Bayes Factor Design Analysis: Planning for compelling evidence

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: A sizeable literature exists on the use of frequentist power analysis in the null-hypothesis significance testing (NHST) paradigm to facilitate the design of informative experiments. In contrast, there is almost no literature that discusses the design of experiments when Bayes factors (BFs) are used as a measure of evidence. Here we explore Bayes Factor Design Analysis (BFDA) as a useful tool to design studies for maximum efficiency and informativeness. We elaborate on three possible BF designs, (a) a fixed-n design, (b) an open-ended Sequential Bayes Factor (SBF) design, where researchers can test after each participant and can stop data collection whenever there is strong evidence for either H1 or H0, and (c) a modified SBF design that defines a maximal sample size where data collection is stopped regardless of the current state of evidence. We demonstrate how the properties of each design (i.e., expected strength of evi- dence, expected sample size, expected probability of misleading evidence, expected probability of weak evidence) can be evaluated using Monte Carlo simulations and equip researchers with the necessary information to compute their own Bayesian design analyses.

Has supplemental materials for Bayes Factor Design Analysis: Planning for compelling evidence on OSF Preprints

Files

Loading files...

Citation

Components

  • Bayes factor design analysis


    Recent Activity

    Loading logs...

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.