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1.1 Introduction

Science is a system for gathering knowledge, and developing explanations and predictions
about the universe in which we live. A central tenet of this system is that something is
known only when multiple, independent observers agree on a common experience. That
is, experiences (which are more commonly called experiments) are reproducible. As such,
the scientific method is by definition open; it is only when independent parties precisely
replicate an experience that experimental results are considered valid.

Despite this basic, and obvious tenet of openness, the pressure to close science is growing.
Due to the exceptional innovative power of science, commercial interests, and personal career
pursuits, many scientists and research institutions are heading down the path of secrecy
and strong protective measures. In addition, publishers which garner financial benefit from
controlling the dissemination of scientific knowledge, have been reluctant to openly share
information, and are under increasing financial pressure to protect what they consider their
intellectual property. Consequently, one of the tragedies of the current era is that the term
“Open” must be prepended to Science despite the fact that openness is a fundamental
requirement of the scientific method. Open Science is a redundant, descriptive phrase, yet
it has become necessary to remind ourselves that we must maintain openness if we are to
e↵ectively practice science.

Countering the pressure to close science is of course the emergence of the Internet.
This ongoing Web revolution has given rise to near zero-cost methods of disseminating
information, meaning that the ability to share the results of scientific research has been
greatly enhanced. It is more than a simple matter of playing nice and sharing with others,
the increasing complexity of modern science demands sharing and collaboration, since large
teams with multidisciplinary expertise are required to address current challenges and gather
advanced knowledge (see Section 1.1.2). Thus it may be that scientific progress will stall
without greater openness, and scientists will have no choice but to share, and share more
e↵ectively.

The conflict between sharing and secrecy has been present since the earliest days of
scientific practice. Some scientists have routinely hidden or encoded their data, and often
released it only as necessary to support their work, or once personal career achievement was
assured. However it is clear that the practice of science is changing rapidly, with key players
such as publishers and societies, as well as scientists themselves, under significant pressure
to change their ways. Thus the conflict is taking on deeper meaning, and is nothing less
than a revolutionary reevaluation of how we practice science.

1.1.1 The Evolution of Scientific Community

As the scientific method was developed, the demands of reproducibility, and hence the
need to share information, quickly gave rise to scientific societies and publications. For
example the Royal Society was established in 1660 with the enviable motto (translated
from Latin) “Take nobody’s word for it.” E↵ectively the role that this society and the
many following it took was one of community building. Early on, meetings were held in
which experiments were jointly performed (the earliest form of peer-review), and eventually
results were codified, published, and shared. Given the technology of the time, this process
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rapidly evolved into a journal-based system in which communications between scientists
were collected and distributed (for a fee) to subscribing recipients (see Figure 1.1).

FIGURE 1.1: The evolution of the practice of the scientific method, from a society-oriented
process of reviewing, and verifying reproducibility (left) to today’s peer review based pub-
lishing process (right). Without openness, the peer review process cannot verify repro-
ducibility.

Fast forwarding to the current day, scientific publishing has grown into a multi-billion
dollar industry. It has served science well over the centuries by gathering information and
sustaining scientific communities, including sponsoring conferences and facilitating the peer
review process. However, the Internet has unleashed new ways to grow and support commu-
nities, as a result the publishers are feeling the inevitable financial pressures and demands
for process change. The current, ponderous model of peer review and paper-centric publi-
cation has been viewed by many, as far too slow, and limited in the amount of information
that is conveyed. The main deficiency being that journal articles do not always provide the
information necessary to reproduce a result.

The notion of what is a scientific community is also changing rapidly. Conventional
publishers might choose to maintain their old ways (and profit margins) if they had a
choice, but with the low cost of exchanging information and serving communities it is clear
that change will continue unabated. In the end the publishers will only survive by returning
to their roots: serving the scientific community. This may mean taking a supportive role
by adopting new methods for curating, organizing, and coordinating scientific knowledge,
as well as continuing the support of communities through various interaction forums. In
particular, conferences, data hosting and repositories, to name a few. In the mean time, many
scientists and institutions are taking matters into their own hands and using reproducible
methods such as those described in this chapter to further the reach of science.

1.1.2 Sharing Is Essential

Scientists are taught that the scientific method rests on three pillars of practice: experimen-
tation, theory, and computation. Recently a fourth pillar has been proposed, data-intensive
computing [25], although many consider it part of the computational pillar. Until recently,
the standard publishing model that uses written articles to describe experimental apparatus,
articulate theory, and codify computation was reasonably su�cient to support reproducibil-
ity and therefore scientific progress. Unfortunately this model is no longer adequate: the
complexity of experiment, theory and computation is such that a brief paper cannot even
begin to capture the detail necessary to describe an experiment to the point where it could
be reproduced by a third party.

Consider a paper in computer science, an area in which the authors are familiar. A
typical eight-page paper, or even an extended paper, can never describe the nuance be-



4 Dummy title

hind complex algorithms. For example, an advanced algorithm may require many dozens
of control parameters, not to mention internal data structures that can greatly a↵ect per-
formance and accuracy. In our experience we have found that actually reproducing such an
algorithm may require years of e↵ort, and in doing so we invariably fall back on the help
of the original author who sheds light on “implementation details” which are frequently
omitted in journal articles. The time demands to verify reproducibility are so large, that if
we as authors were to reimplement algorithms for research purposes it is unlikely that we
would find the time to develop our own line of research. As a result, many experiments are
never reproduced (especially in peer-reviewed documents), with the additional burden on
researchers who spend inordinate time reimplementing what has been done before, due to
lack of access to the original software implementation of published works. Thus without the
necessary sharing, the scientific endeavor is choking on complexity and resting on unstable
foundations.

There are further, selfish motivations to practice openness: there is correlative evidence
supporting the notion that: sharing furthers a scientific career. Recently [29] posted an
article that suggests that sharing materials results in greater citation of the published ma-
terial. Further, some argue persuasively that collaborative teams who, by definition, share
information are the future of science [8].

1.1.3 Reproducibility and Open Source

The goal of this chapter is quite practical: to share some of the methods that we use in our
practice of science to ensure reproducibility and encourage community building. To that
end, we have learned much from our participation in various open-source projects, of which
we are all developers and contributors. Indeed, the principles and practices of scientific
reproducibility have been imprinted within the DNA of the Open Source movement since
its inception. This is no coincidence, it is the consequence of the fact that the Open Source
movement originated in an academic environment and more specifically it was kindled in
research laboratories. In Open Source communities, reproducibility is ensured through the
practices of code review, unit testing, continuous integration, public documentation, open
mailing lists and forums. In this chapter, we show how these methods, and extensions to
them, can be used in the practice of science.

In general, open source communities are far ahead of most scientific communities when
it comes to the practice of reproducibility. In large part this is due to the rapid evolution of
the open source movement in response to the growth of the Internet and the Web. In the
meantime, most of the scientific community has remained constrained by the limitations of
a process entrenched in practices that date back to the introduction of the printing press.

One of the goals of this chapter is to describe how the practices of Open Source com-
munities are being brought back to mainstream scientific research. This is based on many
years of work developing open source software for scientific applications. During this time
we have regularly interacted with scientific research teams, providing software engineering
support for them, bringing their algorithmic implementations up to the standards expected
in modern software engineering, particularly with regard to testing, and facilitated the reuse
of their software and data, through widespread sharing of resources.

These practical experiences are presented here with the aim of encouraging the scientific
community to adopt them in their daily work. Such adoption typically involves working at
several levels simultaneously. We have found that it is important to work in parallel at the
following levels:

• Cultural,

• Rewards/recognition,
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• Career building,

• Funding, and

• Technical training.

A common hurdle to adopting open source principles is the confusion that individuals and
organizations face when classifying their challenges. For example, it is common to find that
a technical di�culty can be misinterpreted as a cultural challenge, or that a disincentive in
the funding space is mischaracterized as a technical problem. As we go through the topics
in this chapter we will attempt to properly identify the challenges and opportunities in
the adoption of reproducibility verification, and how they relate to the specific levels listed
above.

1.1.4 In Pursuit of Open Science

The Open Science movement is at its core an attempt to correct behaviors in the scientific
community and return to an environment where reproducibility is again at the center of
scientific research activities. Practicing Open Science requires four fundamental ingredients:

• Open data,

• Open source,

• Open access, and

• Open standards.

Each one of these ingredients is necessary to realize the core aims of sharing results and
stimulating scientific progress. Open data provides the opportunity for verification, analysis,
and subsequent publication of scientific results in new forms. Open source embodies scientific
methods, so that new computational processes can be independently examined, reviewed
and reused. Open access facilitates the review and validation of research processes and
results. Finally, open standards, while not absolutely essential to Open Science, simplify
the process of exchanging data, methods and publications thereby accelerating the research
process.

We see a broader role for Open Science and its impact on society. The Web is opening
up new lines of communication, providing access to scientific results which can be viewed
by virtually anyone with an Internet connection. This includes the general public who often
have strong interest in scientific research, for example when learning about current medical
treatments. However current practices such as pay walls and overly aggressive data rights
limitations are impeding realization of its full potential. The current situation requiring
authors to sign away copyrights to publishers, despite the fact that results are often produced
with the support of public funding, simultaneously represents an impediment to progress
as well as a significant public subsidy to narrow business interests. Instead, permissive data
rights using open licenses such as CC0, or CC-BY, are necessary to return the spirit of
community to science, and ensure its role as an e↵ective driver of innovation and major
contributor to societal progress.

1.1.5 Organization

This chapter is organized into two major parts. With the introduction behind us, the first
part consists of four sections discussing in general terms issues relating to open data, open
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source, open access, and open standards. Next, the second part (in Section 1.6 Open Sci-
ence Platform elucidates specific tools and practices that the authors use in their daily
practice of science. Naturally this section has a strong software orientation as the authors
are computational scientists (of sorts) by training. However as science is becoming ever
more computationally driven, we hope this material will be of interest to scientists of all
persuasions. Finally, we conclude with a brief section on the future challenges of Practicing
Open Science.

1.2 Open Data

To a significant extent, the scientific methods concerns itself with gathering, analyzing and
deriving data, partially to perform the essential work of acquiring knowledge, but also to
buttress explanations and support predictions. Data plays di↵erent roles in each of the three
scientific pillars of experiment, theory and computation; and naturally supports each during
the process of scientific investigation. For example, gathering data through experiments or
direct measurement is necessary to subsequent data analysis, typically to develop theories
of causality and correlation. On the other hand, theories are used to inform computation,
which generates predictive output data, which is typically compared to experimental results
to falsify [34] theories and refine computational models. Thus data serves as the focal point
in the scientific workflow, and unfettered access to it is required for the scientific process
to proceed e�ciently. Without such open access to data, the power of science to produce
knowledge, and thereby drive innovation and economic progress, is severely impeded.

Despite the obvious necessity of unfettered access to data in order to support the sci-
entific process, there are several powerful forces that create barriers. Many scientists place
career goals above sharing, as a valuable data set may generate an important body of work
and hence citations. Some scientists also insist on withholding data (at least for a short
period) while they verify its correctness (and hence preserve their reputation). While these
reasons certainly have merit in the real world, it is easy for them to become unbalanced
behaviors that significantly impede scientific progress, or in the worst case violate the core
principle of reproducibility.

Finally, commercial interests represent another set of growing pressures to withhold data
or impede its reuse: data can be withheld because it is deemed valuable, or copyright may be
used to limit its distribution. What is unfortunate about these barriers is that, not only do
they interfere with potentially specialized lines of research, they all but prevent large-scale
meta analysis across potentially thousands of data sets. For example, consider the case of
automated access followed by statistical analysis over dozens of disparate data sets from
a variety of sources. Having to formally request access to data one instance at a time is
not feasible; automated meta-analysis depends on ready access, and to a lesser extent, open
APIs (see Section 1.5). Furthermore, restrictive licensing can prevent derived data sets from
being published (or severely limit the breadth of the source data).

1.2.1 Plan to Share Data

Until recently, the central role of data was implicit to the scientific process. Data was mod-
est in size and could be exchanged among the community through tabulation of published
results. Then, in the very recent past, data grew significantly in size. This has led to signif-
icantly more complex data sharing, requiring computers and associated storage media such
as tapes, floppy disks and hard drives to exchange information. At about this time scientific
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publications began referring to external data sets; and now with the advent of the Internet
these data could be placed on a public site and distributed across the scientific community.
While this process continues today, the sharing process implicitly depends on the scale of the
data. Modest-sized data can be exchanged and if necessary, reacquired (if scientists decide
not to share it) at reasonable cost. However, this process is changing rapidly as data size
increases—it is becoming increasingly hard to exchange large data, and the re-acquisition
of data is often prohibitively expensive.

Consider the current state of a↵airs. The cost to acquire data, or generate (simu-
late/calculate) data on a supercomputer can be extremely expensive. For example the
original cost to sequence the human genome was nearly one billion dollars. The size of
data is growing rapidly too, with terabyte data sets becoming common, with petabyte data
sets emerging (and exascale is on the horizon). At this scale, data is too large to easily
exchange (the copy operation can take weeks or months even with high bandwidth links);
and too expensive to reacquire. Thus the costs and practical data transfer considerations
are driving science in a direction that absolutely demands better sharing of data. In the
past, data was exchanged by researchers who felt the ethical obligation to share informa-
tion for the purposes of advancing science. Unfortunately data was occasionally withheld, or
publication delayed, for the purposes of validation, or worse yet, due to competitive career
motivations. On a small scale this had modest impact on the the advancement of science;
however, at the current scale, sharing data has become vital to scientific progress. In our
opinion, it is imperative that scientists include data sharing plans as part of future funding
proposals; indeed many US Federal organizations have put in place requirements for such
plans. This is the case for The National Institutes of Health [12] for example.

1.2.2 Data-Centric Computing

The practical concerns related to the cost, size and scale of “Big Data”, combined with
the philosophical motivations to publish scientific materials across the larger community,
have led to new models of data distribution and curation. Data-Centric Computing [25]
is one such response. In this approach, data is central to the workflow Figure 1.2; once
acquired, generated, or computed data is left in place in a “central” repository (in practice
the data repository can be distributed across the web depending on where it is acquired
or computed). Access to the data is enabled through the Web. Client-server architectures
are employed wherein the server resides directly alongside the data, and clients are used to
access, analyze, visualize, organize and otherwise curate data. In addition, it is expected
that extended research teams are working together on the data, meaning that simultaneous
data access, and collaboration must be supported.

The point here is that these data repositories represent significant scientific resources,
and the work flow inevitably revolves around them. The scale of the data is so vast that
multiple collaborative teams are required to ferret out useful information. With the expense
and complexity of data, these data must be recognized as resources that are readily shared,
and are accessed through means of open standards and programming models.

1.3 Open Source

Much of today’s science depends on computation, which to ensure reproducibility must be
completely defined. Due to the complexity of computational methods, it is no longer possible
for brief descriptions or pseudo-code in a publication to properly characterize methods. The
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FIGURE 1.2: Data-driven scientific process. Data, once acquired or generated, is rarely
moved. Rather visualization, analysis, and journaling process orbit the data repository. This
requires special architectures (e.g., client-server) and to locate the computational resources
close to the data.

demands of reproducibility, and hence Open Science require full disclosure, which means pro-
viding source code, execution parameters, and the computational environment—everything
required to exactly reproduce an experiment.

A large portion of the practice of Open Science has been informed by the Open Source
movement. In this section we describe the various methods used by open source communities
to ensure reproducibility. In particular we focus on access to software through version control
systems; automated testing to ensure reproducibility; and systems for code review to validate
the correctness of the software.

1.3.1 Version Control and Provenance

Carefully tracking changes to scientific data, methods and publications is essential to the
scientific process, especially as part of the verification of reproducibility. This curation of
scientific resources is also fundamental for educating future scientists, who will have the
opportunity to inspect in great detail how particular experiments were performed in the
past. In the open source world, the ability to track changes is referred to as version or
revision control.

Version control has been at the heart of the open source software movement since its
earliest days. Initially version control was crudely implemented as a collection of tools to
create patches on top of the original files, email them and apply the patches on the receiving
end. Source code was freely available, approaches could be discussed and changes proposed
via these patches, clearly indicating changes made to the original. As this practice became
widespread, more sophisticated tools were developed, but at their core they were designed
around moving patches more e�ciently over the available transport options. Today we are
fortunate to have a wide array of sophisticated version control systems available, with many
powerful and open source systems under active development.

One of the most popular version control systems is Git, a project initiated by Linus
Torvalds to manage the flow of patches produced by Linux Kernel developers. It is perhaps
one of the most sophisticated, o↵ering a vast array of options that can be daunting for
novices. It is part of a new generation of version control systems, called distributed version
control systems (DVCS). The major improvement over previous systems is that users can
“clone” a repository to receive a full copy of the source code and all of the changes that
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were ever applied to it. This is in stark contrast to many alternative, centralized version
control systems such as RCS, CVS and Subversion in which developers receive only the tip
of the current branch and only the central repository server contains the complete history
of the project.

There are many advantages to DVCS, one of the most important being the ability to
easily create a local directory which can then be initialized and placed under version control,
and then readily shared with others. New files can be locally committed and their contents
stored. Later, when changes are made, these can be recorded in the form of patches applied
to the original, giving the author total freedom to look at all previous versions of a given
file. If the project grows, then sharing the project along with its history is simple, whereas
centralized version control systems require up front planning and coordination with the
central repository maintainer. Another important advantage to DVCS is that the source
and all history can easily be mirrored at multiple locations, with private branches that can
later be published in public repositories for all to see. This allows for work to take place in
private when necessary, that can later be shared with full history.

Another often overlooked, but powerful capability of version control systems is the ability
to track code provenance. Not only are the files and all modifications stored, the date and
time of each modification is stored along with the author and a message detailing the
reason(s) for the change. This tracking is implemented in the form of commits, which mark
events in which a particular set of changes were applied to the content of the repository.
Particular points in history can be tagged to indicate major events such as software releases,
and signed using encrypted keys to assure that a particular tag was signed by a given person
using a cryptographically secure signature. Due to the nature of systems such as Git which
use special hashes to establish the identity of a commit, it is possible to detect alterations
to previous commits that the signed commit depends upon, thus o↵ering high levels of data
integrity. It is not necessary to compare all files against a known good copy, just the hash of
the commits you have to a signed copy that you trust. This o↵ers a desirable degree of data
provenance, using openly verified algorithms for establishing data integrity, that is di�cult
to obtain with other approaches.

1.3.2 Automated Testing

Moment of Zen:
What scientists call: Experiments
Open source developers call: Tests

In this subsection, we equate the scientific concept of performing an experiment with the
open source practice of running a test. In today’s world of scientific computational research,
these two actions are one and the same.

The scientific principle of verification of reproducibility is implemented in open source
communities by relying on automated processes. The reason is simply that software systems
have a natural tendency to develop into large and complex systems. In such an environment,
the informal notion that: We attempt to replicate today an experiment that we did yesterday,
can not be left to the fallibility of good intentions, it must be formalized.

The bottom line is that we are forced by practical necessity to script automated processes
that can be run repeatedly. This is because the accumulation of the things that we did
yesterday, and the ones done the day before, and the day before that one, rapidly become a
combination of thousands of experiments. Attempting to repeat them by manual execution
guided with notes or plain memory, simply does not scale and discourages practitioners
from actually running all the experiments.

Automation not only makes reproducibility practical, it also makes it reliable. By captur-
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ing the process describing how to repeat an experiment, automation forces the practitioner
to script every single detail that is relevant to its execution. This means leaving nothing to
informal processes, local idiosyncrasies, or good intentions.

The practical way to encourage developers and researchers to automate their tests is
to ask them to run them on a daily basis. With a set of even tens of experiments that
must be run every day, a methodology to automatically run these experiments, emerges
quickly. This is an example of how a cultural requirement leads to technical adoption.
Unfortunately, the converse is also true. That is, in a laboratory environment that does not
automate its experiments, sta↵ quickly grow accustomed to not running the experiments
on a regular basis, reinforced by the excuse that it will simply take too long to do it. While
there are other more urgent tasks to tend to automated tests will be neglected. This chicken
and egg problem can be solved by working first at the cultural level and developing a sense
of reputation and pride in the craftsmanship of being the one who runs their experiments
daily.

Developers reputations are built in open source communities through practices of trans-
parency, peer-review, and accountability in a meritocratic process.

Transparency is achieved by publishing, on public web sites, daily test results. It quickly
becomes obvious who does and who does not run tests on a regular basis.

Peer-review is performed by the larger developer community, who routinely scan test
results as part of their daily software development work. The more formal practice of
code review, drills down into the changes that another developer may have made to the
system (a prerequisite of code review is that all tests are run). During this exercise, it
is easy to expose whether the original developers actually ran the tests before and after
making changes. When a reviewer finds that a developer failed to run the tests, it is
culturally expected that a public admonishment is in order. This is typically done in
a cordial way, and sometimes with a humorous tone. The intention is not to provoke
a confrontation, but to enforce a social norm. Not running tests in an open source
community is simply bad etiquette. It is frowned upon, the same way as if you were to
sneeze on a colleague’s sandwich.

Accountability is a follow to the transparency and peer-review practices in open source
communities. It comes down to the implicit rule that: if you broke it, you fix it, as a
way of redeeming your reputation, with the caveat that if someone else fixes it for you
first, then your reputation is damaged and the reputation of the person who fixed it is
enhanced.

The combination of social, cultural and technical practices build an environment in
which to be a good member of the community, tests are diligently maintained and run
frequently. As a consequence, the testing process is automated in such a way that they can
be run with minimal e↵ort.

The notion that a gradual system of sanctions must be implemented in order to enforce
compliance with community-established rules is one of the elements that Elionor Ostrom
(Nobel Laureate in Economics 2009) identified as a result of studying self-governing com-
munities who manage common resources in fields as diverse as fisheries, underground water
basins, forests, and irrigation systems. Her contention is that, a gradual system of sanctions
is essential for the successful self-governance of the Commons, in the absence of government
intervention or the use of property systems [32]. These are indeed the conditions under
which both open source communities and scientific communities operate on a regular basis.



Practicing Open Science 11

1.3.3 Unit Testing

Unit testing is the translation of the principle of Occam’s Razor to the daily practice of
software development. In particular, it is the quest for the minimal explanation for a given
behavior. The goal of unit testing is to empower developers to rapidly pinpoint the root
cause of problems in the software. In particular, it is important to not rely on complex tests
that involve the execution of thousands of sections of the software project. Otherwise, when
a complex test fails, it is extremely di�cult to figure out the root causes of the failure.

Unit testing takes the approach of verifying the correctness of the most basic components
of the system, and in the process, to build confidence in the behavior of each component to
the point where it is possible to rapidly locate which one of the many pieces of a software
package is causing a problem.

Unit testing is not just a software practice—it is a state of mind. The practice is moti-
vated by the same principles at the core of the quest for reproducibility verification in the
domain of scientific research: Acceptance of the fact that errors are ubiquitous. Therefore,
the only way to keep errors at bay is to continuously set traps for them at every corner
of every experiment. The presumption is that errors are indeed present, and therefore it is
important to put in place tests that check for the presence of errors at every point in the
process. It is the continuous failure to find errors, combined with the thoroughness of the
testing e↵orts, that builds confidence in the correctness of the overall process.

The daily practice of unit testing also leads to the principle of decomposition, by which
complex problems are partitioned into smaller units, and then those units are implemented
and tested independently. This practice leads to better designed software, which is clearly
organized and easy to maintain. Requiring unit testing as a cultural practice forces devel-
opers to stay away from building large and complex pieces of monolithic software, and to
instead modularize their designs and build more general, robust and reusable components.

Practitioners who employ unit testing write the test at the same time they write the
code, in a rapid iterative process. They start with an empty piece of code, and then write
a test for the first minimal feature. The tests will at first fail, given that the feature is not
yet implemented. The developer will then implement the feature, and bring it to the level
where it passes the test. Note that it is important to ensure that the test fails prior to
implementing the feature, thereby validating the test itself.

The successful practice of unit testing is closely tied to the application of agile method-
ologies in software development (see Section 1.6.2. The practice of unit testing requires that
one writes features in small incremental cycles; designing, implementing, testing the code,
and then iterating back to revisit the design.

This way of working is conceptually no di↵erent from what any experimental researcher
should do on a regular basis. For example, checking that the chemical reactions that they are
about to use are pure enough, verifying that the thermometer to be used in an experiment
is actually in a working state and correctly calibrated; and overall, ensuring that the exper-
iment is performed in a controlled environment with as few uncertainties and systematic
errors as possible.

1.3.4 Code Review

Code review is a fundamental practice of quality control in which developers review the
changes made by their peers, in the quest to spot potential errors, unnecessary features,
and ensure consistency with the overall design and style of a project. There are di↵erent
methodologies for implementing code reviews, but many elements remain common.

One form of code review, that is used in many software projects, unfolds by having
developers perform reviews in an ad-hoc fashion with heavy reliance on the version con-
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trol system. Review often take place after changes are merged with the main code base,
producing a stream of revision control commits. Developers subscribe to a mailing list that
sends an email with the contents of each commit made to the repository. Developers take
time to read through these commits, checking those relevant to them and either fixing any
problems they notice, or emailing reviews to the relevant development list (or via private
email channels). This form of code review is quite common in projects using centralized
version control systems for those developers who have commit rights.

Another form of review that has been employed for decades is the practice of emailing
patches to a development mailing list for review. Developers then respond with high level
reviews and/or line-by-line comments, and then iterate and modify the patch until it is
deemed ready for commit. This practice not only serves to foster higher code quality, but
it educates new developers in the expected code style, pitfalls and common practice of the
software project. Several variations of this basic procedure include attaching patches to
bug reports, performing review in the bug tracking system, or using dedicated code review
platforms where patches can be uploaded.

With DVCSes an alternative model has emerged. Distributed version control enables
a developer to develop in a new, private development branch, and to apply a sequence of
changes to that branch in the form of commits. Developers can create as many of these
branches as they wish. Given that every branch contains an independent history of the
project this mechanism enables developers to undertake modifications to the project without
interfering with the work of other developers, yet with the ability to share their work with
any of their peers. The developer can also push branches of their choosing to multiple remote
locations.

Software tools for code review, such as Gerrit, support remote repository locations where
branches are pushed with proposed changes. These changes can then be displayed in a web
application for the entire community to see, with an associated set of access control lists
specifying permissions for developers of the project. Developers are then able to work freely
on their code as they normally would, and when the code is ready to be merged into the
main code base, or reviewed by a wider audience, it is pushed to Gerrit. Once pushed,
Gerrit reviewers can be assigned to a topic, and the system will notify them. They can then
make general comments about a commit, or comment on particular lines with questions or
comments. These comments are seen by all users of the system, along with the author of
the topic. The author can then respond to the review, possibly uploading edited versions of
their commits, until the code is approved.

Once code is approved it is given a score indicating approval, this is also recorded
using a mechanism recently added to Git called notes and uploaded along with the changes
when they are merged. This creates a permanent record of who reviewed the changes along
with links back to the review. If bugs are later found it is possible to go back to the original
review if more detail is desired beyond what was recorded in the version control system. The
code review process can also be significantly enhanced using various automated build, test
and analysis techniques (such as those described later based in Section 1.6.2). Pre-testing
before committing to the main branch enables developers to assess proposed changes before
inclusion into the system proper.

The use of code review can seem like an unnecessary drain on resources, but it is usually
much cheaper to review and catch mistakes before they are merged than to track them down
afterwards. If good tests are written, and careful code review is performed, it is much easier
to bring new developers into a project and empower them to make significant changes with
less concern for inadvertently breaking the system. Often new developers fail to adhere to
established practices which if caught in an initial code review can be corrected very early on.
If such problems are missed, weeks or even months of development e↵ort may pass before
the errors are detected and fixed, with the added cost that a good deal of the development
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that happened in the meantime will also have to be corrected to conform with expected
standards.

1.4 Open Access

The public dissemination of scientific knowledge is essential to promoting social and tech-
nical progress. Making the results of scientific research readily available to other research
groups (and the public at large) stimulates fact-based discussion, facilitates verification
of reproducibility, and empowers others to build upon previous results. Public dissemina-
tion also fulfills an educational role, by enabling interested parties to become familiar with
research without requiring direct participation in scientific process. The assumption that
scientific literature is only intended for the scientific community is one that does not ac-
knowledge the responsibility that scientific research has to society at large, particularly in
the cases where research has been made possible using public funding. For example, patient
advocacy groups are requesting greater access to the results of medical research, they argue
persuasively that when research is paid for with public funds the results need to be available
to the public.

1.4.1 Open Access Journals

When many people think of Open Science and initiatives to promote it, Open Access Jour-
nals are typically first on the list. Open Access Journals, are defined as scholarly journals
available online ”without financial, legal, or technical barriers other than those insepara-
ble from gaining access to the internet itself” [13]. For many, Open Access simply means
publishing the results of scientific research in journal form, paying for publication either
by charging the author(s) a fee to publish, or asking the authors to absorb the cost by
self-archiving (or publishing) journal articles on their own web site. Open Access journals
are becoming quite popular, and there has been a flurry of new journals in the last few
years [5].

While an important first step, this simple view of Open Access as an open journal does
a disservice to the cause of Open Science. Publishing a journal article, no matter how easy
the access nor small the cost, does not guarantee reproducibility. Without associated data
(Open Data) and methods (Open Source), experiments described in an article typically
cannot be easily reproduced. Thus many Open Access journals also require submission of
data and source code (see the 1.6.3 later in this chapter for more details).

There are other interesting features that Open Access journals provide including version
control and review, as described in the following subsections. Another important aspect
that is often neglected is the choice of licensing, where some open access journals prevent
commercial use, or derivative work thereby blocking important reuse of published articles.

1.4.2 Versioning Documents

Similar to the arguments made in the previous section on software testing (Section 1.3.2),
errors are pervasive and to be expected throughout complex endeavors such as scientific
research. Accepting this reality, and controlling it, requires a continuous process aimed at
identifying and correcting errors. Consequently, the venues used for sharing scientific in-
formation and disseminating results must provide mechanisms for capturing community
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feedback, tracking changes, and providing access to current documents as well as the pre-
vious versions.

1.4.3 Open Reviews

The open-minded experimentation around Open Access journals o↵ers an opportunity to
reconsider many of the longstanding practices of scientific publishing, some of which have
become long time traditions and deserve to be revisited given the emergence of the Web.

One of the key aspects in which open access journals can improve communications in
the scientific community, is the modification of the typical publishing workflow. In tradi-
tional journals, publication is delayed until after articles have been vetted by reviewers. This
painstaking process can take years from the time of first submission to the time of publica-
tion. This delay greatly diminishes the value of the final publication, particularly in topics
that are related to the rapidly evolving domain of computational research. The traditional
review process also privatizes the conversation between the authors and reviewers, and by
doing so deprives the community of valuable discussions and from the benefit of observing
scientific discourse.

An alternative to the traditional closed-doors, anonymous peer-review process, is the
practice of open reviews. This is a practice inspired by the self-regulation and self-
certification processes that many online communities have adopted to curate their materials
and to perform quality control on their content [21].

Open reviews blur the distinction between readers and reviewers, since they both have
access to exactly the same amount of material. A reviewer is simply a reader who feels
compelled and motivated to provide feedback to the authors. This is in contrast to tra-
ditional reviews that are performed by a select group of individuals who are considered
to be experts in a domain. The notion of a peer in an open source community is anyone
who participates; distinctions are made based on contributions; and authority is defined by
meritocratic recognition.

Open reviews more directly honor the concept of Peer Review by empowering all our
peers, not only a narrow group of selected experts, to share their views on the content of
published materials. By not relying on the authority of experts, open reviews are better
aligned with the tenet of the scientific method: “to withstand the domination of authority
and to verify all statements by an appeal to facts determined by experiment.” [7].

1.5 Open Standards

Open Science is usually described as requiring three basic components: open data, open
access, and open source. Providing these elements is enough to reproduce an experiment
assuming that all information is provided. However many practitioners of Open Science also
advocate for a another element: Open Standards. If reproducibility is the goal, why is this
additional element important?

There are several answers to this question. Pragmatically, using standards, or helping to
create them, is an indication that a researcher is earnest about sharing and hence practicing
Open Science. It may be true that open data, access and source enable reproducibility,
they do not necessarily make it easy. Using standards generally results in more e�cient
science as information can be readily accessed and analyzed, making life easier for other
researchers. Open Standards also enable large-scale analysis in which multiple contributions
are combined to form new insights, or build new tools. Consider the following examples:
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standards simplify access to multiple data sets from di↵erent research groups which can be
combined to support analysis of larger information pools. Open document repositories can
be analyzed (using methods from text analysis) to identify emerging concepts and determine
relationships between lines of research; such information is important to science as well as
investors and technology managers. And finally, well designed and implemented code can
be reused and combined to build powerful and useful software.

There is another way in which Open Standards support the scientific mission. That is,
to ensure reproducibility it is important to run experiments under controlled conditions.
Therefore Open Standards can also be thought of as data, software systems and/or publica-
tions which are certified at a known state. This enables researchers to build on well-defined
foundations, thus a particular Open Standard specifies one of the components composing
the environment of an experimental process; for example standard data sets, software li-
braries and even computing platforms. Such control is necessary when comparing algorithms
or otherwise evaluating the performance of a computational system. For that matter, even
supporting laboratory software used to acquire data may produce di↵erent results under the
same conditions if not carefully controlled. Therefore, using Open Standards can remove
experimental uncertainty.

It is not possible to say exactly what standards to use. Di↵erent research fields, ontolo-
gies, data composition, and software systems require di↵erent standards to support research
and foster sharing. Moreover as knowledge expands, standards must evolve as well. There-
fore the use of standards is a delicate balance between the demands of innovation and the
requirements of sharing. However, it is important to distinguish between standards that are
open and those that are not.

Open Standards promote sharing and support the scientific mission. Many non-open
standards (which may claim to be open) permit reasonable and non-discriminatory patent
licensing fees which erect barriers to sharing and hence reproducibility. Generally Open
Standards are developed by collaborative teams, use permissive licensing free of licensing
entanglements, are thoroughly documented with reference implementations, and are meant
to be widely used [14]. An interesting twist to some forms of Open Standards licensing is
that predatory embrace-and-extend tactics may be prohibited to prevent organizations with
influential control over a market or technology area to game implementations and impose
restrictions on how others use the standards [33].

1.6 Open Science Platform

In the previous sections we described many of the motivations and basic concepts that
drive the practice of Open Science. In this section we provide concrete details of several key
components that constitute our daily practice and workflow.

1.6.1 Midas Platform

As discussed earlier in this chapter, data-centric computing is critical to the practice of Open
Science (Section 1.2.2). For many of our applications we use the Midas Platform [28, 27],
which is an integrated, open-source toolkit that enables the rapid creation of customized,
integrated applications with web-enabled data storage and management, advanced visual-
ization, and processing (see Figure 1.3). The Midas Platform is implemented as a modular
PHP framework with a variety of backend databases (in particular PostgreSQL, MySQL
and non-relational), that scales well to large data.
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The Midas Platform system can be installed and deployed without any customization, it
has been designed with this capability in mind. Given that data-centric computing depends
on diverse workflows and it is generally custom-integrated depending on the needs of a
project, there is no single solution that fits all possible applications. Therefore the Midas
platform supports additional extension mechanisms such as plug-ins and layouts to facilitate
customization.

FIGURE 1.3: Midas is an open source platform supporting data-centric computing (left).
It has been used in a variety of data-intensive applications, including publication databases
(which include data and images—center) to advanced volume rendering (right).

Some example customization e↵orts have led to the implementation of several di↵erent
types of document database (see Figure 1.3) including the Optical Society of America’s
Interactive Science Publishing system [15] and the Insight Journal (described later in Sec-
tion 1.6.3). The Publication Database is a specialization of the platform to support academic
publications, for example at the Surgical Planning Lab at Harvard Brigham & Women’s
Hospital, the NA-MIC project [19] uses the Publication Database to host content (papers,
data and images) from all contributors to the project [11]. The Publication Database is a
digital repository for scientific papers and a computational infrastructure intended to facil-
itate the outreach activities of scientists. It provides a streamlined way to upload, present
and share the research and publishing activity from an institution. This is an example of a
resource that can be used to implement Institutional Repositories and provide the mecha-
nisms for practicing Open Access.

1.6.2 CMake-Based Software Process

As described earlier, the e↵ective practice of Open Source depends on a rigorous software
process. Our process relies heavily on the CMake, CPack, CTest, and CDash family of
tools [30], which we have organically developed and refined over many years of developing
large-scale open source projects. In addition, we prefer the git DVCS; although we continue
to use SVN (and other VCS such as CVS when necessary). Basically the software process we
use is highly automated, closed-loop, and convergent (Figure 1.4)—this is vital to ensuring
the stability of the software. As shown in the figure, the software repository is constantly
monitored for additions, and when changes occur the software is tested and the results
displayed on a software-quality dashboard (Figure 1.5). Developers and users monitor the
dashboard and correct any errors as necessary, pushing code changes to the repository and
completing the cycle. The process runs continuously and hence ensures reproducibility and
informs users of the system of problems in a timely manner.

In the following subsection, we describe the software process in more detail. Along the
way we refer to several systems including the Visualization Toolkit (VTK) [20] and the
Insight Segmentation and Registration Toolkit (ITK) [9]. These are examples of large-scale
software systems that rely on formal code review, with active communities of thousands of
members, and decades of use.
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FIGURE 1.4: A closed-loop software process depends on the CMake family of tools. CMake
is used to build software across multiple platforms. CTest tests software on a particular
client platform; CDash receives such test results and displays them on a Web-based dash-
board visible to the community. Finally, CPack is used to package and distribute code and
executables for multiple platforms.

1.6.2.1 Overview

CMake is an open source tool for building complex software systems across multiple com-
puting platforms. As the platform consists of various combinations of operating system,
hardware, and system libraries, CMake manages this complexity in a relatively transparent
way. Using CMake requires specifying dependencies on third party packages, and select-
ing options to enable or disable certain features and behaviors of the software package in
question. By embedding this information in CMake scripts, it is possible to standardize the
process of configuration for many di↵erent platforms and to store such rules along with the
source code.

CMake itself does not perform builds, but instead focuses on the configuration process
that will produce standardized builds. In particular, CMake generates native project build
files according to the platform, for example: Unix Makefiles, XCode, Visual Studio, Ninja or
Eclipse. In this way the rules written in build system files are carried along with the project,
and are maintained and tracked in the same version control system that the project uses.

The use of CMake facilitates the sharing of software for scientific research by empowering
developers to configure software to run on a variety of platforms that range from embedded
systems and laptops through to supercomputers. Examples of packages that use CMake
include KDE, LAPACK, CLAPACK, ParaView, Trilinos, VTK, and ITK, which are a few
of the thousands of software projects using CMake [2].

CTest is a companion tool to CMake, it is also open source and is distributed as part
of the CMake package. The goal of CTest is to facilitate the process of running tests and
reporting their outcomes to centralized sites. The daily use of CTest is quite simple. It is
reduced to scripting the command line instructions that one would have used to run the
test manually. However, in the process of scripting it, the developer must face the questions
of:

• Where is the input data?

• Where to generate the output data?
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• What parameters are necessary to execute programs?

The fact that open source developers confront these questions on a daily basis forces
them to be quite organized and methodical. They must figure out how to refer to data
regardless of the particular computer system that is being used to run the test.

A key entry in the driving CMakeLists.txt file are the commands that describe tests
that will be run later with CTest. A typical entry looks like:

add_test( executable input1 input2 output parameter1 parameter2)

This includes the location and identification of the input data, and the fully defined set
of parameters required to run the test. It turns out that this also provides documentation
for the test itself, at a level of granularity that is rarely found in scientific publications.

CDash is a web-tool that collects and summarizes the results of the CTest testing pro-
cess across multiple platforms. The project dashboard (Figure 1.5) provides a rich set of
hyperlinks that supports rapid navigation through the output of the build process, and
even into the source code if necessary. Hence compile errors, or test failures, are easy to find
and analyze. There are also many filtering options that make it possible to, for example,
determine exactly when a test started failing, which in combination with the information
provided by the revision control system to track changes in the code, is invaluable when
determining what change caused a failure displayed on on the dashboard.

FIGURE 1.5: A portion of a CDash dashboard (from the ParaView open-source project).
The dashboard color codes errors and warnings, and is heavily hyperlinked to provide access
into the input and output of the build process.

Finally, CPack is used to automatically package and distribute software releases across
multiple operating systems. This greatly simplifies the release process and enables frequent,
rapid releases of software. This supports the Open Source tenet of “Release Early, Release
Often” by which software is often released on a daily basis.

1.6.2.2 Unit Testing

Unit testing is a software engineering practice that focuses on creating tests for the smallest
possible functional units of the software being developed. This makes it possible to locate
errors with a high granularity when they are introduced into the software.

In the particular case of ITK and VTK, which are object-oriented C++ libraries, the
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practice of unit testing is tightly coupled with the design and implementation of classes and
their methods. In ITK we start by writing an empty C++ class with something similar to
the following pseudo-code:

class itkNewImageFilter

{

public:

};

and a test for it in the simple form

int main(int argc, char *argv[])

{

itkNewImageFilter filter;

return 0;

}

Then we would add a piece to the test:

int main(int argc, char *argv[])

{

itkImage inputImage;

itkNewImageFilter filter;

filter->SetInput( inputImage );

return 0;

}

and then proceed to implement such method in the class:

class itkNewImageFilter

{

public:

void SetInput(itkImage image) { this->SetInternalImage = image; }

};

This may appear to be an agonizingly slow way to write software, but in practice it
is the fastest way to write software that does not have to be rewritten. It is a common
mistake for developers to go in long stretches of writing hundreds or even thousands of lines
of code, and then as an afterthought, attempt to write tests for them. The consequence
is that by the time they start writing tests, they have already introduced many bugs and
inconsistencies in their code. Such defects now have to be found and fixed through the much
more expensive and laborious process of detective work. The average density of errors in
the software industry is one bug for every thousand lines of code1 [4].

This is with the caveat that during the debugging process new bugs will possibly be
introduced. It is known that about fifty percent of all bugs are introduced while the developer
is trying to fix other bugs [26]. These second generation bugs are the beginning of a nearly
endless task, because again, attempts to fix either one of those bugs will, half of the time,
introduce third generation bugs, and so on. The mathematically inclined readers would
already be estimating that one original bug becomes

P
1 + 1

2 + 1
4 + 1

8 . . . bugs.
The methodical process described is at the same level of rigor that one would expect

1The average bug density of Open Source projects is 0.45 defects per thousand lines of code [4]
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from any well-trained experimental researcher. Therefore, there should not be any objections
to the cultural adoption of these practices when developing software for research applica-
tions. To put it bluntly: if a research software developer does not have the discipline to
write unit tests, then they are also likely to lack the discipline to be a well-qualified ex-
perimental researcher. Once again, this is not a technical challenge but rather a cultural
challenge. To incentivize reproducibility in scientific research, it is therefore necessary to
work simultaneously on multiple fronts. In particular, providing technical tools, while at
the same time ensuring specific behaviors are celebrated or condemned through the culture
of a community.

1.6.2.3 Examples of Code Review

The ITK and VTK projects use Gerrit (which depends on the DVCS git) along with a
simple evaluation script to quickly check a proposed change for basic correctness. Meaning,
the script enforces certain guidelines such as style and naming conventions including inap-
propriate white space, appropriate line length and termination delimiters, and hard-coded
path names. In addition to these checks, the events generated by Gerrit are monitored by
another system which submits a build request to an automated build farm if a developer
is in the core group of developers. This initial build request may be a subset of the entire
test suite in order to enable a quick turn around. This build test utilizes a system called
CDash@Home to request a build of the proposed change on Linux, Windows and Mac OS
X [17, 3] systems. Hence the automated check-in evaluation process not only verifies the
project successfully builds on these common computing platforms, but also runs some quick
tests and submits the results (Figure 1.6).

FIGURE 1.6: Graphical overview of the software process that incorporates Gerrit for code
review, CDash@Home for pre-testing and CDash for nightly testing. Note the di↵erence
between those with write access and those without is reduced.

As a result of this initial smoke test, reviewers can view the build on the set of core
supported platforms and compilers to check for any serious regressions, freeing them to
concentrate on reviewing the substance of the change. Once merged into the main develop-
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ment branch a larger number of machines download the new version of the code and proceed
to perform more comprehensive tests. This practice of reviewing and testing of patches be-
fore they are even merged into the main code base enables us to maintain much higher
stability on the main development branch than was previously possible, and also better en-
gages the community in the maintenance e↵ort. The result is to significantly blur the once
sharp line between committer (a developer with commit rights) and budding contributor
(someone who is just beginning to learn and contribute to a project).

1.6.3 The Insight Journal

The Insight Journal is an open technical journal built on the principles of Open Access, Open
Data, and Open Source [18]. This on-line journal focuses on the domain of Medical Image
Computing, and enforces the verification of reproducibility for all contributed articles. The
Insight Journal went online in 2005, thanks to generous funding from the National Library
of Medicine at the National Institutes of Health. The Journal began as an e↵ort to facilitate
the sharing of image analysis algorithms in support of the ITK community. Today, there
are several derivatives of the Insight Journal, such as the VTK Journal, the Midas Journal,
and the OSEHRA Technical Journal, in use by other communities.

The creation of the Insight Journal was a response of the ITK developer community that
recognized a large number of papers published in the medical imaging field were not repro-
ducible. While this is unfortunately common across other disciplines too, it was particularly
frustrating to the development team of the ITK open source software library. Initially, the
team naively believed that published papers would have an associated open implementation
necessary to produce useful results. Unfortunately, the culture of openness and verification
in the open source world collided with the failure of reproducibility that too often occurs in
scientific research. The ITK development team found that for many algorithms, their publi-
cation in journals were too often just general guidelines to the overall flow of the algorithm,
and that the authors failed to provide a reproducible implementation covering all facets of
the technique necessary to implement a working implementation.

From this experience, the community decided to create a journal of the type that would
have been useful to the initial development of ITK. Such an ideal journal would require
article submissions that included functioning source code, as well as tests and examples
demonstrating the use of the code. These tests and examples further required the inclusion
of all input data; and to support comparisons, the inclusion of the output data generated by
running the contributed code. Finally, for each run of a test or an example, the article would
include a full specification of the parameters necessary for it to run. The whole submission
package, including the article, source code, tests and data, would be available in its entirely
to reviewers and readers of the journal under permissive licenses enabling them to download,
use, modify and redistribute the materials from the journal without having to involve the
legal departments of their respective institutions. Based on these requirements, the Insight
Journal was created.

The Insight Journal, and other similar open access journals, fill a gap in the practice of
scientific research by providing a venue where practitioners can share working versions of
research code in a usable way. Despite the fact that the Journal does not fit the traditional
academic publishing model, that is mostly oriented to support career evaluations, it has
become a key element of the ITK ecosystem. Running continuously for seven years, it has
(at the time of this writing):

• 3,904 registered subscribers

• 540 published articles



22 Dummy title

• 821 reviews

The usefulness of the Journal, as a vehicle for sharing contributions with peers, has been
found to be extraordinary, although it currently does little to help academics score points
essential for progression and tenure. However, since it enforces the verification of repro-
ducibility, it is a real scientific journal that successfully facilitates communication across
the research community, accelerating scientific progress by minimizing publication delays,
and providing an environment necessary for subscribers to use it in their own research. It
is quite common for rapid dialogues to emerge between researchers, and for members of
the community to express appreciation at finding leading-edge computational tools, with
associated data and documentation, which address their current challenges.

One of the major features of the Journal is that it takes advantage of the near-zero
costs to store and transmit data in today’s networked world. In particular, it has eliminated
most of the publishing restrictions that many traditional journals have inherited from the
age of the printing press, including: page limits, restrictions on number and type of figures,
problems updating revisions, use of color, limitations on supplemental materials, and long
turn-around cycles.

1.6.3.1 Practical Details

The Journal follows well established practices of open source communities which are rooted
in continuous openness and transparency, and in particular heeds the mantra Release Early,
Release Often. As a result, papers are published within 24 hours of submission, allowing time
only to remove spam submissions, followed by an open review process that is publicly visible
to the entire community. This public process elevates the civility of the review dialogue while
greatly accelerating access to the material contributed by the authors.

When we began designing the Insight Journal in 2005, one of the first concerns we
had can be described this way: We are inviting people on the Internet to send us arbitrary
source code that we are going to compile and run on our machines. It did not take long
before we realized that an encapsulated environment was required to run these source code
contributions in a secure way. The solution was implemented using the Xen virtualization
platform [22], along with a process to launch a virtual machine on demand whenever an
article was received by the Journal. Thus a Web-based front-end triggers a request to launch
a pre-configured virtual machine with the installed software tools and platforms required to
run the code accompanying the submission. For example, the pre-configured VM has several
recent versions of ITK, VTK, and CMake installed. A mechanism is provided to authors
to specify the versions of ITK, VTK and CMake required to build their submitted code.
Automated scripts then take the source code from the submitted article package, copy it
into the virtual machine, expand it, configure it, build it and run the tests submitted by the
authors. The results of the submitted tests are then posted as an initial, automatic review
to the Journal. In this way, readers are primed with the initial information as to whether the
Journal infrastructure was able to build and replicate the results that the original authors
described in the submission.

Given that authors can also submit revisions to their articles, along with modifications
to the code and data (without having to go through editorial hurdles), the entire process
unfolds in a rapid and agile manner. As soon as an article is submitted, notification is sent
to all subscribers (about 3,900 people), and to the ITK community mailing list (over 2,300
people). The article is then made available for download, including the PDF document,
all source code, test code, examples, and input data required to verify the content of the
submission, as well as the output data resulting from executing the software on the input
data. The goal is to facilitate reproducibility in a very pragmatic way, empowering any
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reader of the Insight Journal with the ability to rerun the experiments described in the
article, with minimal e↵ort, and verify or build upon the research described.

Any subscriber to the Journal is able to contribute reviews to the article. The reviews
are non-anonymous and are posted publicly. This spurs an open conversation in which
the reviewer and the author(s) exchange views and ideas, point out errors, and suggest
areas that could be improved. The entire community benefits from being exposed to the
conversation captured within the Journal web site. By encouraging all members of the
scientific community to participate, we cultivate an engaged and participatory community
where we all share the responsibility and the opportunities for moving the science forward.

1.6.3.2 Community Involvement

From its inception, the Insight Journal encouraged authors to submit revisions of their
papers, with corrections and ongoing improvements. Being free of the limitations of pub-
lishing on physical paper, we had the ability to correct any errors by simply allowing and
encouraging authors to submit subsequent modified versions of their PDF documents and/or
their source code, data and configuration. This created a working environment suitable for
spurring collaboration across the community.

The process was quite successful, and as the Journal became more popular, readers
and authors started to have conversations that led to improvements in the source code
contributions. As this happened, it rapidly became evident that the process of uploading
modified versions of the articles and source code, even though it was far more flexible than
the traditional paper-based publishing venues, was too cumbersome when compared to other
well-known agile open source processes. More specifically, open source projects routinely
make modifications to their source code using version control systems (see Section 1.3.1. To
honor this tradition, a second generation of the Insight Journal was put in place2, where
every code contribution submitted to the Journal was automatically inserted into a back-end
Git repository3.

The Insight Journal has dramatically collapsed the time from submission to publication,
which has been enthusiastically embraced by the community. What used to be an arduous
publication cycle of two to five years, now takes minutes with full disclosure. Not only is the
code available almost immediately, but it is stored in an infrastructure that permits further
development, improvement and maintenance of the data, publication, and code.

1.6.3.3 Data Concerns

As the Insight Journal was adopted by the ITK community, it became clear that sharing
data was more challenging than first thought, and required subsequent modifications to the
sharing process. Initially we made it clear that licensing restrictions were to be minimal. We
prefer that data is licensed using CC0 and similar non-reciprocal licensing models. One of
our goals is to open up whole new fields of data reuse and meta-analyses. For example, we
envision large analyses traversing hundreds or thousands of papers (and their data) to spot
wider trends that the original researchers may have overlooked. This requires published work
that uses open access licenses and enables data mining with semantic meaning encoded, and
provides open APIs using open standards such as REST and XML/JSON to encode the
results.

In addition there were challenges managing data. Some of the issues we addressed in-
clude:

• large data set size,

2
http://www.kitware.com/blog/home/post/167

3
https://github.com/midas-journal
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• collections with a large number of data sets, and

• limitations on access.

To address those issues, the ITK community created a data access solution based on the
Midas Platform (see Section 1.6.1). Some of the more important features include:

• Data revision control, based on content,

• An API for downloading data on demand,

• A mechanism for uniquely identifying data sets to be downloaded, and

• A mechanism for sharing data stored on local disks (for performance).

This collection of features enabled complex computational research scenarios such as the
following.

• A research group gathers a data collection and uploads it to a database.

• The upload process generates unique identifiers for every data set, based on its content.

• A second research group decides to use this collection as input for a data analysis task.

• CMake scripts are written, which refer to the specific data sets to be used as input, and
assign them to the specific executables of a computational experiment.

• An experiment is run by this second research group, which automatically downloads the
data shared by the first research group and uses it as input to its computation.

• Finally, a third research group takes the source code and configuration provided by the
second research group, and replicates their experiment by building executables from the
source code and downloading the original data shared by the first group.

With this infrastructure, it is possible to take a set of algorithms and run them rapidly on
multiple data collections, a task that could have conceivably taken years of e↵ort in the
absence of such a computational platform employing the principles of open source, open
access, open data, and open standards.

1.6.4 Scalable Computing

Modern science relies heavily on computation. Analytical processes can be used to tease
relationships from data. Often theories are simulated on a computer and compared with ex-
perimental results. Even the process of acquiring measurements relies heavily on computers:
consider the image and signal processing that goes into observing stellar phenomena.

In our practice of Open Science, we do not rely on any single approach to perform
computation. Typically we employ open source systems like Midas, VTK, and ITK to build
custom applications. However, there are certain systems that we use when data becomes
large and complex, or we need extra computing resources. We describe these systems in the
following section.
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1.6.4.1 High Performance Computing

Throughout the world researchers are increasingly turning to high-performance computing
(HPC) to conduct their work. More often than not this means making use of dedicated HPC
resources which often have unusual computing environments. One of the major challenges
is developing cross-platform software that can run on these often specialized platforms.
For example, some supercomputers do not provide graphics hardware, which means that
applications that depend on OpenGL have to use software rendering. Further, the individual
nodes of an HPC resource often run a limited version of the operating system (typically
Linux), and as a result significant work is necessary to port code designed for o↵-the-shelf
desktop operating systems to work on such resources. These and other challenges are only
going to become more pronounced as HPC moves towards exascale computing [31], in an
environment where computational FLOPS are cheap (e.g., millions of computing cores) and
I/O and data transfer are expensive (in terms of performance and energy costs).

The inherent complexity and challenges of HPC means that open source software is
essential to advancing the state-of-the-art. There are several reasons for this:

• Open source software can be more easily adapted to HPC platforms. There are minimal
licensing issues and software engineers have full access to the code, which they can
modify to fit to the platform.

• Problems can be more easily discovered and corrected since code is not hidden. De-
bugging tends to be much easier. This is particularly important as advanced parallel-
computing algorithms use complex distributed and shared-memory techniques to max-
imize the performance of HPC resources.

• Computing time on these machines is typically limited and expensive, therefore carefully
controlled, which makes verification of the correct operation of the code more important
than ever.

• Commercial code is often licensed on a per CPU-core basis (or similar). With an explo-
sion in the number of computing cores, the pricing model of commercial software causes
dramatic increases in cost. In contrast, open source software does not carry this burden.

In the following we describe some of the HPC software that we use in our practice of
Open Science. All of the open source systems listed below use permissive, non-reciprocal
BSD licenses.

VTK is a C++ toolkit (wrapped in Python, Java, and Tcl languages) developed by a
large community of international contributors. It originated as companion software to a book
on 3D visualization [20]. Now nearly 20 years old (development started in 1993) with millions
of lines of code, it has served as a foundational computing tool for 3D graphics, scientific
and data visualization, computational geometry, human-computer interaction, informatics,
image and volume analysis, engineering simulation, and more. The system is inherently
portable, and has been run on systems ranging from the Raspberry Pi to some of the
largest supercomputers (at the scale of hundreds of thousands of processors).

ParaView is an open source, large-scale parallel visualization application leveraging
VTK to provide visual data analysis for many data sources, including computational fluid
dynamics, medical computing, engineering simulation, combustion, point clouds (from LI-
DAR or other imaging sources), climate simulation, video processing, and so on [23]. Par-
aView employs an advanced client-server computing architecture that enables light weight
clients to connect with computing and/or graphics servers residing on an HPC platform.
Typically run using distributed, parallel computing model, it can also leverage large shared-
memory parallel systems.
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FIGURE 1.7: ParaViewWeb enables advanced, large data visualization capabilities through
web clients, which in turn coordinate with a ParaView server which may reside on an HPC
system. It also supports collaboration across multiple, simultaneous viewers.

ParaViewWeb is a client application providing a collaborative, remote web interface
for 3D visualization using the ParaView server [16]. It also provides a JavaScript API
for ParaView scripting, features and capabilities. ParaViewWeb has been designed so that
advanced visualization tools can be easily integrated into a web page, and multiple viewers
can simultaneously view, interact with, and collaborate around data (Figure 1.7).

Catalyst is a data analysis and visualization library designed to be tightly coupled
with simulation codes [1]. It was created in response to the unfortunate reality that HPC
systems produce too much data to be fully captured (due to IO and disk limitations), thus
co-processing systems like Catalyst are embedded into the computing process to analyze
and extract only essential data during computation. This also makes it possible to monitor
long running analyses, and control them during execution.

MoleQueue is an auxiliary application used to launch, monitor and control HPC re-
sources. Managing HPC systems is still a challenging task and MoleQueue makes it much
easier by abstracting many of the di↵erences between remote resources [10], and providing
a simple API for client applications on the local desktop machine.

1.6.4.2 Science as a Service

In recent years cloud computing has become an increasingly important part of scientific
computing. Compared with HPC, cloud computing systems are quite similar in that the
resources are time limited, and they often run a lean operating system. Thus to create appro-
priate computational resources distributed memory approaches must generally be employed.
Indeed one popular open source package for scientific computing on the Amazon EC2 of-
fering is Star Cluster, which simplifies the process of configuring and deploying a Sun Grid
Engine cluster on the Amazon platform that closely resembles a typical batch-scheduled
HPC platform.

Once deployed, similar approaches to HPC can be used to schedule jobs, and commu-
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nicate between nodes. The communication between nodes is typically slower than purpose
built supercomputers, but time can be more easily purchased, and in some cases the elas-
ticity of the resource can be an enormous asset. Going forward it is clear that the cloud will
be a major part of the market for reproducible science, o↵ering some unique opportunities.

Cloud providers, such as Amazon and Rackspace, make it relatively easy to customize
the operating system running on one cloud instance and then deploy clones of it on one or
more instances. These images can be shared publicly with others, enabling developers to
produce pristine reference images of a full operating system where correct operation of the
code has been tested. This means that others are able to verify results by purchasing time on
the platform, deploying an instance with the reference image and duplicating the reported
results. When coupled with open source codes and the Linux operating system there is no
restriction on distribution and even non-experts have the opportunity to use complex codes
where compilation, configuration and deployment can take significant amounts of time, and
have now been made available to them ready to use.

The current widespread availability of cloud computing resources provides the opportu-
nity to implement a reproducibility verification computational platform in a highly scalable
way, without having to own and maintain the resources. By taking advantage of the network
e↵ects and the economies of scale, a full-fledged scientific computational platform is avail-
able at a cost that is very close the marginal cost of using the raw computational resources.
A new scale of scientific research is made possible by these platforms, that will empower
the computational research community to ask ambitious questions without having to add
to their budget the full cost of large-scale resources. Large computational experiments are
no longer the exclusive privilege of institutions that can a↵ord the acquisition, installation,
and maintenance of large computational resources such as clusters and supercomputers.
Instead, it is now available to anyone, for the cost of the resources that are actually used
during a given experiment.

As a result, another interesting development enabled by Open Science on the cloud is
the development of a commercial marketplace for science [24]. The computational platform
can be o↵ered as a service to verify the reproducibility of reported results provided by a
neutral third party. Such an approach is a complement to the [6], where a market-based
system has been put in place to enable interested parties to contract services to replicate
experiments from a set of trusted service providers. By delegating the experimental verifica-
tion to organizations that have the suitable infrastructure, and that have a good reputation
of being neutral and objective, opens up new possibilities in the practice of verification of
experimental results, at a lower cost, thanks to a better allocation of resources and an open
marketplace.

A typical scenario is for a pharmaceutical company to contract a reproducibility verifica-
tion service provider to reproduce a set of bioinformatics experiments that they may have
come across in a scientific publication. The original authors would have made available, as
part of their publication, all the materials required to replicate their computational experi-
ments, including source code, data and configuration parameters. The verification provider,
who has a pre-configured and scalable computational platform, can then proceed to rerun
those experiments and report back to its customer on the outcomes of these experiments.
In terms of computational costs, the customer would only have to cover the cost of cloud
resource usage incurred during the execution of the experiments, with no need to own and
maintain the full computational platform.

At Kitware we are currently experimenting with these and a variety of other Open
Science practices in the cloud. We envision providing our advanced, open source software
tools to host data, support data-centric computing, and facilitate the sharing of scientific
knowledge.
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1.7 Challenges

The advent of the scientific method in the 17th century has enriched society in profound
ways, from improving health to providing a multitude of goods and services to o↵ering
fundamental insights into the workings of the physical universe. Open Science ensures that
this legacy of innovation and understanding continues to address the challenges facing us
in the 21st century and beyond. However, supporting Open Science comes at a significant
cost, ensuring reproducibility requires resources for sharing and to nurture communities.
Additionally, guaranteeing reproducibility in an ever-changing computing environment is
di�cult. And finally, with human reputation, recognition and achievement on the line,
we need to rethink the ways that scientists are evaluated and rewarded. These topics are
addressed in the following paragraphs.

As described earlier, the size of data produced in science is growing at an enormous
rate. Billions of dollars are spent to acquire or compute it, hence it represents a scarce
resource which cannot be easily replaced. Once it is collected, large data is expensive to
store, provide access to, move, and analyze. In the past, data was often tabulated in paper
publications and stored in a library, now sophisticated data centers (including in some cases
high-performance computing support to process it) are required. This poses a problem in
that very few institutions have the computing resources, or the wherewithal, to support such
large-scale, data-intensive science. Fortunately computing solutions are emerging (such as
Amazon’s EC2, EBS, and Glacier) but it remains to be seen whether commercial vendors
are committed in the long-term to supporting scientific data. Supporting aging data is
problematic as the justification for maintaining it wanes with the perception of declining
value.

Another insidious problem is the shifting sands of the computing environment. Whether
it is old software written in a programming language that has evolved or become obsolete,
or the computing platform (on which the software executes) which includes the operat-
ing system, software libraries and hardware; computing environments change rapidly and
play a major role in the reproducibility challenge. It is conceivable that software and data
written in a certain era may no longer execute on future platforms. While open standards
and commitment to backward compatibility do much to address this problem, computing
environments have become so complex that it is hard to imagine indefinitely maintaining
a reproducible configuration. Proposed solutions go so far as to propose virtual machines
which are stored along with scientific software; however there is no guarantee that future
platforms will support existing VMs, and future computing architectures may be drastically
di↵erent including high degrees of parallelism and based on distributed Web resources.

Despite these technical obstacles, the biggest challenge may be addressing the entrenched
scientific institution, social norms and the way its various members and organizations inter-
operate. As described previously, the scientific publishing community is under siege due
to their out-of-touch business model in the era of the Internet. Yet bigger issues remain
including the tendency of some scientist’s to be overly protective of their work (mostly due
to the way they are evaluated for career rewards), which interferes with collaboration and
community formation. This, despite the fact that the scale of scientific problems demands
broader, collaborative expertise, and with strong evidence suggesting that sharing can be
beneficial. Consider the open arXiv preprint server, and open access PLoS journals which are
examples of influential and successful scientific communities; and Steve Lawrence’s recent
article in Nature which shows strong correlation between open access and the number of
citations [29].

The scientific method has evolved over centuries of practice and has the enviable feature
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that it is self-correcting, with committed and passionate practitioners. Thus despite these
challenges, we are optimistic about the future of Open Science and the likelihood that its
practice will be more open and collaborative than ever before. This optimism must also be
tempered with the realization that changes of this magnitude can be generational, with new
researchers quickly seeing the value of sharing if appropriate credit can be obtained when
seeking career progression.
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