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Abstract

Emotions are fundamentally integral to shaping the order and disorders in human
lives. Yet, a principled, quantitative framework explaining emotional dynamics
and their alteration in mental disorders has been elusive. This challenge arises
from the complex and multidimensional nature of emotions but also, at least
partially, due to a shortage of large longitudinal measurements and the use of
generative mathematical models, leading to a spectrum of partially contrasting
theories. Our study seeks to overcome these challenges by employing dynamic sys-
tems theory, the mathematical study of complex systems. We apply this approach
to a dataset containing over 400,000 texts from more than 1,600 individuals, with
half reporting a diagnosis of Major Depressive Disorder (MDD), collected from
X (previously Twitter). We examined the emotional experiences and significant
life events described in these texts across one month, which we extracted using
state-of-the-art natural language processing. The key result of our research is
the discovery of emotion-specific dynamics — the unique ways in which different
emotions maintain their influence over time. In individuals diagnosed with MDD,
we observed a ’blunting’ of the inter-emotional dynamics; this is not merely a
dulling of emotions, but rather a vanishing of the boundaries between them.
Our findings thus challenge and unify traditional views in this area: if viewed in
isolation, this blending of emotions could be misinterpreted as augmented neg-
ative, blunted positive emotions, and as Emotional Context Insensitivity (ECI).
Our study therefore offers a principled mathematical understanding of emotion
dynamics and their alterations within mental disorders, potentially leading to
more effective therapeutic interventions.

Keywords: Emotion dynamics, Depression, Natural language processing, Dynamic
systems theory

1 Introduction

Emotions are central to our human experience and play a crucial role in our mental
well-being. Growing evidence shows that emotions are dynamic, constantly evolving in
response to our interactions with the environment [1]. Traditionally though, emotions
have been studied as either stable traits or as transient states that quite statically
activate or deactivate in response to particular events. Yet, recent research is shift-
ing towards a more dynamic understanding of emotions [2]. This new focus extends
beyond the simplistic categorization of emotions as positive or negative. It adopts a
dimensional approach that aligns more closely with the neural foundations of emo-
tional processes [3], highlighting the significance of comprehending the development,
evolution, and interaction of emotions.

Key concepts in the study of emotion as dynamic constructs include principles
of contingency, inertia, and regulation [4, 5]. These principles highlight the multi-
dimensional nature of emotions, their interactions over time (contingency), their
tendency to persist despite changing circumstances (inertia), and their susceptibility
to internal and external influences (regulation). From a computational perspective, the



literature introduces multiple measures to estimate the dynamic properties of emo-
tions, yet these measures often rely on simple statistical heuristics, primarily based on
mean, variance, and correlations (see [2, 6] for a list and mathematical definitions).
While these metrics provide valuable insights into the probabilistic characteristics of
emotions, they fall short of capturing their temporal dynamics e.g., in the context of
pathological conditions such as Major Depressive Disorder (MDD) [6]. For instance,
there is an active ongoing debate on how shifts in emotional dynamics manifest in
mental disorders, with three partially contrasting theories being proposed: positive
attenuation (a weakened response to positive stimuli), negative potentiation (enhanced
response to negative stimuli), and Emotional Context Insensitivity (ECI; a diminished
response to both positive and negative emotions) [7-9].

In this paper, we aim to tackle these complexities by building a mathematical model
of how emotions evolve, interact, and change in response to life events [10]. At the
core of our approach is the Dynamic Systems Theory (DST), an analytical framework
for examining complex systems over time [11] which has recently proven invaluable
to understanding human behavior, offering insights into phenomena such as the pro-
gression of depressive symptoms and strongly accurate prediction of the response to
psychological interventions[12-14]. In DST, the evolution of emotions can be mathe-
matically quantified through differential or time-recursive equations. Typically, these
equations are linear, offering the advantage of being both highly understandable and
amenable to efficient, data-driven estimation techniques, facilitating a direct linkage
to the underlying mechanisms of emotion dynamics [15]. Concrete, we utilize three key
parameters derived from DST (detailed in the Methods section). The first parameter,
emotional reactivity, measures the expected variation in the emotional landscape trig-
gered by a change in a specific emotion. This parameter reflects the interconnectedness
of emotional experiences. It extends traditional concepts of emotional reactivity into
a more nuanced, mathematically grounded framework. Second, we calculate the time
constant for each emotional variable, which mathematically denotes the rate at which
an emotion evolves over time. Our method independently assesses the rate of change
for each emotion, offering a more precise understanding of emotional evolution free
from the biases inherent in other approaches [16-18]. Third, we introduce emotion
controllability, a novel metric to evaluate the influence of external life events on emo-
tional dynamics. Unlike existing literature, which often relies on pre-post measures,
our method quantitatively assesses how life events affect the trajectory of emotional
changes (see Figure 1).

Towards this end, we analyze these three parameters to study an extensive dataset
comprising over 400,000 texts from more than 1,600 individuals, half of them self-
reporting MDD diagnosis, collected over an average duration of one month [19]. We
utilize EmoRoBERTa [20], a state-of-the-art transformer-based model, to estimate the
emotions expressed in these texts. This process estimates 28 distinct emotions, pro-
viding a comprehensive emotional profile for each individual across the one-month
period, with updates roughly nine times daily (see Figure 1 and Methods for details).
Further, we apply a separate machine learning model to identify and categorize life
events (more specifically, “happy moments”) mentioned in the texts [21, 22]. These
events are classified as positive life events, such as expressions of joy, contentment,



or satisfaction found in natural language. Examples include statements like 71 went
for a run in the neighborhood. I enjoyed the perfect weather” and ”We booked our
beach vacation for May of this year.” In light of existing research on the patterns
of emotional and environmental disengagement associated with depression, our study
followed three hypotheses: 1) We expect to find heightened reactivity to negative emo-
tions, reflecting an intensified response to adverse emotional stimuli among individuals
with depression. 2) We anticipate a noticeable reduction in the time constants of emo-
tions for those diagnosed with depression. This suggests a slower pace of emotional
change, particularly for negatively charged emotions, indicating a prolonged emotional
response. 3) We hypothesize that positive life events will have a diminished effect on
individuals with depression, suggesting a decreased ability to experience uplifts from
happy occurrences.
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Fig. 1: Overview of Research Methodology. This study develops a mathemati-
cal model to analyze emotional dynamics, the interaction between different emotions,
and how these are influenced by life events and mental health, specifically focusing on
Major Depressive Disorder (MDD). Utilizing over 400,000 text entries from over 1,600
participants—half reporting a diagnosis of MDD — this work leverages EmoRoBERTa
for emotion assessment and a customized machine learning model for categorizing
significant life events. Employing Dynamic Systems Theory and, in particular, con-
trol theory, we build generative models of multidimensional emotion evolution. This
approach enables us to accurately determine the canonical response of the emotion
trajectories to both external factors, such as life events, and internal shifts among dif-
ferent emotions.

2 Results

To model the dynamics of emotions, we began by analyzing the emotional expressions
contained within the texts of all 1,690 participants. This was accomplished using a
transformer-based EmoRoBERTa model [20] (see Methods for details), which is capa-
ble of identifying a spectrum of 28 distinct emotions (see Figure 2). The model outputs
an estimation of the probability for each identified emotion within the texts at various
time points. We systematically extracted this data for each participant over a 30-day
period, averaging nine emotional assessments per day. In the next step, we examined



the emotion dynamics in two measures: First, we determined the emotional time con-
stant for each emotion, as illustrated in Figure 2. The time constant is a measure
that captures the average standardized time it takes for an emotion to either inten-
sify or diminish following a life event or its conclusion and is thus closely related to
the concept of emotional inertia [17]. We found that “love” had the highest time con-
stant, indicating its long-lasting impact over time. Conversely, “embarrassment” had
the lowest time constant, suggesting it is a rapidly diminishing emotional response. A
comparison with depressed subjects revealed a significant effect: The absolute value
of the time constants for all but four emotions in the depressed group were lower (p-
value < 0.001; binomial test). On average, we observed a 30% reduction in the size
of time constants for emotions. This indicates that in individuals with depression, the
duration for emotional responses to fluctuate—either to escalate or to recede—is sig-
nificantly different from those without depression, suggesting a ’blunted’ emotional
landscape, where emotions can either fade away faster or linger beyond the levels
expected in the healthy population, consistent with both accounts of emotional blunt-
ing and enhanced negative emotions. Specifically, it appears that various emotions in
depressed individuals tend to converge towards a generic, unified duration, losing their
distinct temporal patterns. Notably, this blunting effect is most evident in emotions
like “nervousness” and “embarrassment,” which are key factors considered in depres-
sion assessments such as the Beck Depression Inventory (BDI) [23]. Other emotions
like “sadness,” “remorse,” “relief,” “love,” “fear,” and “disgust,” integral to depression
diagnostic criteria, also showed significant blunting. These findings suggest a charac-
teristic alteration in the temporal dynamics of emotions in depression, deviating from
the typical emotional response patterns seen in healthy individuals.

In our second analysis, we examined the interconnectedness of emotional responses,
exploring how a shift in one emotion impacts others using a measure we call emo-
tional reactivity. We quantified emotional reactivity by calculating the average total
effect that any given emotional change has on the spectrum of possible changes in all
other emotions (using a metric called average controllability, see Methods for details).
Emotions with higher reactivity are, therefore, more influential in determining the mul-
tidimensional temporal evolution of emotions [24]. Our findings, illustrated in Figure
77?7, indicated that “grief” and “fear” possess the highest emotion reactivity, meaning
they significantly affect other emotions. On the other hand, “neutral” emotions, as
expected, exhibit the least emotional reactivity, followed closely by “approval”. When
comparing individuals with depression to healthy individuals, we observed a notable
pattern: a general blunting of cross-emotional reactivity differences. Except for three
specific emotions (“admiration,” “amusement,” and “curiosity”), the size of emotional
reactivity was always higher in healthy individuals than in those with depression (p-
value < le-6, binomial test). On average, we observed a 43% reduction in the size of
emotion reactivity for emotions. This pattern aligns with existing theories of emotion
regulation in depression, particularly with the concept of context insensitivity. How-
ever, it also provides a clearer understanding of why observations vary across studies.
Significantly, the most substantial blunting was observed for “neutral” emotions. This
finding is consistent with previous research indicating biases in how individuals with



depression assess neutral emotions [25]. Blunting was also prominent in emotions like

“relief” and “pride,”

which are integral to depression diagnostic criteria.
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Fig. 2: Dynamics of Emotions in Individuals With and Without Major
Depressive Disorder (MDD). (A) Emotional Time Constant: Illustrates the aver-
age time it takes for emotions to intensify or lessen post-event, serving as a proxy for
emotional inertia and stability. (B) Emotional Reactivity: This quantifies the extent
to which a single emotional shift can influence the overall emotional matrix, utiliz-
ing a metric called average controllability (see Methods for details). Higher reactivity
denotes a significant impact on the unfolding of emotional dimensions. Significance lev-
els are based on Bonferroni corrections and are indicated as follows: ns (0.05 < p < 1),

% (0.01 < p < 0.05), %+ (0.001 < p < 0.001), **x* (1.x 107* < p < 1x 10~

3), and

kK Kk (p <1x 1074).

To explore whether the emotional blunting in MDD extended to the reactivity to
life events, we identified life events representing happy moments [26] in our dataset
(detailed in the Methods section). Of note, prior research indicates that methods



focused solely on classifying sentiments or emotions are inadequate for identifying
expressions of happiness [27], as they can be conveyed in a variety of linguistic tones,
not just positive ones [28]. “Happy moments” are expressions in natural language
reflecting a subjective experience of joy, contentment, or satisfaction. Our approach
utilized a comprehensive dataset of 100,000 “happy moments” collected from over
10,000 contributors [26]. We then developed a specialized deep learning model (all
codes publicly available) designed to detect and isolate instances of happy moments in
text, enhancing the precision of our emotional analysis (for a detailed explanation, see
the Methods). The extracted happy moments covered a wide range of topics, such as
relationships (e.g., “girlfriend said she loves me.”), family (e.g., “I'm celebrating my
nephew’s birthday!”, “Lunch date with my sister”), life (e.g., “Finally getting my life
back together, after the downhill I had.”, “My birthday is on Monday!”), food (e.g.,
“I'm scooping ice cream at a diner near my town!”), home decoration (e.g., “We have
ordered a new bookcase - excited to be able to keep more books!”). We found happy
moments in approximately 3.7% of the texts from patients with MDD and 2.4% from
healthy individuals.

Based on this data, we tested if the impact of life events on individuals with
depression was less pronounced compared to their effect on healthy individuals. This
inquiry aligns with our earlier observations of blurring emotional distinctions in depres-
sion, marked by shortened emotional response times (inertia) and decreased emotional
reactivity. We hypothesized that, against this backdrop of diminished emotional dif-
ferentiation, isolated happy events would exert a weaker influence on the emotional
trajectories of individuals with depression than on those of healthy individuals. [29].
To investigate this hypothesis, we applied principles from Dynamic Systems Theory,
specifically using the concept of control energy. Control energy measures the effort
required to alter the collective state of a system. In the context of our study, this
meant evaluating the extent to which various events could alter emotional trajecto-
ries. Our findings, depicted in Figure 3, show that for individuals with depression,
happy moments have a reduced capacity to influence emotional states. Our findings
rely on analyzing control energy in complex systems through two critical measures:
the minimum and average eigenvalues of the Gramian matrix [30] (for more details,
see the Methods section). The marked disparity we observed underscores the altered
emotional responsiveness in people with depression, particularly highlighting the phe-
nomenon of emotional blunting. This phenomenon is marked by diminished reactions
to emotional triggers in depressed individuals.

To rigorously compare these metrics, we faced the challenge of non-normal data
distribution. To address this, we utilized the non-parametric Mann-Whitney U test.
This statistical approach revealed a significant difference (with a p-value less than
0.005) between the control group and the group with MDD.

3 Discussion

By conceptualizing human emotions as observable elements of a complex dynamic sys-
tem, we can apply the foundational principles of dynamic systems theory to decipher
the temporal evolution of emotions in individuals, both with and without depression,
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Fig. 3: Effects of Life Events on Emotional Development: The Role of
Depression. This figure highlights how life events impact emotional evolution, espe-
cially how this impact is altered by depression. It demonstrates that individuals with
depression experience a lower control energy from life events, requiring significantly
stronger events to match the emotional effect observed in healthy counterparts. (A)
Emotion Controllability 1: Estimated through the average eigenvalues of the Gramian
matrices for individuals with and without depression. (B) Emotion Controllability 2:
Estimated through the minimum eigenvalues of the Gramian matrices for individuals
with and without depression. Given the non-normal distribution of the two metrics,
we used the non-parametric Mann-Whitney U test.

and in response to life events. The core findings of our research highlight the temporal
nuances of emotions, manifesting through their specific time constants and patterns
of joint activation (i.e., emotional reactivity). These elements collectively delineate a
rich, multidimensional emotional landscape. In the context of depression, we observe
a marked shift in this landscape: it becomes more homogenized, with the distinc-
tions between different emotions becoming increasingly indistinct. This finding offers
deep insights that resonate with, and yet significantly broaden, the traditional under-
standing of Emotional Context Insensitivity (ECI) [31, 32]. While the concept of ECI
suggests a general dulling of emotional responses in depression, our mathematical
definitions and analysis offer a more nuanced explanation. Our findings suggest that
rather than simply a reduction in emotional intensity, which is also part of most other
theories of affect disorders [7], depression is characterized by a blending of emotional
boundaries, which accounts for the different theories of depressive emotions. This new
perspective, grounded in dynamic systems theory, offers a more comprehensive under-
standing of emotional dynamics in depression, challenging and refining the traditional
narratives often discussed in the literature.

Our study represents a pioneering approach in methodologically quantifying the
dynamics of emotions over time through a principled analytical framework. A robust
quantitative framework should be comprehensive, capable of explaining all aspects
of the data without resorting to heuristics. While there is a growing interest in cap-
turing the temporal dynamics of emotions [1, 2, 33, 34], existing measures often fall
short in a critical area: they are often redundant, and their added value, particularly



in relation to psychological well-being remains unclear [6]. State space models on the
other hand, as employed in our study, offer a universal framework that provides a
non-redundant perspective on emotional dynamics [35]. Assuming linear interactions
among emotions (with a discussion on non-linear extensions in our limitations section),
the equations we have formulated represent the definitive model of state dynamics,
as long as our data is enough. In this context, the time constants and controllability
metrics we derived, alongside the equations of emotion evolution, are comprehensive
tools for understanding emotional dynamics [11, 14]. Related, while measures like the
temporal variance of emotional dynamics, a topic often explored in the literature, can
be derived from our findings, the inverse relationship does not always hold. Consider,
for example, the concept of emotional inertia, which describes how resistant emotional
states are to change. This concept is typically assessed by examining the variance in
emotional time series data. However, it is crucial to note that analyzing the variance
of a single emotion in isolation might not provide a complete picture. As our research,
along with other studies, has shown[36], emotions do not evolve in isolation but rather
in conjunction with one another, making their covariance indicative of complex, mul-
tidimensional data characteristics. In contrast, the time constants we calculate offer a
direct and precise insight into the unique characteristics of each emotion. This method-
ology allows for a more nuanced and distinct understanding of individual emotions,
thereby enriching our grasp of the dynamic emotional landscape.

Recent behavioral studies, including one that examined responses to 2,185 videos
[3, 36], reveal the complexity and breadth of our emotional world. This particular
study highlighted that individuals can experience over 27 distinct emotions, which
occupy a multi-faceted, high-dimensional space. To delve deep into the dynamics of
these emotions, it is essential to monitor affective states over time. Tracking these
emotional changes requires methodologies that can capture the fluctuations of feelings
in everyday life. Among the most effective methods for this purpose are the Experi-
ence Sampling Method (ESM) and daily diary studies [37]. These approaches involve
participants recording their emotional experiences at multiple points throughout their
day-to-day lives, offering a window into the ever-changing landscape of human emo-
tions. This ongoing monitoring provides valuable insights into how emotions evolve
and interact over time, shedding light on the intricate nature of our emotional expe-
riences. In these approaches, participants use mobile devices (like smartphones) to
complete periodic questionnaires about their emotional experiences throughout the
day. These methods offer a naturalistic assessment of emotional trajectories and reduce
memory bias due to their proximity to real-time experiences. However, implementing
these methods practically has its challenges [38]. Not all participants are comfortable
using apps that require frequent updates throughout the day. Consequently, gathering
sufficient data for meaningful analysis across large sample sizes has been increasingly
difficult. For example, most recent studies have been limited to fewer than 100 par-
ticipants and only span a few days [39]. To address this limitation and significantly
increase our sample size, we turned to data from X (formerly Twitter), where peo-
ple often voluntarily share their thoughts and emotions. Social media platforms like
Twitter provide a semi-anonymous space where individuals frequently discuss their



mental health struggles and diagnoses. These platforms serve as a safe haven for shar-
ing experiences, seeking support, and raising awareness about mental health issues
[40, 41].

Prior online research has focused primarily on the negative emotions expressed
by individuals with depression [42, 43]. However, it is important to note that the
emotional life of someone with depression is not exclusively negative. For instance,
in completing the Self-Rating of Happiness 2 scale [44], over 60% of individuals with
depressive disorders reported feeling “completely happy”, “very happy”, or “quite
happy”, compared to over 90% in control groups [45]. Another study found that 68.4%
of individuals with mental disorders often felt happy, versus 89.01% in a control group
[46]. Thus, the aim should be to understand the temporal dynamics of emotions,
particularly focusing on how they are influenced by positive life events.

In discussing the limitations and future directions of our study, it is important
to acknowledge the constraints imposed by our current methodological approach and
the opportunities for further research. One significant limitation of our study is the
reliance on linear assumptions, which resulted in the characterization of emotional
dynamics with a single time constant. However, it is plausible that emotions follow
multiple time constants [47, 48], suggesting a more complex temporal structure. Future
research could explore this by utilizing larger datasets, such as those available from
Reddit [49], spanning several years. Employing non-linear analytical methods, such
as Sparse Identification of Nonlinear Dynamics (SINDy) [50], could provide a more
nuanced understanding of these multi-faceted emotional dynamics. Additionally, our
study ventured into the realm of emotion dimensionality with an analysis of 28 differ-
ent emotions, one of the widest ranges used in emotion studies to date. Despite this
breadth, future studies could employ latent space models like Recurrent Neural Net-
works (RNNs) to explore emotional dimensions on a significantly larger scale [35, 51].
This approach could potentially increase the granularity of our emotional understand-
ing by orders of magnitude. Related, our study focused exclusively on how emotional
dynamics change in response to positive life events. However, it is crucial to extend
this analysis to encompass a broader range of life events, including negative experi-
ences. We hypothesize that the observed reduction in emotion controllability may not
be directly linked to the valence of the experience, but this theory requires further
investigation in future studies. Moreover, incorporating neuroimaging techniques could
offer invaluable insights into the neural correlates of these emotional states, adding
a biological perspective to our comprehension of emotional dynamics. Regarding the
extension of our research, the application of NLP techniques could be instrumental
[52, 53]. NLP could enable the extraction and analysis of various life events from
large text corpora, thereby enhancing the scalability and depth of our study. Such an
approach could provide a richer context for understanding how different life events
influence emotional trajectories. Finally, a critical area for future investigation is the
study of the impact of interventions, such as psychotherapy, on emotional dynamics.
This line of inquiry is crucial for establishing causal relationships and understanding
the effectiveness of various therapeutic approaches in modulating emotional states [51].
By examining the before-and-after effects of interventions on the emotional landscape,
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particularly in clinical settings, we can move closer to developing targeted, evidence-
based therapeutic strategies that are responsive to the unique emotional profiles of
individuals.

4 Methods
4.1 Sample

We analyze the emotional ripple dynamics of the users from the Twitter dataset
proposed by Shen et al. [54], further referred to in this work as Twitter-Depression.
It is a large-scale dataset, and we used a balanced version of it [19] with tweets from
1,402 users with a depression diagnosis and 1,402 control users. The users from the
depression group are individuals who mentioned in one of their social media posts
that they were diagnosed with depression (e.g., “I was diagnosed with depression”).
Control users are individuals without any mention of a depression diagnosis or of the
word “depress” in their timeline. For constructing the dataset, posts within one month
from the diagnosis mention were retrieved for both groups. In total, there are 292,564
posts in the depression group and 879,025 posts in the control group.

In the current work, two additional datasets were used: Twitter-STMHD [55] and
HappyDB [26]. The purpose of the Twitter-STMHD dataset is to be used alongside
HappyDB to train a model capable of detecting posts expressing happy moments. The
Twitter-Depression dataset is kept intact for the final analyses. Twitter-STMHD [55]
contains posts from individuals with eight mental disorders (e.g., depression, anxiety,
PTSD, etc.), labeled by their mentions of diagnosis, similar to Twitter-Depression.
However, given that Twitter-STMHD contains data from over 30,000 users with dif-
ferent mental disorders, for the purpose of our work, only a sample of the posts from
the depression and control groups is used, totaling 215,000 posts.

The HappyDB database [26] is an extensive collection of 100,000 happy moments
gathered from more than 10,000 crowdsourcing workers. Given that happy moments
reported by individuals are not always portrayed using positive words [28], and cannot
be reliably detected using emotion detection models [27], the HappyDB corpus is a
valuable resource for understanding the expressions of happiness in natural language.
The corpus contains individuals’ responses to the question “What made you happy
in the past 24 hours”, or in the last three months. The collected happy moments
come from a wide variety of categories, such as leisure (e.g., “We booked our beach
vacation for May of this year..”), achievement (e.g., “Got A in class.”), nature (e.g.,
“I went for a run in the neighborhood. I enjoyed the perfect weather.”), exercising
(e.g., “I had a great workout last night.”). family (e.g., “I went to lunch with my
girlfriend and her family.”), friends (e.g., “I went out for dinner with my friends
and enjoyed a lot.”), and others. We use the cleaned version of the corpus, in which
spelling mistakes are corrected. The texts underwent additional preprocessing, and a
total of 90,641 happy moments from HappyDB were used in this work.

Data Preprocessing. The social media posts from Twitter-Depression and Twitter-

STMHD were preprocessed by removing URLs, mentions, hashtags, and retweets.
Non-English posts detected by the polyglot library [56] were removed. We further
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filtered out the texts with less than 5 or more than 50 words, ensuring that the
sentences from Twitter-Depression, Twitter-STMHD, and HappyDB are similar in
terms of length.

4.2 Extracting Happy Moments and Emotions

To study the interaction of positive life events with other emotions expressed by
individuals, we first identify the expressions of happy moments from the Twitter-
Depression dataset corresponding to individuals with depression and control using
the positive-unlabeled learning framework [57]. Next, we extract emotion information
from each of the social media posts using a state-of-the-art transformer-based model
[20].

Learning to Extract Happy Moments with Positive Unlabeled Learning.
While highly performant methods for sentiment and emotion detection from natural
language have been developed [20, 58, 59], finding the expressions of happy moments
in social media remains a challenging task [27, 28]. We consider a happy moment
to be a subjective experience characterized by feelings of joy, contentment, and sat-
isfaction. For conveying happy moments in textual data, individuals might rely on
language with neutral or even negative sentiment [28]. Given that popular methods
for emotion detection do not generalize for happy moments identification [27], and
there is no dataset of positive and negative data for training a binary classifier for
the task, we develop a deep learning classifier following the positive-unlabeled (PU)
learning framework [57, 60]. The PU learning framework offers a way of estimating
a positive-negative classifier from positive and unlabeled data. PU learning aims to
identify examples similar to a group of positive labeled examples in a large unlabeled
dataset. Such an approach has been used in the past in areas such as disease gene
identification [61, 62] and opinion mining [63]. In our work, we construct a PU
dataset by combining samples from HappyDB and Twitter-STMHD. We use the
instances with happy moments reports from HappyDB as the positive class and sam-
ples from Twitter-STMHD represent the unlabeled set, as they contain both positive
and negative samples that are unknown at the training stage. We opted not to use
Twitter-Depression in training, and only use it in the analysis of emotional dynamics.

Our goal is to extract happy moments statements from Twitter-Depression similar
to those found in HappyDB. Methods for PU learning are based on different assump-
tions in their formulation, about the distribution of positives in the unlabeled set [60].
Notably, the Selected Completely at Random (SCAR) assumption [57] states that the
labeled positive samples are representative of all the positive instances in the data,
both labeled and unlabeled [64]. We impose the SCAR assumption in our work in the
sense that we want the happy moments statements from Twitter-STMHD to be simi-
lar to the ones in HappyDB. In our setting, both the training and validation datasets
contain positive and unlabeled data, and traditional performance metrics (i.e., Preci-
sion, Recall, F1) cannot be correctly computed without knowing the true positive and
negative labels. However, using the SCAR assumption allows us to evaluate the perfor-
mance of the model without needing a manually annotated validation set with positive
and negative labels [64]. Rather than computing performance metrics on the predicted
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probability of an example being in the positive class, metrics are calculated on the pre-
dicted probability of an example being labeled. To choose the best-performing model
during training, we estimate the F; score on the validation data under the SCAR
assumption.

Usually, the PU-learning framework has two steps: estimating the fraction of pos-
itives from all the unlabeled samples (noted in this work with «) and incorporating
the estimation into a positive-negative classifier. There have been other works that
proposed methods to improve the performance of both steps [57, 65], but we opted
to use a recent approach described by Garg et al. [66] called Transfer, Estimate and
Discard (TED)™. (TED)" offers both formal guarantees and good empirical results
for PU Learning compared to other approaches. The algorithm iteratively uses Best
Bin Estimation (BBE) and Conditional Value Ignoring Risk (CVIR) to improve the
estimation « of positive samples in the unlabeled set and use this value to learn a
positive-unlabeled classifier.

Formally, we aim to train a classifier fy : X — [0,1] on a PU Learning dataset
X = X, UX,, with X,, representing the unlabeled set (in our case, Twitter-STMHD)
and X, representing the labeled set (in our case, HappyDB) by minimizing the
expected cross-entropy loss [ across the dataset. Given an estimate a through the
BBE algorithm (see [66]), we set the gradient of each batch of examples ¢ from both
the labeled and unlabeled sets (X, X,.) as Vo[a - L (fo; X)+(1-a)- L= (fe); X1,
where LT (f; X) = S U(f(xi),+1)/n is the loss when predicting the samples as
positive and L~ (f; X) = S U(f(xi),—1)/n is the loss when predicting the samples
as negative. The algorithm iteratively computes «, re-ranks samples according to
their loss and updates the model with the gradients. We further provide details on
the model architecture used, experimental setup and extraction of happy moments.

Transformer Architecture. In all our experiments for extracting happy moments
and annotating them with emotions, we used variants of the transformer encoder
model [67] pretrained on specific datasets [68, 69]. The transformer is a neural network
architecture that has become the foundational model for natural language processing
tasks [70, 71]. It was designed to work with sequential data by capturing pairwise
dependencies between input elements and has proven to be substantially more per-
formant than other network variants such as LSTMs [72] or GRUs [73]. Its success is
due to a combination of design elements such as the self-attention mechanism (Eq. 1),
multi-head attention (Eq. 2), residual connections [74] and layer normalization [75].

T

Attention(Q, K, V) = softmax( @

i WV (1)

MultiHead(Q, K,V) = Concat(heads, ..., head;, )W ° (2)
head; = Attention(QWiQ, KwWE vw}) (3)

Furthermore, an important advantage compared to other types of networks is the
ease with which the model can be computationally scaled up in terms of the number
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of parameters through the parallelization of the internal multi-head attention oper-
ation. Transformers pretrained in a self-supervised manner on diverse and general
datasets using, for example masked language modeling [70], offer substantial benefits
through further fine-tuning on specific downstream problems [76, 77].

Experimental Setup. For the classification task of happy moments, we utilize a
pretrained DistilBERT [68], which is a distilled version of BERT [70]. DistilBERT
was chosen for its flexibility, as it is a smaller and faster transformer model that can
be used for general-purpose tasks while still maintaining similar performance as the
larger BERT model for downstream tasks. To train and validate our approach, we
split the data into training and validation sets using a 9:1 ratio for both Twitter-
STMHD and HappyDB. We trained the model for a maximum of 15 epochs, using
a batch size of 200, a learning rate of 0.00005, and an initial o = 0.5, similar to the
setup of Garg et al. [66].

Model Selection. The model with the best performance is obtained by training
the DistilBERT model for 6 epochs, with an estimated F; score of 98.59%. The high
estimated performance of the model under the SCAR assumption shows that it can
accurately predict the labeled positive examples from the data and keep the unlabeled
positive instances to a minimum. The estimated proportion of happy moments in the
unlabeled set was estimated to be a = 0.0013. We further used the best-performing
model to detect instances of happy moments from Twitter-Depression.

Extracting Happy Moments. We used the happy moments detection model on
the texts from Twitter-Depression to classify if a tweet represents a happy moment
or not. Each post of the user was labeled with a binary decision whether or not it
contained a report of a happy moment. Out of the 1,402 users in the depression
group, only 871 of them had at least one happy moment, while for the control group,
only 819 of the 1,402 had at least one report of a happy moment. The individuals had
an average of 5.7 happy moments. For further experiments, we only use data from
the 1,690 users who reported at least one happy moment.

Emotion Estimation. We estimate emotions for all the social media posts in
the span of one month for the 1,690 users from the Twitter-Depression dataset.
To this end, we use a state-of-the-art transformer-based EmoRoBERTa model [20].
EmoRoBERTa is a RoBERTa [78] model trained on the GoEmotions dataset [69]
to predict 28 emotions, including neutral. The EmoRoBERTa model is used to esti-
mate the probability distribution across the 28 emotions for each social media post.
Consequently, each post is automatically annotated with probability scores for each
emotion.
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4.3 Dynamic System Theory

Following previous work [14], we assume the psychological behavior to follow a noise-
free linear time-invariant model given by

z(k+1) = Az(k) + Bu(k) (4)

where x(k) € D?®, D € 0,1 are the state variables and here correspond to the emo-
tional readings at time k, and u(k) € [0, 1] is the input variable and here corresponds
to the existence of a positive life event at time k. In this formulation, the evolution of
the emotion variables (i.e., z(k)) is determined by a weighted summation of the emo-
tional values and the input variables. Concrete, A represents the interaction between
emotions and B specifies how the intervention is the evolution of emotions. Impor-
tantly, following previous work [14], we assume that A remains constant. In these
models, we estimated Asgxog and Bagx1 based on Dynamic Mode Decomposition with
Control (DMDc]15]). In the most straightforward implementation which we used in
this paper, defining

X1 = |:(E1 o ... .’Emfl] (5)
X2 = [l‘g r3 ... J)m] (6)
U= [ul ug ... ’mefl] (7)

where xp = z(k) and u, = u(k), we can rewrite equation 4 and thus solve for A and
B simultaneously as follows:

X, = [A B] ﬁ(j] (8)
A B] = X, ﬁ?r (9)

Where | denotes Moore-Penrose pseudoinverse [79]. Based on these models, we can
compute the following metrics:

Emotion Reactivity. We operationalized Emotion Reactivity through Average
Controllability (AC) which is a metric used to quantify the ease with which a node’s
state can be altered through the use of input controls, providing insights into the
influence of individual nodes within the network. It is mathematically defined as:

AC; = trace <Z AiBjB]T(AT)l) (10)

=0

where A is defined as before and B; is the jth canonical vector. This measure was
instrumental in assessing the influence of individual nodes within the network. Aver-
age controllability quantifies how easily the state of a node (in this case, an emotion)
can be changed through external inputs. It is a measure of the potential influence that
can be exerted over a node to drive the system to different states. In the context of our
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study, it represents how easily an emotion can be influenced or controlled. Conceptu-
ally, average controllability is associated with the averaged interconnections between
nodes, wherein nodes exhibiting higher average controllability are those for which
interventions result in more pronounced changes around their current values [80].

Time Constant. The time constant, typically denoted as 7, measures the system’s
speed of response and is crucial for understanding the transient dynamics of the
system. It is defined as the inverse of the system’s eigenvalues, 7 = %, and it provides
insights into how quickly the system reacts to changes in input and initial conditions.
The Time Constant (7) of a system is a measure of the time required for the system
to reach a specific state or to undergo a particular process. In the context of emo-
tional dynamics, it can be interpreted as the amount of time required for an emotion

to reach a stable state or to undergo a significant change.

Control energy. In linear dynamical systems, the Gramian matrix helps estimate
the energy needed for state changes. The controllability Gramian, W, is given by:

o0
We =Y A'B;BJ(A")’ (11)
=0

where A is the state matrix and B is the input matrix. This matrix reveals how inputs
affect the system’s state.

As detailed in [30], the minimum and average eigenvalues of the controllability
Gramian play a pivotal role. They measure the amount of control energy necessary
to reach a specified state. Networks characterized by smaller Gramian eigenvalues
demand a greater amount of energy for control, a significant factor when energy
resources are constrained.

5 Availability of data and codes

The codes to replicate the simulations will become publicly available upon accep-
tance of this manuscript at https://github.com/PsyControLab. The data used in this
study is publicly available at https://zenodo.org/records/6409736 (Twitter-STMHD),
https://drive.google.com/file/d/11ye00sHF Y 5re2NOBRKreg-t VbDNrc7Xd/
(Twitter-Depression).
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