering the

symmetric case by (de-)convolution of Zr with normal noise. Finally, we show that the

distribution µΘ of Θ∗ is identified.

The symmetric case: For the case δ=1, we have that as in Equation (3) of the paper

fZ,Zr|∆(z,zr|1)=
p(z)

E[p(Z∗)|∆∗=1]
fZ∗,Zr∗|∆∗(z,z

r|1).

It immediately follows that

fZ,Zr|∆(a,b|1)·p(b)=fZ,Zr|∆(b,a|1)·p(a)

for all a, b. Note, next, that Zr has full support given (Z,∆), and thus that if

fZ,Zr|∆(a,b|1)>0, for some (a,b), fZ,Zr|∆(a,c|1)>0, for all c∈R. This in turn implies that

p(c)=p(a)·
fZ,Zr|ρ(c,a|1)

fZ,Zr|ρ(a,c|1)

for all c∈R, where p(a) is the only unknown on the right hand side. We thus find that

p(·) is identified up to scale. Note that we have not used normality in this argument, so

the result continues to hold in cases where Z∗,Zr∗ are non-normal but have the same

distribution conditional on Ω∗.
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The case δ∗ 6=1: We already proved identification of p(·) for the case δ=1. We will next

show that we can reduce the case where δ 6≡1 to this special case. Let Z̃r be such that

Z̃r∗|Z∗,D,Ω∗,∆∗∼N(Ω∗,1).

If fZ̃r|Z is identified, we are done. Note that

fZ̃r|Z=fΩ|Z∗ϕ,

for ϕ the standard normal density and

fZr|Z,∆ =fΩ|Z,∆∗ϕ∆

for ϕ∆ the N(0,∆2) density. Based on the last equation, fΩ|Z,∆ is identified using de-

convolution (this is a standard result; see for instance Wasserman (2006), Chapter 10.1,

equation 10.18. An extensive discussion of deconvolution can be found in Meister (2009)).

We then recover

fΩ|Z(ω|z)=

∫
fΩ|Z,∆(ω|z,δ)f∆|Z(δ|z)dδ,

and identification of p(·) follows.

Identification of µΘ Knowledge of p(·) up to scale allows us to recover the joint density

fX∗,Σ∗ via

fX∗,Σ∗(x,σ)=
E[p(Z∗)]

p(x/σ)
fX,Σ(x,σ).

Deconvolution then identifies µΘ∗|Σ∗, since fZ∗|Σ∗ = µΘ∗|Σ∗ ∗ϕΣ∗. Integrating over the

marginal distribution of Σ∗ yields µΘ. �

Proof of Theorem 3: Assume without loss of generality that σ=1 lies in the interior

of the support of Σ, and let

h(z)=fZ∗|Σ∗(z|1).

If h(·) is identified, then so are p(·) and µΘ. We will show that h(·) is identified,

which immedaitely identifies µΘ by deconvolution, since h=µΘ∗ϕ. We can then identify
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p(z) as before, since the truncated conditional density of Z is given by

fZ|Σ(z|σ)=
p(z)

E[p(Z∗)|Σ∗=σ]
fZ∗|Σ∗(z|σ), (6)

and thus

p(z)=const.·
fZ|Σ(z|1)

h(z)
.

A second order ODE for h(·). Let π=1/σ be the precision of an estimate. Differ-

entiating the log of expression (6) for the truncated density at π=1 yields

g(z)=∂πlogfZ|Σ(z|1/π)|π=1 =C1+∂πlogfZ∗|Σ∗(z|1/π)|π=1 (7)

for a constant C1. Note how, as we differentiate logfZ|Σ(z|1/π) with respect to π at a

given value z, the term p(z) drops out of the resulting equation (this plays the same role as

the ratio (4) discussed in the paper). The function g is identified under our assumptions.

Recall now that the definition of the standard normal density implies ϕ′(z)=−zϕ(z).

The density fZ∗|Σ∗ is given by µΘ∗ϕΣ, and thus fZ∗|Σ∗(z|1/π)=
∫
ϕ(z−θπ)dµΘ(θ), which

implies

∂zfZ∗|Σ∗(z|1)=−
∫

(z−θ)ϕ(z−θ)dµΘ(θ)

∂2
zfZ∗|Σ∗(z|1)=−fZ∗|Σ∗(z|1)+

∫
(z−θ)2ϕ(z−θ)dµΘ(θ)

∂πfZ∗|Σ∗(z|1)=

∫
θ(z−θ)ϕ(z−θ)dµΘ(θ)

=−
[
fZ∗|Σ∗(z|1)+z·∂zfZ∗|Σ∗(z|1)+∂2

zfZ∗|Σ∗(z|1)
]
,

from which we conclude (recall that h(z)=fZ∗|Σ∗(z|1))

h′′(z)=(C1−1−g(z))·h(z)−z·h′(z). (8)

Equation (8) is a second order linear homogeneous ordinary differential equation.

Two free parameters Given the initial conditions h(0)=h0 and h′(0)=h′0, and given

C1, the solution to this equation exists and is unique, because all coefficients are continuous

in z; cf. Murphy (2011). Furthermore, the general solution to this differential equation

can be written in the form h(z,C1,h0,h
′
0)=h0·h1(z,C1)+h′0·h2(z,C1), where the functions
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h1(·) and h2(·) are determined by equation (8); cf. Murphy (2011), chapter B. This leaves

three free parameters to be determined, C1,h0 and h′0. The constraint
∫
h(z)dz=1 pins

down h0 or h′0 given the other two parameters, so that there remain two free parameters.

The remainder of the proof shows that these parameters are identified as well.

A fourth order ODE for h(·). We next turn to the second derivative k(·) defined by

k(z)=∂2
πlogfZ|Σ(z|1)=C2+∂2

πlogfZ∗|Σ∗(z|1),

which is identified under our assumptions, just like g(·). We show below that calculations

similar to those for the first derivative with respect to π yield the fourth order differential

equation

h(4)(z)=
(
k(z)−C2+(g(z)−C1)

2−2
)
h(z)−4zh′(z)−(z2+5)h′′(z)−2zh(3)(z). (9)

To complete this proof, after deriving (9) we show that it allows us to pin down the

remaining free parameters. We provide further discussion immediately following the proof.

Derivation of the fourth order ODE for h(·) Differentiating logfZ∗|Σ∗ twice yields

∂2
πlogfZ∗|Σ∗(z|1)=

∂2
πfZ∗|Σ∗(z|1)

h(z)
−(g(z)−C1)

2,

so that

∂2
πfZ∗|Σ∗(z|1)=h(z)·

(
k(z)−C2+(g(z)−C1)

2).
From fZ∗|Σ∗(z|1/π)=

∫
ϕ(z−θπ)dµΘ(θ) we note that

∂2
πfZ∗|Σ∗(z|1)=

∫ (
−θ2+θ2(z−θ)2)ϕ(z−θ)dµΘ(θ).

We furthermore have

h(3) =−3h′(z)−
∫

(z−θ)3ϕ(z−θ)dµΘ(θ)

h(4) =−3h′′(z)−3

∫
(z−θ)2ϕ(z−θ)dµΘ(θ)+

∫
(z−θ)4ϕ(z−θ)dµΘ(θ)

=−6h′′(z)−3h(z)+

∫
(z−θ)4ϕ(z−θ)dµΘ(θ).

42



Comparing coefficients on θ between ∂2
πfZ∗|Σ∗ and the derivatives of h(·), we get the

fourth order differential equation (9).

The fourth order ODE pins down the remaining free parameters Our proof is
complete once we have shown that there is at most one set of values C1,C2,h0 and h′0 such
that the resulting h satisfies the two differential equations (8) and (9). Differentiating
equation (8) three times yields

h′′(z)= (−1+C1−g(z))h(z) −zh′(z)
h(3)(z)= −g′(z)h(z) +(−2+C1−g(z))h′(z) −zh′′(z)
h(4)(z)= −g′′(z)h(z) −2g′(z)h′(z) +(−3+C1−g(z))h′′(z) −zh(3)(z)

h(5)(z)= −g(3)(z)h(z) −3g′′(z)h′(z) −3g′(z)h′′(z)

+(−4+C1−g(z))h(3)(z) −zh(4)(z),

and differentiating equation (9) yields

h(4)(z)=
(
−2−C2+(−C1+g(z))2+k(z)

)
h(z) −4zh′(z)

−
(
5+z2

)
h′′(z) −2zh(3)(z),

h(5)(z)= (2(−C1+g(z))g′(z)+k′(z))h(z) +
(
−6−C2+(C1−g(z))2+k(z)

)
h′(z)

−6zh′′(z) +
(
−7−z2

)
h(3)(z) −2zh(4)(z).

We can iteratively eliminate the derivatives of h(·) from these equations by substitution.
After doing so, we divide by h(z), which is possible since h(z)>0 for all z by construction.
This yields the following equation involving the constants C1 and C2, but not involving
the function h(·) or any of its derivatives:

C2
1 +C2

2 +g(z)2+k(z)2−z2g′(z)2+4k(z)g′′(z)+3g′′(z)2

−2C2(g(z)+k(z)+2g′′(z))+2g(z)
(
k(z)+2

(
g′(z)2+g′′(z)

))
+C1

(
2C2−2

(
g(z)+k(z)+2

(
g′(z)2+g′′(z)

)))
−2g′(z)g(3)(z)=2g′(z)k′(z)

This equation again has to hold for all z. Differentiating twice with respect to z yields

new equations where the constants C1 and C2 enter only linearly, and we can explicitly

solve for them.21

Substituting the solutions C1 and C2 back into one of the first order differential

equations we obtained by substitution and elimination of higher order derivatives above,

we obtain a solution for h′0 given h0. Given h0, h
′
0 and the constants C1 and C2, equation

(8) yields a unique solution h(z) for all z. Rescaling any solution h(·) by a constant again

yields a solution by linearity of the differential equations. h0 is finally pinned down by

21The resulting expressions are unwieldy and so are omitted here, but are available on request.
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the constraint
∫
h(z)dz=1. �

Remarks:

• The proof of Theorem 3 shows that our model is overidentified. If we consider higher

order derivatives of equations (8) and (9), or alternatively evaluate them at different

values z, we obtain infinitely many restrictions on a finite number of free parameters.

• The proof of identification is considerably simplified if we restrict the model to a

normal distribution for Θ∗, Θ∗∼N(µ̄,τ2), which implies Z∗|Σ∗=1∼N(µ̄,τ2+1),

and thus h(z)=const.·exp
(
− 1

2(τ2+1)
(z−µ̄)2

)
. Denoting e(z)=∂zlogh(z), we can

rewrite equation (8) as

e′(z)=C1−g(z)−1−ze(z)−e2(z),

while the normality assumption yields e(z)=−(z−µ̄)/(τ2+1) and e′(z)=− 1
(τ2+1)

.

Plugging in yields

− 1
(τ2+1)

=C1−g(z)−1+z z−µ̄
(τ2+1)

−
(

z−µ̄
(τ2+1)

)2

.

Evaluating this equation at different values z pins down τ2 and µ̄.

• The proof of Theorem 3 could be equivalently stated in terms of linear operators

rather than differential equations. In particular, the ordinary differential equations

(8) and (9) are equivalent to the following two linear operator equations, indexed

by z and linear in µ, ∫
[θ(z−θ)−(g(z)−C1)]ϕ(z−θ)dµΘ(θ)=0∫ [(

−θ2+θ2(z−θ)2)−(k(z)−C2+(g(z)−C1)
2)]ϕ(z−θ)dµΘ(θ)=0

Identification is then equivalent to existence of at most one (µΘ,C1,C2) triple solving

these equations for all z.
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B Details and Extensions of Empirical Applications

This section discusses a variety of details for and extensions of the empirical applications

reported in the main text. Section B.1 develops an extension of our confidence set con-

struction approach that allows estimation error in p(·). Section B.2 discusses the extension

of our identification results to cases where we condition on covariates. Section B.3 develops

an extension of our identification results to allow the sign of Z to be normalized as in

two of our applications. Sections B.4 and B.5 describe the likelihood used for estimation

in our applications and the details of the data and variable construction, respectively.

Finally, Section B.6 discusses a variety additional specifications and robustness checks

for the results reported in the main text.

B.1 Estimation Error in p(·)

The bias corrections discussed in Section 2.2 assume the conditional publication probability

is known. If p(·) is instead estimated with error, median unbiased estimation is challenging,

but constructing valid confidence sets for ω is straightforward.

Suppose we parameterize the conditional publication probability by β, and let ω̂α(Xi;β)

be the α-quantile unbiased estimator under β. For many specifications of p(·), and in

particular for those used in our applications, ω̂α(x;β) is continuously differentiable in β for

all x. If we have a consistent and asymptotically normal estimator β̂ for β, for 0<δ<α,

consider the interval[
ω̂α−δ

2

(
X;β̂

)
−c1− δ

2
σ̂L(X),ω̂1−α−δ

2

(
X;β̂

)
+c1− δ

2
σ̂U(X)

]
where c1− δ

2
is the level 1− δ

2
quantile of the standard normal distribution while σ̂L(x) and

σ̂U(x) are delta-method standard errors for ω̂α−δ
2

(
x;β̂
)

and ω̂1−α−δ
2

(
x;β̂
)

, respectively. If

our model for p(·) is correctly specified, Bonferroni’s inequality implies that this interval

covers ω with probability at least 1−α in large samples.22

B.2 Conditioning on covariates

Our baseline results do not consider any study level covariates, such as journal of pub-

lication, year of initial circulation of a study, research topic, identification approach, or

author seniority. Heterogeneity in degree of publication bias based on study and author

22Even in cases where we do not have an asymptotically normal estimator for β, for example because
we consider a fully nonparameteric model for p(·), given an initial level 1−δ confidence set CSβ for

β we can form a Bonferroni confidence set for ω as
[
infβ∈CSβ

ω̂α−δ
2

(
X;β̂

)
,supβ∈CSβ

ω̂1−α−δ
2

(
X;β̂

)]
.
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characteristics has been explored by many authors, including Open Science Collaboration

(2015), Brodeur et al. (2016) and Brodeur et al. (2018). Conditioning our analysis on such

covariates might be interesting for two reasons: (i) to make our identification assumptions

more credible, and (ii) to explore variation in p(·) and µΘ.

Provided our assumptions hold conditional on the covariates, our results extend directly

to this setting. Considering covariates C, Equation (1) could for instance be modified to

fZ|Ω,Σ,C(z|ω,σ,c)=
p(z,c)

E[p(Z∗,c)|Ω∗=ω]
ϕ(z−ω).

If p(z,c) is known up to scale for each c, we can apply Theorem 1 conditional on C

to obtain corrected estimates. Likewise, if we have replication estimates we can apply

Theorem 2 conditional on C=c to identify p(z,c) up to scale for each c, along with the

conditional distribution of true effects given the covariate µΘ|C. Likewise, if Θ∗ and Σ∗ are

independent conditional on covariates in the population of latent studies, we can apply

Theorem 3 conditional on C=c to identify p(z,c) up to scale for each c, along with µΘ|C.

Note, however, that in both cases µΘ is not identified without further restrictions.

In Section B.6 below, we re-estimate our applications allowing p(·) to depend on

covariates like journal of publication and year of initial circulation of a study. However,

in no case do we reject our baseline specifications at conventional significance levels.

B.3 Sign-normalized data

In the applications of Section 4.1 and 4.2, the sign of the estimates Z in our replication

datasets is normalized to be positive, with the sign of Zr adjusted accordingly. The

following corollary shows that under this sign normalization identification of p(·) still holds,

using either replication studies or meta-studies, so long as p(·) is symmetric in its argument.

Corollary 1 1. Consider the setup of Theorem 2. Assume additionally that p(·) is

symmetric, p(z)=p(−z), and that fΣ|Z∗(σ|z)=fΣ|Z∗(σ|−z) for all z. Suppose that

we observe i.i.d. draws of (W,W r)=sign(Z)·(Z,Zr). In this setup p(·) is nonpara-

metrically identified on R up to scale, and the distribution of |Θ∗| is identified as well.

2. Consider the setup of Theorem 3. Assume additionally that p(·) is symmetric, i.e.,

p(z)=p(−z). Suppose that we observe i.i.d. draws of (|X|,Σ). In this setup p(·)
is nonparametrically identified on R up to scale, and the distribution of |Θ∗| is
identified as well.
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Proof of Corollary 1:

Replication studies: Let S∗=±1 with probability 0.5, independently of (Z∗,Zr∗,Σ∗,Σr∗,Θ∗,D),

and let S=S∗ denote S∗ for published studies. Define

(V,V r)=S ·(W,W r).

We show that (V,V r) satisfies the assumptions of Theorem 2, from which the claim then

follows. Define S̃∗=S∗ ·sign(Z∗), so that (V,V r) = S̃ ·(Z,Zr), and define Ω̃∗= S̃∗ ·Ω∗.
Since S̃ is independent of (Z,Zr,∆,Ω),

Ω̃∗∼µ̃= 1
2
(µΩ∗+µ−Ω∗)

and

fV,V r,∆(v,vr,δ)=p(v)·f∆|Z∗(δ|v)·
∫
ϕ(v−ω)· 1

δ
ϕ
(
vr−ω
δ

)
dµ̃Ω(ω)∫∫

p(v′)·ϕ(v′−ω)dv′dµ̃Ω(ω)
.

This has the exact same form as the density of (Z,Zr,∆) under the symmetric measure

µ̃Ω. The claim follows, since identification of µ̃Ω implies identification of the distribution

of |Ω∗|. �

Meta-studies: The proof for meta-studies proceeds similarly to the replication studies

case. Let S∗=±1 with probability 0.5, independently of (Z∗,Σ∗Θ∗,D), and let S=S∗

denote S∗ for published studies. Define V =S · |X|. We show that (V,Σ) satisfies the

assumptions of Theorem 3, from which the claim then follows.

Define S̃∗ = S∗ · sign(X∗), so that V = S̃ ·X, and define Θ̃∗ = S̃∗ ·Θ∗. Since S̃ is

independent of (Z,Σ,Θ), we get Θ̃∗∼µ̃= 1
2
(µΘ∗+µ−Θ∗) and

fV/Σ|Σ(z|σ)=
p(z)·

∫
ϕ(z−θ/σ)dµ̃(θ)∫∫

p(z′)ϕ(z′−θ/σ)dz′dµ̃(θ)
.

This has the exact same form as the density of Z given Σ under the symmetric measure µ̃.

The claim follows, where we again use the fact that identification of µ̃ implies identification

of the distribution of |Θ∗|. �
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B.4 Likelihood and parametric specifications

B.4.1 Systematic replications

Under the replication setting the marginal density of Z,Zr,∆ (where again ∆=Σr/Σ) is

fZ,Zr,∆(z,zr,δ)=
p(z)

∫
ϕ(z−ω)· 1

δ
ϕ
(
zr−ω
δ

)
dµΩ(ω)∫∫

p(z′)·ϕ(z′−ω)dz′dµΩ(ω)
f∆∗|Z∗(δ|z). (10)

Denoting the total number of observations by J, the joint likelihood of the observed

sample ((z1,z
r
1,δ1),...,(zJ ,z

r
J ,δJ)) is L(p,µ)=

∏J
j=1fZ,Zr,∆(zj,z

r
j ,δj). To fit a given model, we

maximize this likelihood with respect to p(·) and µΩ. Since f∆∗|Z∗ enters multiplicatively,

it plays no role in maximum likelihood estimation of p(·) and µΩ. Hence, we drop this

term from the likelihood used in estimation.

To model p(·), similar to Hedges (1992) we consider step functions

p(z)∝
K∑
k=1

βp,k ·1(ζk−1≤z<ζk),

where −∞= ζ0<ζ1<...<ζK =∞ are fixed cutoffs. Since p(·) is only identified up to

scale, we normalize βp,K=1 and estimate βp,1,...,βp,K−1. Thus βp,k can be interpreted as

the publication probability for a latent study with Z∗ between ζk−1 and ζk, relative to

a latent study with Z∗≥ζK−1.

Sign normalization The sign of the initial estimate is normalized to be positive in

both of our replication datasets. In these applications, we thus follow the approach of

Corollary 1 and assume that p(·) is symmetric around zero. We conduct estimation based

on the normalized z-statistics (W,W r)=sign(Z)·(Z,Zr) using the marginal likelihood

fW,Wr,∆(w,wr,δ)=fZ,Zr,∆(w,wr,δ)+fZ,Zr,∆(−w,−wr,δ).

In this setting, Corollary 1 implies that βp,1,...βp,K−1 and the distribution of |Θ∗| are

identified.

B.4.2 Meta-studies

In the meta-study context, the marginal likelihood of (X,Σ) is

fX,Σ(x,σ)=
p(x

σ
)·
∫
ϕ
(
x−θ
σ

)
dµΘ(θ)∫

p(x
′

σ
)·ϕ
(
x′−θ
σ

)
dx′dµΘ(θ)

f∗Σ(σ). (11)
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Again denoting the total number of observations by J, this yields joint likelihood

L(p,µ) =
∏J
j=1 fX,Σ(xj,σj), which we again use to estimate p(·) and µΘ. As before,

fΣ enters multiplicatively and need not be specified. Also as before, we consider step

function specifications for p(·).

Sign normalization In contexts where the sign of the initial estimate has been nor-

malized to be positive, we follow the analog of the approach described above, restricting

p(·) to be symmetric and conducting estimation based on |X|=W ·Σ and Σ.

B.5 Details on data and variable construction

In this section, we discuss how we cast the data of Camerer et al. (2016) and Open Science

Collaboration (2015) into our framework. The data in Wolfson and Belman (2015) is

already in the desired format.

B.5.1 Details for economics laboratory experiments

To apply our approach, we need z-statistics and standard errors for both the original

and replication studies. For the application to data from Camerer et al. (2016), we first

collect p-values and standardized effect sizes from table S1 in the supplement. Some of

the p-values are censored below at .001, so for these studies we also collect the original

estimates and standard errors from the replication reports posted online by Camerer et

al.23 and recompute the censored p-values. We then construct z-statistics by inverting the

p-value transformation, |z|=Φ−1(1−p/2). To obtain effect size estimates, we apply the

Fisher transformation to standardized effect sizes reported by Camerer et al. Dividing

these estimates by the z-statistics finally recovers the standard error.

B.5.2 Details for psychology laboratory experiments

To apply our approach to the data from Open Science Collaboration (2015), we again need

z-statistics and standard errors for both the original and replication studies. We draw the in-

puts for all of these calculations from the RPPdataConverted spreadsheet posted online by

the Open Science Collaboration.24 Since Open Science Collaboration (2015) report p-values

for both the original and replication studies, we invert the p-value transform to obtain z

statistics. We use the p-values reported in their columns T.pval.USE.O and T.pval.USE.R

for the original and replication studies, respectively. Since some of the p-values in this appli-

cation are based on one-sided tests, we account for this in the inversion step. To compute ef-

23Available at https:/c/experimentaleconreplications.com/replicationreports.html, ac-
cessed September 3, 2016.

24Available at https://osf.io/ytpuq/files/, accessed January 19, 2017.
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fect size estimates, we again apply the Fisher transformation to the standardized effect sizes

(columns T.r.O and T.r.R of RPPdataConverted for the original and replication studies, re-

spectively), and then divide these estimates by the z-statistics to construct standard errors.

B.6 Additional maximum likelihood results

This section discusses results from additional specifications estimated by maximum

likeihood, intended to complement the results discussed in the main text.

B.6.1 Additional results for economics laboratory experiments

Here we report results based on an alternative specification for the economics replication

data from Camerer et al. (2016). We consider specifications which allow the probability of

publication to vary depending on whether a latent study is sent to the American Economic

Review (AER) or Quarterly Journal of Economics (QJE). The publication probability is

identified up to scale separately for each journal. We index the journal by c, and set p(z,c)

proportional to one for both journals when the result is significantly different from zero

at the 5% level. This ensures that the β parameters can be interpreted as publication

probabilities for insignificant results relative to significant results at the same journal. Our

ultimate specification is

p(Z,S)∝


βp,1 |Z|<1.96,C=AER

βp,1+βp,2 |Z|<1.96,C=QJE

1 |Z|≥1.96.

Results are reported in Table 4. In both the replication and metastudy specifications

we estimate that the QJE is more likely to publish insignificant results. This makes

sense given that the sample contains one significant result and one insignificant result

published in the QJE, while it contains fifteen significant results and one insignificant

result published in the AER. The estimated publication probabilities for the QJE are

quite noisy, however, and we cannot reject the hypothesis that βp,2 = 0, so the same

publication rule is used at both journals.

B.6.2 Additional results for psychology laboratory experiments

We next report results based on three alternative specifications for the psychology repli-

cation data from Open Science Collaboration (2015). We first limit attention to studies

with a large number of denominator degrees of freedom. Second, we limit attention to
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Replication

κ λ βp,1 βp,2
0.373 2.153 0.015 0.216

(0.267) (1.029) (0.021) (0.333)

Meta-study

κ̃ λ̃ βp,1 βp,2
1.847 0.131 0.021 0.786

(1.582) (0.065) (0.030) (1.496)

Table 4: Selection estimates from lab experiments in economics, allowing publication
probability to vary by journal. The left panel reports estimates from replication specifications,
while the right panel reports results from meta-study specifications. Publication probability
βp is measured relative to omitted category of studies significant at 5% level.

studies where the replication protocols were approved by the original authors. Third, we

allow the publication rule to vary by journal.

Denominator degrees of freedom As noted in the main text, our baseline analysis of

the Open Science Collaboration (2015) data focuses on studies that use z- or t-statistics (or

the squares of these statistics). Our analysis then treats these statistics as approximately

normal. A potential problem here is that t-distributions with a small number of degrees

of freedom behave differently from normal distributions, and in particular have heavier

tails. While the smallest degrees of freedom in the Open Science Collaboration (2015)

data is seven, this concern may still lead us to worry about the validity of our approach

in this setting. To address this concern, in Table 5 we report parameter estimates using

the replication and meta-study specifications discussed in Section 4.2, where

p(Z)∝


βp,1 |Z|<1.64

βp,2 1.64≤|Z|<1.96

1 |Z|≥1.96,

except that we now limit attention to the 52 observations with denominator degrees

of freedom at least 30 in the original study.25 Our results are broadly similar for this

restricted sample and for the full data.

Approved replications As discussed in the main text, Gilbert et al. (2016) argue that

some of the replications in Open Science Collaboration (2015) deviated substantially from

the protocol of the original studies, which might lead to a violation of our assumption that

the replication and original results are generated by the same underlying parameter Θ.

Before conducting their replications, however, Open Science Collaboration (2015) asked

25We screen only on the degrees of freedom in the original study since sample sizes, and thus degrees of
freedom, in the replication studies depend on the results in the initial study. Hence, screening on replication
degrees of freedom has the potential to introduce additional selection on the results of the original study.
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Replication

κ λ βp,1 βp,2
0.174 1.602 0.007 0.142

(0.121) (0.677) (0.005) (0.079)

Meta-study

κ̃ λ̃ βp,1 βp,2
0.869 0.138 0.018 0.247

(0.657) (0.059) (0.012) (0.142)

Table 5: Selection estimates from lab experiments in psychology, restricted to observations
with denominator degrees of freedom at least 30, with standard errors in parentheses. The left
panel reports estimates from replication specifications, while the right panel reports results from
meta-study specifications. Publication probability βp is measured relative to omitted category
of studies significant at 5% level.

the authors of each original study to review the proposed replication protocol, and recorded

whether the original authors endorsed the replication protocol. We can thus partly address

this critique by limiting attention to the subset of studies where the replication was

endorsed by the authors of the original study. Re-estimating the specifications of Section

4.2 on the 51 endorsed replications, we obtain the estimates reported in Table 6. These

estimates suggest a somewhat smaller degree of selection than our baseline estimates,

consistent with a higher rate of replication for approved replications, but are broadly

similar to our other estimates. Figure 10 plots the original and replication estimates along

with our adjusted estimates, showing somewhat better fit than in Figure 8 in the main text.

Replication

κ λ βp,1 βp,2
0.490 1.159 0.017 0.365

(0.267) (0.400) (0.011) (0.165)

Meta-study

κ̃ λ̃ βp,1 βp,2
0.634 0.198 0.022 0.440

(0.503) (0.079) (0.014) (0.217)

Table 6: Selection estimates from lab experiments in psychology, approved replications, with
standard errors in parentheses. The left panel reports estimates from replication specifications,
while the right panel reports results from meta-study specifications. Publication probability
βp is measured relative to omitted category of studies significant at the 5% level.

Publication rule varies by journal The published studies replicated in Open Science

Collaboration (2015) are drawn from Psychological Science (PS), Journal of Personality

and Social Psychology (JPSP), and Journal of Learning Memory and Cognition (JLMC).

In this section we estimate a model where we allow the publication rule to vary by journal,
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Figure 10: This figure plots the estimatesW andW r from the original and replication studies in
Open Science Collaboration (2015), limiting the sample to approved replications, along with the
median unbiased estimate θ̂1

2
based on the estimated selection model and the original estimate.

which we index by C. In particular, we consider the publication rule:

p(Z,C)∝



βp,1 |Z|<1.64,C=JLMC

βp,1+βp,2 |Z|<1.64,C=PS

βp,1+βp,3 |Z|<1.64,C=JPSP

βp,4 1.64≤|Z|<1.96,C=JLMC

βp,4+βp,5 1.64≤|Z|<1.96,C=PS

βp4+βp,6 1.64≤|Z|<1.96,C=JPSP

1 |Z|≥1.96,

As discussed in the economics application above, we normalize the publication probability

for studies significant at the 5% level to be proportional to one, which allows us to interpret

the β coefficients in terms of the publication probability for insignificant studies relative

to that for significant studies at the same journal. Such a normalization is necessary since

publication probabilities are only identified up to a journal-specific scaling factor.
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Results from estimating this model are reported in Table 7. These are noisier than our

baseline estimates, as is intuitive given the larger number of parameters, but the JLMC coef-

ficients show roughly the same pattern as our baseline specifications. None of the differences

between journal publication probabilities are significant, and a joint test yields a p-value

of .78 in the replication specification and .84 in the metastudy specification, so in neither

case do we reject the null hypothesis that all the journals use the same publication rule.

Replication

κ λ βp,1 βp,2 βp,3 βp,4 βp,5 βp,6
0.315 1.308 0.008 0.002 -0.001 0.428 -0.288 -0.332

(0.140) (0.330) (0.008) (0.011) (0.011) (0.245) (0.264) (0.260)
Meta-study

κ̃ λ̃ βp,1 βp,2 βp,3 βp,4 βp,5 βp,6
0.966 0.154 0.013 0.005 0.008 0.555 -0.360 -0.368

(0.561) (0.054) (0.014) (0.019) (0.026) (0.320) (0.350) (0.364)

Table 7: Selection estimates from lab experiments in psychology, allowing publication
probability to vary by journal. The top panel reports estimates from replication specifications,
while the bottom panel reports results from meta-study specifications. Publication probability
βp is measured relative to omitted category of studies significant at 5% level.

B.6.3 Additional results for minimum wage meta-study

This section reports results based on two alternative specifications for the data from

Wolfson and Belman (2015). Since Wolfson and Belman (2015) include estimates from both

published and working papers, we first reanalyze the data limiting attention to published

studies. We then examine whether the publication rules appear to vary with time.

Published Studies Table 8 reports estimates based on the model

Θ∗∼ θ̄+t(ν)·τ̃ , p(Z)∝



βp,1 Z<−1.96

βp,2 −1.96≤Z<0

βp,3 0≤Z<1.96

1 Z≥1.96

based on the subset of published papers, consisting of 705 estimates drawn from 31 studies.

As in the main text we cluster our standard errors at the study level. The resulting

estimates are broadly similar to those obtained on the full sample.
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θ̄ τ̃ ν̃ βp,1 βp,2 βp,3
0.022 0.044 1.697 0.838 0.365 0.387

(0.012) (0.025) (0.380) (0.331) (0.146) (0.140)

Table 8: Meta-study selection estimates from minimum wage data, published studies, with
standard errors in parentheses. Publication probability βp is measured relative to omitted
category of studies estimating a positive effect significant at the 5% level.

Time Trends We next examine whether publication rules appear to vary over time.

In particular, letting Ti denote the year in which study i was initially circulated, for

ς(x)=exp(x)/(1+exp(x)) the logistic function we consider the model

Θ∗∼ θ̄+t(ν)·τ̃ , p(Z,T)∝



ς(βp,1+βp,2(T−2013)) Z<−1.96

ς(βp,3+βp,4(T−2013)) −1.96≤Z<0

ς(βp,5+βp,6(T−2013)) 0≤Z<1.96

ς(1) Z≥1.96

where we measure time in years relative to 2013, which is the median year observed in the

data, and T varies between 2000 and 2015. We use the logistic function here to ensure

that publication probabilities lie between zero and one, and without the time trend this

would simply be a reparameterization of our baseline model. Publication probabilities are

only identified up to a year-specific scaling, so by normalizing the publication coefficient

for studies finding a negative and significant effect of the minimum wage on employment

to be proportional to one, we again ensure that the βp coefficients can be interpreted

as measuring publication probabilities relative to the publication probability for studies

finding a negative and significant effect within the same year.

θ̄ τ̃ ν̃ βp,1 βp,2 βp,3 βp,4 βp,5 βp,6
0.019 0.021 1.359 0.284 0.176 -1.231 0.074 -1.089 0.025

(0.009) (0.013) (0.300) (0.845) (0.178) (0.602) (0.117) (0.478) (0.113)

Table 9: Meta-study selection estimates from minimum wage data, published studies, with
standard errors in parentheses. Publication probability βp is measured relative to omitted
category of studies estimating a positive effect significant at the 5% level.

These estimates are consistent with our baseline model assuming that publication

rules are constant over time, with a p-value of 0.7 for the test of the joint hypothesis that
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βp,2 =βp,4 =βp,6 =0.

B.7 Bias corrections based on applications

In this section, we plot our median unbiased estimators and corrected confidence sets,

analogous to Figure 2 of the paper, based on the selection estimates from our applica-

tions. Corrections based on replication estimates from the Camerer et al. (2016) data are

plotted in Figure 11. Corrections based on replication estimates from the Open Science

Collaboration (2015) data are plotted in Figure 12. Corrections based on estimates using

data from Wolfson and Belman (2015) are reported in Figure 13.

C Additional Empirical Results

This section provides additional empirical results to supplement those in the paper. Section

C.1 describes method of moments based estimation approaches that allow us to drop

our parametric assumptions on the distribution of true effects, and reports results from

these approaches in our applications. Section C.2 describes results from an additional

replication application using data from Camerer et al. (2018), while Section C.3 describes

results from an additional metastudy application using data from Croke et al. (2016).

C.1 Moment-based estimation results

In the main text we report estimates based on parametric specifications for the distribution

of true effects in latent studies. To confirm that our results are robust to the choice of para-

metric specification, in this section we report estimates from moment-based approaches

that require only that we specify a functional form for the publication probability p, and

leave the distribution of true effects fully nonparametric. The moments used to obtain

these estimators are motivated by the identification arguments in Section 3 of the paper.

We begin by introducing the moments we consider in the replication and meta-study

settings, respectively, and then discuss results in our applications. Overall, we find that

while moment-based approaches often yield less precise conclusions, our main findings

are robust to dropping our parametric specifications for the distribution of true effects.

C.1.1 Estimation Moments

Replication Moments In our discussion of identification for settings with replication

data in Section 3.1 of the main text, we noted that if the original and replication estimates

have the same distribution in the population of latent studies, then absent selective

publication the joint distribution of published and replication estimates will likewise be

symmetric. This observation implies a moment restriction that can be used for estimation.
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Figure 11: This figure plots 95% confi-
dence bounds and the median unbiased
estimator for the selection estimates based
on replication data on economics lab
experiments. The usual (uncorrected)
estimator and confidence bounds are
plotted in grey for comparison.
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Figure 12: This figure plots 95% confi-
dence bounds and the median unbiased
estimator for the selection estimates based
on replication data on psychology lab
experiments. The usual (uncorrected)
estimator and confidence bounds are
plotted in grey for comparison.
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Figure 13: This figure plots 95% confi-
dence bounds and the median unbiased
estimator for the selection estimates based
on metastudy data on the minimum wage.
The usual (uncorrected) estimator and
confidence bounds are plotted in grey for
comparison.
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To derive our moments, we first consider the case where ∆∗=Σr∗/Σ∗=1 for all latent

studies, so the original and replication studies have the same standard error. For any

constants c1, c2

E[1{|Z∗|>c1,|Zr∗|≤c2}−1{|Zr∗|>c1,|Z∗|≤c2}]=0,

in the population of latent studies no matter the distribution µ of true effects.26 In particu-

lar, this reflects our observation in the main text that, absent selection, we should observe

an equal number of cases where the original results are significant and the replications are

insignificant, and where the replication results are significant and the original results are

insignificant, where we can consider results significant and insignificant at different levels.

We can recover the distribution of latent studies from the distribution of published

studies by weighting by the inverse of the publication probability, E[p(Z∗)]/p(Z). This

implies the moment restriction

E

[
E[p(Z∗)]

p(Z)
(1{|Z|>c1,|Zr|≤c2}−1{|Zr|>c1,|Z|≤c2})

]
=0

in the population of published studies. Since E[p(Z∗)] does not vary across observations,

the moment restriction continues to hold if we drop this term, yielding moments

E

[
1

p(Z)
({|Z|>c1,|Zr|≤c2}−1{|Zr|>c1,|Z|≤c2})

]
=0 (12)

which depend only on observables and p(·) and so can be used to estimate p(·).
Thus far, in deriving moments we have assumed that ∆∗= 1. In our applications,

however, we in fact have ∆∗|Z∗∼f∆∗|Z∗. If the distribution of ∆ is bounded above by

some value δmax≥1, we can adapt the moments (12) to account for unequal variances

by noising up both the original and replication estimates to noise level δmax. In particular,

for ε, εr i.i.d. N(0,1) random variables,

E

 1

p(Z)

 1
{∣∣∣Z+

√
δ2

max−1ε
∣∣∣>c1,∣∣∣Zr+√δ2

max−∆εr
∣∣∣≤c2}−

1
{∣∣∣Zr+√δ2

max−∆εr
∣∣∣>c1,∣∣∣Z+

√
δ2

max−1ε
∣∣∣≤c2}

=0.

To eliminate the added noise (ε,εr) in these moments, we can take the conditional

26Here we focus on the absolute value of the original and replication estimates to avoid complications
from the sign normalization in our replication applications.
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expectation of each component given the data and define

h(z,δ1,z
r,δ2)=E

[
1
{∣∣∣Z∗+√δ2

max−δ1ε
∣∣∣>c1,∣∣∣Zr∗+√σ2

max−δ2ε
r
∣∣∣≤c2}|Z∗=z,Zr∗=zr]

=

(
1−Φ

(
c1−z√
δ2

max−δ1

)
+Φ

(
−c1−z√
δ2

max−δ1

))(
Φ

(
c2−zr√
δ2

max−δ2

)
−Φ

(
−c1−zr√
δ2

max−δ2

))
.

By the law of iterated expectations, we obtain the moment restrictions

E

[
1

p(Z)
(h(Z,1,Zr,∆)−h(Zr,∆,Z,1))

]
=0 (13)

which depends only on observables and p and so can be used for estimation.

To use these moments in practice we need to choose a value of δmax and values for

c. In our applications we below we take δmax to equal sample maximum of ∆, which

is about 2.5 for the economics replications and about 2 for the psychology replications,

and consider values c in each specification corresponding to the critical values used in

p. Setting δmax to the sample maximum is ad-hoc, so as a further check we also report

results based on the moments

E

[
1

p(Z)

((
Z2−1

)
−
(
Zr2−∆r2

))]
=0 (14)

which can be shown to hold for any µΩ by arguments along the same lines as above and

do not require that we select a value δmax.

Metastudy Moments The moments we consider in our metastudy applications are

derived using a similar approach. As noted in our discussion of metastudy identification

in Section 3.2 of the text, absent selectivity in the publication process our assumptions

imply that the distribution of effects for noisier studies is just a noised-up version of the

distribution for less noisy studies. In particular, if we consider a pair of values σ1, σ2 with

σ2>σ1 and a pair of latent studies (i,i′) then for any constant c and ε∼N(0,1)

E

[
1{X∗i <cΣ∗i}−1

{
X∗i′+

√
Σ∗2i −Σ∗2i′ ε<cΣ

∗
i

}∣∣∣∣Σ∗i =σ1,Σ
∗
i′=σ2

]
=0.
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As above we can eliminate the noise from the added error ε. If we define

h(x,σ2,σ1)=E

[
1

{
X∗i +

√
σ2

2−σ2
1ε<cσ

∗
2

}
|X∗i =x

]
=Φ

(
cσ2−x√
σ2

2−σ2
1

)

then the law of iterated expectations implies that

E[1{X∗i <cΣ∗i}−h(X∗i′,Σ
∗
i′,Σ
∗
i )|Σ∗i =σ1,Σ

∗
i′=σ2]=0.

As in the replication setting, to obtain moments which hold in the population of

published studies, we can weight inversely by the publication probability (now for the

pair Xi, Xi′), again dropping normalizing constants to obtain the moments

E

[
1

p(Xi/Σi)

1

p(Xi′/Σi′)
(1{Xi<cΣi}−h(Xi′,Σi′,Σi))

∣∣∣∣Σ′i>Σi]=0 (15)

which depend only on p(·) and observables and so can be used for estimation.27

For estimation, we again consider values of c corresponding to the thresholds used

in p(·). Since our moments hold for each pair (i,i′) with Σi>Σi′, we average over all pairs

of observations and obtain asymptotic distributions using results for estimators based on

U-statistics from Honore and Powell (1994).

C.1.2 Empirical Applications

Economics laboratory experiments In our application to data on economics lab

experiments from Camerer et al. (2016), we again model the publication probability as

p(Z)∝

βp if |Z|≤1.96

1 otherwise.

When we attempt to estimate βp based on moments (13), we find that while the system

of moments is just-identified and can be solved exactly, the zero of the sample moments

corresponds to a negative value of βp. This occurs because, unlike in likelihood estimation,

the GMM moments do not automatically rule out negative values of βp, though such values

are meaningless under our model. Indeed, we see in simulation that even under correct

specification negative point estimates arise with non-negligible probability for small sample

27In the sign-normalized case, as above we instead form moments based on the absolute value of Xi.
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sizes and small values of βp. To address this issue, in Table 10 we report 95% confidence

sets based on Stock and Wright (2000), which are robust both to weak-identification and

to parameter-on-the-boundary issues.

Robust CS, Baseline Moments

βp Lower Bound βp Upper Bound
0.000 0.049

Robust CS, Alternative Moments

βp Lower Bound βp Upper Bound
0.000 ∞

Table 10: Identification-robust 95% confidence sets for βp for lab experiments in economics.
The left panel reports results based on our baseline moments (13) for replication models, while
the right panel reports results based on the alternative moments (14). Publication probability
βp is measured relative to omitted category of studies significant at the 5% level.

From these results, we see that when we consider our baseline moments (13) we

obtain a robust confidence set roughly consistent with the estimate of βp reported in the

main text, even though we are fully relaxing our assumption on the distribution of latent

effects. When we consider the alternative moments (14), by contrast, the moments are

less informative, and the robust confidence set covers the full parameter space.

As before, instead of using the replication data we can instead focus just on the initial

estimates and standard errors and apply our meta-study approach based on the moments

(15). The results from this approach are reported in Table 11. For comparability with the

replication results above we include both a conventional point estimate and standard error

and an identification-robust confidence based on the generalization of Stock and Wright

(2000) to the present U-statistic setting. These results are again broadly consistent with

those obtained both from the replication moments above and from our likelihood estimates

in the main text, showing strong selection in favor of statistically significant results.

Point Estimate

βp
0.040

(0.042)

Robust CS

βp Lower Bound βp Upper Bound
0.000 0.177

Table 11: Moment-based results for lab experiments in economics. The left panel reports an
estimate and standard error based on our moments (15) for metastudy models, while the right
panel reports a 95% identification-robust confidence set based on the same moments. Publication
probability βp is measured relative to omitted category of studies significant at the 5% level.

Psychology laboratory experiments Turning next to the data on lab experiments

in psychology from Open Science Collaboration (2015), as in the main text we model the
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Figure 14: This figure plots 95% identification-robust joint confidence sets for βp,1 and βp,2 using
data from lab experiments in psychology. The left panel plots results based on the baseline repli-
cation moments (13), while the right panel plots results based on the metastudy moments (15).

publication probability as

p(Z)∝


βp1 if |Z|≤1.64

βp2 if 1.64< |Z|≤1.96

1 otherwise.

We find that identification of βp2 based on both our replication and metastudy moments

appears weak in this setting. We report identification-robust joint confidence sets for

(βp1,βp2) based on Stock and Wright (2000) in Figure 14. While both confidence sets

allow a wide range of possible values βp2, only small values of βp,1 are consistent with

the confidence set based on replication data. On the other hand, results based on our

meta-study approach allow a wide range of values for either parameter, though they rule

out cases where both are large simultaneously. Both sets of results are consistent with our

estimates in the main text, and in the case of the replications specification again provide

evidence of selection against insignificant results.

To avoid specifying a value δmax to use in the moments (13), we can instead consider

the moments (14). Since this yeilds only a single moment restriction, we consider selection

only on significance at the 5% level, as in our application to economics lab experiments
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above. Robust confidence sets from this specification are reported in Table 12. These

Robust CS,
Alternative Replication Moments

βp Lower Bound βp Upper Bound
0.000 0.045

Robust CS, Metastudy Moments

βp Lower Bound βp Upper Bound
0.000 0.115

Table 12: Identification-robust 95% confidence sets for βp for lab experiments in psychology,
assuming only selection on significance at the 5% level. The left panel reports results based
on our alternative moments (14) for replication data, while the right panel reports results based
on our metastudy moments. Publication probability βp is measured relative to omitted category
of studies significant at the 5% level.

results highlight that we still obtain informative results in this setting if we restrict

attention to selection on significance at the 5% level.

Effect of minimum wage on employment For the data from Wolfson and Belman

(2015) we consider the specification

p(X/Σ)∝



βp1 if Z<−1.96

βp2 if −1.96≤Z<0

βp3 if 0≤Z<1.96

1 if Z≥1/96.

Table 13 reports estimates and standard errors. We see that the main message of our

βp,1 βp,2 βp,3
1.174 0.231 0.235

(0.417) (0.100) (0.080)

Table 13: Meta-study selection estimates from GMM specifications for minimum wage data,
with standard errors in parentheses. Publication probability βp is measured relative to omitted
category of studies estimating a positive effect significant at the 5% level.

likelihood results in this setting, that results finding a significant and negative effect of the

minimum wage on employment are favored over insignificant results, again comes through

clearly. In contrast to our likelihood results the point estimate for βp1 also suggests

selection in favor of significant results finding a positive effect of the minimum wage on

employment, but given the large standard error associated with this coefficient the results
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Figure 15: The left panel shows a binned density plot for the normalized z-statistics W= |X|/Σ
using data from Camerer et al. (2018). The grey line marks W=1.96. The middle panel plots
the z-statistics W from the initial study against the estimate W r from the replication study.
The grey lines mark W and W r =1.96, as well as W =W r. The right panel plots the initial
estimate |X|=W ·Σ against its standard error Σ. The grey line marks |X|/Σ=1.96.

are also consistent with selection on statistical significance alone (βp1 =1, βp2 =βp3), with

a p-value of .86 for the joint test.

C.2 Results for Nature and Science replication study

This section describes results from applying our method to replication data from Camerer

et al. (2018). This study replicated 21 social science studies published in the journals

Science and Nature between 2010 and 2015. The authors selected results for replication

based on significance at the 5% level, so the function p(·) must be interpreted as the

probability that a result was both published and selected for replication. Nonetheless,

we can still explore the question of selection in this setting by focusing on selection above

the 5% significance threshold.

Histogram Before we discuss our formal estimation results, consider the distribution

of originally published estimates W = |Z|, shown by the histogram in the left panel of

Figure 15. This histogram shows that no results insignificant at the 5% are included in

the sample, but it is not obvious from this plot whether there is evidence for selection

above the 5% threshold.

Results from replication specifications The middle panel of Figure 15 plots the

joint distribution of W, W r in the replication data of Camerer et al. (2018). We consider
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Replication

κ λ βp,1 βp,2
0.211 1.653 0.000 0.480

(0.133) (0.558) (0.000) (0.238)

Meta-study

κ̃ λ̃ βp,1 βp,2
0.070 0.663 0.000 0.583

(0.084) (0.336) (0.000) (0.178)

Table 14: Selection estimates from social science experiments published in Nature and Science.
The left panel reports estimates from replication specifications, while the right panel reports
results from meta-study specifications. The parameters (κ,λ) and (κ̃,λ̃) are not comparable.

the model

|Ω∗|∼Γ(κ,λ), p(Z)∝


βp,1 |Z|<1.96

βp,2 1.96≤|Z|<2.58

1 |Z|≥2.58.

To match the selection of results for replication we set βp,1 = 0 so results insignificant

at the 5% level are always excluded from the sample, while we leave βp,2 free so results

significant between 5% and 1% level may be published with different probability than

results significant at the 1% level. Fitting this model by maximum likelihood yields the

estimates reported in the left panel of Table 14. These estimates therefore imply that

results significant between the 5% and 1% level are about half as likely to be published

as results significant at the 1% level.

Results from meta-study specifications The right panel of Figure 15 shows a meta-

study plot for the Camerer et al. (2018) data. As for the replication case we consider the

model

|Θ∗|∼Γ(κ̃,λ̃), p(Z)∝


βp,1 |Z|<1.96

βp,2 1.96≤|Z|<2.58

1 |Z|≥2.58.

Fitting this model by maximum likelihood (again with the restriction βp,1=0) yields the

estimates reported in the right panel of Table 14. Comparing these estimates to those

in the left panel, we see that the estimates from the two approaches are again similar.

Bias corrections To interpret our results, we plot our median-unbiased estimates based

on the Camerer et al. (2018) data in Figure 8. We see that the adjusted estimates track

the replication estimates fairly well for studies with smaller original z-statistics. For
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Figure 16: This figure plots the estimates W and W r from the original and replication studies
in Camerer et al. (2018), along with the median unbiased estimate θ̂1

2
based on the estimated

selection model and the original estimate.

studies with larger original z-statistics, our corrected estimates tend to be larger than the

replication estimates.

C.3 Results for deworming meta-study

Here we report results based on data from the recent meta-study Croke et al. (2016) on

the effect of mass drug administration for deworming on child body weight. They collect

results from randomized controlled trials which report child body weight as an outcome,

and focus on intent-to-treat estimates from the longest follow-up reported in each study.

They include all studies identified by the previous review of Taylor-Robinson et al. (2015),

as well as additional trials identified by Welch et al. (2017). They then extract estimates

as described in Croke et al. (2016) and obtain a final sample of 22 estimates drawn from

20 studies, which we take as the basis for our analysis. For further discussion of sample

construction, see Taylor-Robinson et al. (2015), Croke et al. (2016), and Welch et al. (2017).

To account for the presence of multiple estimates in some studies, we again cluster by study.

Histogram Consider first the distribution of the normalized estimates Z, shown by the

histogram in the left panel of Figure 17. Given the small sample size of 22 estimates, this

66



histogram should not be interpreted too strongly. That said, the density of Z appears

to jump up at 0, which suggests selection toward positive estimates.
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Figure 17: The left panel shows a binned density plot for the z-statistics X/Σ in the
deworming metastudy data. The solid grey lines mark |X|/Σ = 1.96, while the dash-dotted
grey line marks X/Σ=0. The right panel plots the estimate X against its standard error Σ.
The grey lines mark |X|/Σ=1.96.

Results from meta-study specifications The right panel of Figure 17 plots the joint

distribution of X, the estimated intent to treat effect of mass deworming on child weight,

along with the standard error Σ in the Croke et al. (2016) data.

We next consider the model

Θ∗∼N(θ̄,τ̃2), p(Z)∝

βp |Z|<−1.96

1 |Z|≥1.96,

where we constrain the the distribution of Θ∗ to be normal and the function p(·) to be

symmetric to limit the number of free parameters, which is important since we have only

22 observations. Fitting this model yields the estimates reported in Table 15.

The point estimates here suggest that statistically significant results are less likely

to be included in the meta-study of Croke et al. (2016) than are insignificant results.

However, the standard errors are quite large, and the difference in publication (inclusion)

probabilities between significant and insignificant results is itself not significant at con-

ventional levels, so there is no basis for drawing a firm conclusion here. Likewise, the
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θ̄ τ̃ βp
0.190 0.343 2.514

(0.120) (0.128) (1.869)

Table 15: Meta-study estimates from deworming data, with robust standard errors in
parentheses. Publication probabilities βp measured relative to omitted category of studies
significant at 5% level.

estimated θ̄ suggests a positive average effect in the population, but is not significantly

different from zero at conventional levels.

We next consider the more flexible specification

Θ∗∼N(θ̄,τ2), p(Z)∝



βp,1 Z<−1.96

βp,2 −1.96≤Z<0

βp,3 0≤Z<1.96

1 Z≥1.96.

Results based on this specification are reported in Table 16. These estimates differ

substantially from those reported above, and suggest strong selectivity against negative

estimates, particularly negative and significant estimates. However, as can be seen from

Figure 17 there is only a single negative and statistically significant estimate in the sample,

so the reliability of conventional large-sample approximations here is highly suspect.

θ̄ τ̃ βp,1 βp,2 βp,3
-0.714 0.521 0.008 0.151 1.299
(0.626) (0.206) (0.025) (0.207) (1.113)

Table 16: Meta-study selection estimates from deworming wage data, flexible specification,
with standard errors in parentheses. Publication probability βp is measured relative to omitted
category of studies estimating a positive effect significant at the 5% level.

To reduce the number of free parameters, we estimate a version of the model which

does not allow discontinuities in p(·) based on statistical significance, but only based on

the sign of the estimate,

Θ∗∼N(θ̄,τ2), p(Z)∝

βp X/Σ<0

1 Z≥0.
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Fitting this model yields the estimates reported in Table 17. These estimates suggest

strong selectivity on the sign of the estimated effect, where positive effects are estimated

to be ten times more likely to be published than negative effects. While this is consistent

with the distribution of observations in Figure 17, our choice of this specification was

driven by our results in Table 16. Given that this is a form of specification search, it

suggests that conventional asymptotic approximations may be unreliable here, and thus

that these results should be treated with caution.

θ̄ τ̃ βp
-0.217 0.365 0.094
(0.156) (0.103) (0.099)

Table 17: Meta-study selection estimates from deworming wage data, restricted asymmetric
specification, with standard errors in parentheses. Publication probability βp is measured
relative to omitted category of studies estimating a positive effect significant at the 5% level.

D Additional Theoretical Results

This section provides additional theoretical results to complement those in the main

text. Section D.1 provides further discussion of meta-regression coefficients. Section D.2

discusses the extension of our baseline identification results to the case with selection on

both Z∗ and Σ∗. Section D.3 further generalizes our results to allow selection on (Z∗,Ω∗,Σ∗)

and shows that we can still identify fZ|Ω in this setting, which is enough to let us implement

selection corrections, and develops specification tests based on this model. Section D.4

extends our corrected inference results to inference on scalar parameters in settings with

multidimensional selection (for example, selection on tests for pre-trends in difference

in differences specifications). Section D.5 discusses the effect of selection on Bayesian

inference, and Section D.6 discusses optimal selection in the context of a simple model.

D.1 Interpretation of meta-regression coefficients

In Section 5.2 of the main text we discussed meta-regressions. We noted that under

our assumptions meta-regressions deliver a valid test of the null of no selectivity. We

also noted, however, that in the presence of selectivity the function E[Z|1/Σ=π] is in

general non-linear, and the slope of the best linear predictor cannot be interpreted as a

selection-corrected estimate of E[Θ∗].

To see this, consider the following simple example. Suppose that Θ∗≡ θ̄>0, so there

is no parameter heterogeneity across latent studies, and that p(Z)=1(Z>zc), so there
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is strict selection on significant, positive effects. Let ε∼N(0,1), and let m be the inverse

Mill’s ratio, m(x)= ϕ(x)
1−Φ(x)

. Then

E[Z|1/Σ=π]=E[πθ̄+ε|πθ̄+ε>zc]=πθ̄+m
(
zc−πθ̄

)
.

This is a nonlinear function of π, and the slope and intercept of the best linear predictor

approximating this function both depend on the distribution of π (that is, of Σ). If

Σ takes on only small values, and thus π only takes on large values, the Mill’s ratio

term is negligible, and E∗[Z|1/Σ=π]≈πθ̄. If Σ takes on only large values, a first order

approximation around π=0 yields

E∗[Z|1/Σ=π]≈m(zc)+θ̄(1−m′(zc))·π.

This shows in particular that the slope, which in this example equals θ̄(1−m′(zc)), is in

general different from the average effect θ̄, so that meta-regressions cannot be expected

to deliver bias-corrected estimates of E[Θ∗].

D.2 Selection depending on Σ∗ given Z∗

In this section we consider the extension of our identification results to the case where

the publication probability takes the form p(Z∗,Σ∗), so selection depends both on the

z-statistic and the standard error. Such selection could arise, for instance, if journals

prefer to publish precise estimates.

In settings with replication data, this extension is straightforward. In particular,

we can treat the standard error Σ∗ for the original study as a covariate and consider a

conditional analysis as discussed in Section B.2. This will allow us to identify p(z,σ) up to

scale for each σ, as well as the conditional distribution of true effects given the standard

error µΘ|Σ, though we cannot in general identify µΘ or µΣ.

In settings with meta-study data, our identification argument exploits variation in

Σ, so conditioning on Σ is not a viable option. If we impose multiplicative separability

p(Z∗,Σ∗)=pZ(Z∗)pΣ(Σ∗), however, then we can still show identification of pZ(·).
In particular, if the assumptions of Theorem 3 hold, save that the publication prob-

ability is of the form p(Z∗,Σ∗)=pZ(Z∗)pΣ(Σ∗), then

fZ|Σ(z|σ)=
pZ(z)

E[p(Z∗)|Σ∗=σ]

∫
ϕ(z−θ/σ)dµΘ(θ),
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just as in the case with selection on Z alone. The proof of Theorem 3 applied to this new

density thus shows that we can recover pZ(·) and µΘ.

D.3 Selection depending on (Ω∗,Σ∗) given Z∗

Selection of an empirical result for publication might depend not only on the result itself

but also on other empirical findings reported in the same manuscript, or on unreported

results obtained by the researcher. Publication probabilities conditional on Z∗,Σ∗ and

Ω∗ then implicitly average over these variables, resulting in additional dependence on

Ω∗. Hence, our assumption that publication decisions are independent of true effects

conditional on reported results, D⊥Ω∗|Z∗, may fail. Allowing for a more general se-

lection probability p(Z∗,Ω∗,Σ∗), we can still identify fX|Ω,Σ, which is the key object for

bias-corrected inference as discussed in Section 2.2.

Theorem 4

Consider the setup of Theorem 2, but allow

D|Z∗,Ω∗,Σ∗∼Ber(p(Z∗,Ω∗,Σ∗)).

In this setup fZ|Ω is nonparametrically identified.

Proof of Theorem 4: Under the setup considered, and again denoting ∆ = Σr/Σ,

using the implied conditional independence assumptions we get

fZr|Z,∆(zr,z,δ)=

∫
fZr∗|∆∗,Z∗,D,Ω∗(z

r|δ,z,1,ω)fΩ∗|∆∗,Z∗,D(ω|δ,z,1)dθ

=

∫
ϕδ(z

r−ω)fΩ∗|Z∗,D(ω|z,1)dω

=(fΩ|Z∗ϕδ)(zr|z).

By deconvolution, this immediately implies that we can identify fΩ|Z. Since fZ is directly

identified, Bayes’ rule yields the desired result via

fZ|Ω(z|ω)=
fΩ|Z(ω|z)·fZ(z)∫
fΩ|Z(ω|z′)·fZ(z′)dz′

.

�

Note that in this proof we never appealed to normality of Z∗ (though we did use

normality of Zr∗). Hence, the result continues to apply in settings where Z∗ is non-normal
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(for example due to manipulation of results or p-hacking).

D.3.1 Latent selection model

To make the generalized selection model introduced in the last section more concrete, this

section shows how selection on (Z∗,Ω∗) can arise from selection on an unobserved variable.

We then calculate a Lagrange multiplier test of our baseline model against a parametric

model of this form. If our baseline model is correct this specification test will have correct

size (in large samples), while the parametric model we adopt for selection on (Z∗,Ω∗)

controls where the specification test will have power if our baseline model is incorrect.

Assume that publication decisions are based on(
Z∗

V ∗

)
|Ω∗∼N

((
Ω∗

Ω∗

)
,

(
1 0

0 1

))
,

where V ∗ is a second, independent estimate of the true effect Ω∗, with the same variance

as Z∗. Assume further that

D|Z∗,V ∗,Ω∗∼Ber(p(Z∗,V ∗)),

so publication decisions are based on Z∗ and V ∗. Since V ∗ is unobserved, integrating over

its distribution gives publication probabilities of the form p(Z∗,Ω∗).

We want our parametric specification for p(z,v) to nest our baseline specifications,

p(z)=
K∑
k=1

βp,k1{ζk−1≤z<ζk}.

To ensure this, we consider the generalized specification

p(z,v)=

∑K
k=1β̃

1
p,k1{ζk−1≤z<ζk,|v|≥ζV }

+
∑K

k=1β̃
0
p,k1{ζk−1≤z<ζk,|v|<ζV },

which allows publication probabilities to depend on whether two-sided z-tests based on

the latent variable v reject Ω∗ = 0. Integrating over the distribution of V ∗ yields the

following specification for p(z,ω):

p(z,ω)=

∑K
k=1β̃

1
p,k1{ζk−1≤z<ζk}

(
1−Ψ̃(ζV ,ω)

)
+
∑K

k=1β̃
0
p,k1{ζk−1≤z<ζk}Ψ̃(ζV ,ω),
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where

Ψ̃(ζV ,ω)=Pr{|V |<ζV |Ω∗=ω}=Φ(ζV−ω)−Φ(−ζV−ω).

One can show that p(z,ω) is only nonparametrically identified up to a normalization for

each value ω. Analogous to our baseline specifications, here we impose the normalization

β̃1
p,K= β̃0

p,K=1. If we then define

βp,k= β̃1
p,k+Ψ̃(ζV ,0)·(β̃0

p,k−β̃1
p,k),

γp,k=
(
β̃1
p,k−β̃0

p,k

)
·Ψ̃(ζV ,0),

and

Ψ(ζV ,ω)=
Ψ̃(ζV ,ω)−Ψ̃(ζV ,0)

−Ψ̃(ζV ,0)
,

we obtain the specification

p(z,ω)=
K∑
k=1

(βp,k+γp,k ·Ψ(ζV ,ω))·1{ζk−1≤z<ζk}. (16)

Note that our normalization now implies that βp,K=1 and γp,K=0.

Specification test results Since the specification (16) nests our baseline specifications,

we can use it to form Lagrange multiplier specification tests in our replication applications

(testing the restriction γp,k=0 for all k). This specification test yields p-values of 0.53 and

0.42 in our Camerer et al. (2016) and Open Science Collaboration (2015) applications,

respectively.

D.4 Inference when selection depends on multiple variables

This section extends the frequentist inference results developed in the main text to cases

where publication decisions are based not just on a scalar, but instead on a normally dis-

tributed vector of estimates. Let X∗i represent the estimates from study i, and assume that

X∗i |Θ∗i ∼N(Θ∗i ,Ξ)

for Ξ known. Assume that Ξ is constant across latent studies i; the generalization to

the case where latent study i has variance Ξ∗i is immediate. Since X∗i is a vector, Ξ is

a matrix. We thus obtain the following density for X∗ given Θ∗:
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Assumption 1

The distribution fX∗|Θ∗(x|θ) is multivariate normal with mean θ and variance Ξ:

fX∗|Θ∗(x|θ)=(2π)−
k
2 |Ξ|−

1
2exp

(
−1

2
(x−θ)′Ξ−1(x−θ)

)
.

We consider inference on Γ=v′Θ for a known non-zero vector v, treating the other

elements of Θ, denoted Ω, as nuisance parameters.28 To conduct inference on the ith

element of Θ we can simply take v to be the ith standard basis vector. To illustrate our

results, we consider the example of difference in differences estimation, with selection on

both statistical significance and a test for parallel trends.

D.4.1 Illustrative example: difference in differences

Suppose we observe data from two states, s∈{1,2} over three time periods t∈{1,2,3}.
Denote the average outcome for residents of state s at time t by Yst, and note that under

regularity conditions, Yst will be approximately normally distributed

Yst∼N
(
µst,σ

2
st

)
.

For simplicity we assume that Yst is independent of Ys′t′ if s 6=s′ or t 6=t′.
Suppose we are interested in estimating the effect of a particular state-level policy,

and let Dst be a dummy for the presence of the policy in state s at time t. The difference

in differences model (with no control variables) assumes that

µst=αs+βt+Dstγ.

If we are interested in the effect of a policy enacted in state 1 in period 3 and nowhere

else in the sample, for example, we would take

Dst={s=1,t=3}.

A key identifying assumption in the difference-in-differences model is that the only source

of variation in µst at the state-by-time level is the policy change of interest. In particular,

while we allow state fixed effects αs and time fixed effects βt, we rule out state-time-specific

effects other than those acting throughDst.This is known as the parallel trends assumption.

28In an abuse of notation, this parameter Ω is unrelated to the variance-normalized effect Ω considered
in other sections.

74



With only two periods of data this assumption is untestable, since we have four

free parameters (α1,α2,β2,γ) and only four means (µ11,µ12,µ21,µ22). With data from an

additional time period, however, we have five free parameters and six means and so can

instead consider the model

µst=αs+βt+D̃stλ+Dstγ

where

D̃st={s=1,t=2}

and the parallel trends assumption implies that λ=0. Thus, given data from two states

in three time periods the parallel trends assumption is testable.

Formal and informal tests of parallel trends are common in applications of difference

in differences strategies. To describe a formal test in our setting, note that the natural

estimator (G,L) for (γ,λ) has a simple form,

(G,L)=((X13−X12)−(X23−X22),(X12−X11)−(X22−X21)).

To test the parallel trends assumption in this setting we again want to test that λ, the

mean of L, is equal to zero.

Consider a population of latent studies with the structure just described, and let us

further simplify the model by setting σst=1 for all t. For latent estimates X∗=(G∗,L∗)

and latent true effects Θ∗=(Γ∗,Λ∗),(
G∗

L∗

)∣∣∣∣∣
(

Γ∗

Λ∗

)
∼N

((
Γ∗

Λ∗

)
,

(
4 2

2 4

))

where the covariance matrix is known.

As in our illustrative example in the main text, assume studies that reject γ=0 at the

5% level are ten times more likely to be published than studies that do not. In addition,

assume studies that reject λ=0 at the 5% level are ten times less likely to be published

than studies that do not. This leads to publication probability

p(X)∝1

{
|G∗|
σG

>1.96,
|L∗|
σL
≤1.96

}
·1+1

{
|G∗|
σG

>1.96,
|L∗|
σL
≥1.96

}
·0.1
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Figure 18: This figure plots the median
bias of (G) /σG in the difference in
differences example.

Figure 19: This figure plots the coverage
of conventional 95% confidence sets in the
difference in differences example.

+1

{
|G∗|
σG
≤1.96,

|L∗|
σL
≤1.96

}
·0.1+1

{
|G∗|
σG
≤1.96,

|L∗|
σL

>1.96

}
·0.01.

This publication rule favors studies that find significant difference in difference estimates,

and disfavors studies that reject the parallel trends assumption.

To illustrate the effect of selective publication in this setting, Figure 18 plots the

median bias of G as an estimator for γ (scaled by the standard deviation σG of G∗).

Selective publication results in large bias for the conventional estimator G, which depends

on both the parameter of interest γ and the nuisance parameter λ. Analogously, Figure

19 plots the coverage of the usual two-sided confidence set G∗±1.96σG, and shows that

selective publication results in substantial coverage distortions.

D.4.2 Sufficient statistic for nuisance parameter

To conduct inference on γ, treating ω as a nuisance parameter, it will be helpful to derive

a sufficient statistic for ω. Note that for M(v) a (dim(X)−1)×dim(X) matrix such that

M(v)
(
I−Ξvv′

v′Ξv

)
has full row-rank,

(G(x),W(x))=

(
v′x,M(v)

(
I−Ξvv′

v′Ξv

)
x

)
is a one-to one transformation of x. Thus (G,W)=(G(X),W(X)) are jointly sufficient

for θ, and rather than basing inference on X we can equally well base inference on (G,W).

Note moreover that for G∗=G(X∗) and W ∗=W(X∗), X∗∼N(θ,Ξ) implies that
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(
G∗

W ∗

)
∼N

((
γ

ω

)
,

(
σ2
G 0

0 ΞW

))
(17)

for ω=M(v)
(
I−Ξvv′

v′Ξv

)
θ, σ2

G=v′Ξv, and ΞW =M(v)
(
I−Ξvv′

v′Ξv

)
Ξ
(
I− vv′Ξ

v′Ξv

)
M(v)′. Thus the

conditional distribution of G∗ given W ∗ depends only on γ,

G∗|W ∗∼N(γ,σ∗G),

and by conditioning on W ∗ we can eliminate dependence on the nuisance parameter ω.

This property continues to hold for the conditional distribution of published G given W ,

as the following lemma shows.

Lemma 3

Under Assumption 1, the conditional density G|W,Γ is given by

fG|W,Γ(g|w,γ)=
p(g,w)

E[p(G∗,W ∗)|W ∗=w,Γ∗=γ]

1

σG
φ

(
g−γ
σG

)
(18)

for φ the standard normal density, where we use the fact that (g,w) is a one-to-one

transformation of x to write p(g,w)=p(x(g,w)).

Proof of Lemma 3 Note that we can draw from the conditional distribution G|W=

w,Γ=γ by drawing from the conditional distribution G∗|W ∗=w,Γ∗=γ and discarding

the draw G∗ with probability 1−p(G∗,w). The result then follows from Bayes rule. �

Thus, we see that the conditional density of G given W depends only on the parameter

of interest γ and not on the nuisance parameter ω. Hence, by conditioning on W we can

eliminate the nuisance parameter and conduct inference on γ alone.

D.4.3 Optimal quantile-unbiased estimates

To conduct frequentist inference, we generalize the median-unbiased estimator and equal-

tailed confidence set proposed in Section 2.2 of the main text to the present setting. Using

a result from Pfanzagl (1994) we show that the resulting quantile-unbiased estimators

are optimal in a strong sense.

Formally, define γ̂α(X) by

FG(X)|W(X),Γ(G|W,γ̂α(X))=α.
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This estimator is simply the value γ such that the observed G lies at the α quantile of

the corresponding conditional distribution given W . The following theorem, based on

the results of Pfanzagl (1994), shows that this estimator is both quantile-unbiased and,

in a strong sense, optimal in the class of quantile-unbiased estimators.

Theorem 5

Let Assumption 1 hold, and assume further that the conditional distribution of G given

W is absolutely continuous for all γ and almost every W , and that the parameter space

for ω given γ contains an open set for all γ. Then

1. The estimator γ̂α(X) is level-α quantile unbiased:

Pr{γ̂α(X)≤γ|Θ=(γ,ω)}=α for all γ,ω,

2. This estimator is uniformly most concentrated in the class of level-α quantile-unbiased

estimators, in the sense that for any other level-α quantile unbiased estimator γ̃(X)

and any loss function L(d,γ) that attains its minimum at d=γ and is increasing

as d moves away from γ,

E[L(γ̂α(X),γ)|Θ=(γ,ω)]≤E[L(γ̃(X),γ)|Θ=(γ,ω)] for all γ,ω.

Proof of Theorem 5 Since the multivariate normal distribution belongs to the expo-

nential family, we can write

fG∗,W∗|Θ∗(g,w|θ)= h̃(g,w)r̃(γ(θ),ω(θ))exp
(
γ(θ)g+ω(θ)′w

)
.

By the same argument as in the proof of Lemma 3, this implies that

fG,W |Θ(g,w|θ)=h(g,w)r(γ(θ),ω(θ))exp(γ(θ)g)exp
(
ω(θ)′w

)
(19)

for h(g,w)=p(g,w)h̃(g,w) and

r(γ,ω)=
r̃(γ,ω)

E[p(X∗)|Θ∗=θ(γ,ω)]
.

The density (19) has the same structure as (5.5.14) of Pfanzagl (1994), and satisfies

properties (5.5.1)-(5.5.3) of Pfanzagl (1994) as well. Part 1 of the theorem then follows
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Figure 20: This figure plots the difference
between the median-unbiased estiamtor
γ̂1

2
(X) and the conventional estimator G

in the difference-in-differences example.

Figure 21: This figure plots the (shaded)
rejection region for a 5% test of H0 :γ=0
based on equal-tailed confidence sets for
γ in the differences in differences example.

immediately Theorem 5.5.9 of Pfanzagl (1994).

Part 2 of the theorem follows by using Theorem 5.5.9 of Pfanzagl (1994) along with

(19) to verify the conditions of Theorem 5.5.15 of Pfanzagl (1994). �

Using this result we see that γ̂1
2
(X) is the optimal median-unbiased estimator for the

parameter of interest γ. A natural level-α confidence interval to accompany this estimator

is then the equal-tailed confidence interval

CS=
[
γ̂1−α

2
(X),γ̂α

2
(X)
]
.

Difference in differences example (continued) To illustrate our corrections in a

multivariate setting, Figure 20 plots the difference between our median-unbiased estimator

γ̂1
2
(X) and the conventional estimator γ̂=G in the difference-in-differences example. As

this plot makes clear, γ̂1
2
(X) depends on both G and L. Thus, while we are interested

only in the difference-in-differences parameter γ, the result for the pretest of parallel

trends also plays a role in our estimate. Figure 21 plots the rejection region for a 5% test

of H0 :γ=0 based on our equal-tailed confidence interval for γ. As this plot shows, the

results of this test likewise depend on both G and L.

D.5 Bayesian inference

In the main text we discuss the effect of selective publication on frequentist inference on θ

under known p(·). The effect of selective publication on Bayesian inference is more subtle,
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and depends on the prior. Here we briefly discuss Bayesian inference on θ under known p(·)
for two natural classes of priors. These priors can be thought of as two extreme points of the

set of relevant priors. For ease of exposition, we assume the standard deviation Σ is constant

and suppress it in our notation. None of the results in this section rely on normality.

Definition 2 (Two classes of priors)

Consider the following two classes of prior distributions πµ for µΘ:

1. Unrelated Parameters: πµ is a point mass at some µΘ, so that µΘ is known and

the prior distribution of Θ∗i is i.i.d. across i.

2. Common Parameters: πµ assigns positive probability only to point-measures µΘ, so

that Θ∗i is constant across i (equal to Θ∗0) with probability 1.

The unrelated parameters prior corresponds to the case where each latent study con-

siders a different parameter. Thus, under priors in this class, learning the true parameter

value Θ∗i in latent study i conveys no information about the true parameter value Θ∗i′

in latent study i′, and Θ∗i is iid across i. The common parameters prior, by contrast,

assumes that all latent studies attempt to estimate the same parameter Θ∗0. Thus, priors

in this class imply that Θ∗i is perfectly dependent across i.

For both the unrelated and common parameters classes, the marginal prior πΘ∗ for

Θ∗ is unrestricted. For any πΘ∗ there is a unique prior in each class consistent with this

marginal distribution.

If we observe a single draw X∗, our posterior for Θ∗ depends only on the marginal

prior πΘ∗, and so is the same whether we consider the unrelated or common parameters

priors. By contrast, when we observe a single draw X from the distribution of published

papers, which class of priors we use turns out to be important. The following result is

closely related to the findings of Yekutieli (2012).

Lemma 4 (Two posterior distributions)

Based on single observation of X, we obtain the following posteriors:

1. Under unrelated parameters priors:

fΘ|X(θ|x)=fX∗|Θ∗(x|θ)·πΘ∗(θ)/πX∗(x)
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2. Under common parameters priors:

fΘ|X(θ|x)=
p(x)

E[p(X∗)|Θ∗=θ]
fX∗|Θ∗(x|θ)·πΘ∗(θ)/πX∗(x)

∝fX|Θ(x|θ)·πΘ∗(θ)

Proof of Lemma 4:

1. Unrelated parameters: By construction D⊥Θ|X∗, and thus

fΘ|X(θ|x)=fΘ∗|X∗,D(θ|x,d=1)

=fΘ∗|X∗(θ|x)

=fX∗|Θ∗(x|θ)·πΘ∗(θ)/fX∗(x).

2. Common parameters: This follows immediately from the truncated likelihood (1).

�

Under the unrelated parameters prior, our posterior fΘ|X(θ|x) after observing X=x

is the same as our posterior had we observed X∗=x. The form of p(·) has no effect on

our posterior distribution, and inference proceeds exactly as in the case without selection.

Under the common parameters prior, by contrast, our posterior fΘ|X(θ|x) corresponds

to updating our marginal prior πΘ∗ using the truncated likelihood fX|Θ(x|θ).
The fact that selection has no effect on our posterior under the unrelated parameters

prior may be surprising, but reflects the fact that under this prior, selection changes the

marginal prior πΘ for true effects in published studies. In particular, under this prior we

have

πΘ(θ)=
E[p(X∗)|Θ∗=θ]

E[p(X∗)]
πΘ∗(θ),

which reflects the fact that the distribution of true effects for published studies differs from

that for latent studies under this prior. When we update this prior based on observation of

X, however, the adjustment by E[p(X∗)|Θ∗=θ] in the prior cancels that in the likelihood,

and selection has no net effect on the posterior. Under the common parameters prior,

by contrast, πΘ∗ = πΘ, so the adjustment term in the prior due to selective inference

continues to play a role in the posterior. For related discussion, see Yekutieli (2012).
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D.6 Optimal selection for publication in a simple model

In the main text we discuss how to account for selective publication in inference and

how to identify selectivity. It is natural to ask, however, whether selective publication

is a good idea in the first place or just a misguided application of statistics leading to

either publication bias or needlessly complicated inference. The answer to this question

depends on the journal’s objective function. One possibility is as follows. Suppose that

published estimates are inputs into policy decisions, for instance in development economics,

education, public finance, or medicine. If there are constraints on how many studies are

published and read, then selectivity of the sort we observe might be justified.

We discuss a stylized version of this idea in a development economics context, though

our model might also be considered a stylized description of medical publishing and

doctors’ prescriptions of treatments for patients. As in the last section we suppress the

standard deviation Σ, and the results here do not rely on normality.

Suppose that each i corresponds to a different policy intervention. Suppose the dis-

tribution µ of true treatment effects Θ∗ is known to journal editors and readers, and that

the expected effect E[Θ∗] of a randomly chosen treatment on the likelihood of escaping

poverty is non-positive. Suppose further that the journal is read by policy makers who

aim to minimize poverty. Assume finally that each treatment is relevant for a population

of equal size, normalized to 1. A policy maker wishes to implement a given treatment

if the expected impact on the outcome considered is positive, conditional on the observed

estimate X=x. Thus, their optimal treatment assignment rule is

t(x)=1(E[Θ|X=x]>0), (20)

which results in the expected outcome

v(x)=max(0,E[Θ|X=x]) (21)

where E[Θ|X] is the policymakers’ posterior expectation of Θ after observingX.29 Suppose

the journal also aims to minimize poverty, but faces a marginal (opportunity) cost of c,

in units comparable to treatment outcomes, when publishing a given study. Policymakers

update their behavior only for published studies with E[Θ|X]>0. This updated behavior

results in an expected poverty reduction of E[Θ|X] relative to the status quo. It follows

29Perhaps surprisingly, truncation is irrelevant for this posterior expectation. This stems from the
fact that we assume policy makers have unrelated parameters priors as in Definition 2 above.
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that the optimal publication rule for the journal is

p(X∗)=1(E[Θ∗|X∗]>c). (22)

If the conditional expectation is increasing in X∗, this rule is equivalent to

p(X∗)=1(X∗>xc),

so that results should get published if they are positive and “significant” relative to the

critical value xc, defined via E[Θ∗|X∗=xc]=c.
This result rationalizes selectivity in the publication process: the optimal rule derived

here corresponds to one-sided testing. A more realistic version of this story allows for

variation across latent studies in the variance of X∗, the cost of implementing treatment,

the size of the populations to be treated, etc. All of these would affect the critical value

xc, which thus should vary across i and need not be equal to conventional critical values

of hypothesis tests. What remains true, however, is that publication decisions that are

optimal according to the above model are selective in a way which leads to publication

bias, and correct inference needs to account for this selectivity.
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