Main content

Contributors:
  1. Chris Venditti

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Statistical non-independence of species’ biological traits is recognized in most traits under selection. Yet, whether or not the evolutionary rates of such biological traits are statistically non-independent remains to be tested. Here we test the hypothesis that phenotypic evolutionary rates are non-independent, i.e. contain phylogenetic signal, using empirical rates of evolution in three separate traits: body mass in mammals; beak shape in birds; and bite force in amniotes. Specifically, we test whether rates are non-independent throughout the evolutionary history of each tree. We find evidence for phylogenetic signal in evolutionary rates in all three case studies. While phylogenetic signal diminishes deeper in time, this is reflective of statistical power owing to small sample and effect sizes. When effect size is large, e.g., owing to the presence of fossil tips, we detect high phylogenetic signals even in deeper time slices. Thus, we recommend that rates be treated as being non-independent throughout the evolutionary history of the group of organisms under study, and any summaries or analyses of rates through time – including associations of rates with traits – need account for the undesired effects of shared ancestry.

Has supplemental materials for Phylogenetic non-independence in rates of trait evolution on PaleorXiv

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.