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Meditation and Complexity: a Systematic Review

Abstract

Recent years have seen growing interest in the use of metrics inspired by complexity science
for the study of consciousness. Work in this field shows remarkable results in discerning
conscious from unconscious states, and in characterizing states of altered conscious
experience following psychedelic intake as involving enhanced complexity. Here we study
the relationship between complexity and a different kind of altered state: meditation. We
provide a systematic review of the growing literature studying the complexity of neural
activity in meditation, disentangling different families of measures, short-term (state) from
long-term (trait) effects, and meditation styles. Beyond families of measures used, our review
uncovers a convergence toward identifying higher complexity during the meditative state
when compared to waking rest or mind-wandering, and decreased baseline complexity as a
trait following regular meditation practice. This review contributes to guide current debates
and provides a framework for understanding the complexity of neural activity in meditation,
while suggesting practical guidelines for future research.

Keywords: Meditation, Consciousness, Complexity, Entropy, Fractal
Dimension, Predictive Processing, Neuroimaging, Literature Review

Introduction

Meditation refers to contemplative practices that involve regulating both body and mind
through cultivating a state of heightened awareness (Cahn & Polich 2006), and includes a
wide variety of techniques and approaches (Goleman, 1988). A large body of ongoing work
converges on the positive effects of meditation, including enhanced emotion regulation,
wellbeing and stress reduction (Chiesa & Serreti, 2010; Farb et al., 2012, Querstret et al.,
2020; Zollars et al., 2019), enhanced attentional skills (Jha et al., 2007, Tang et al., 2022), as
well as alterations to the regular sense of self (Dahl et al, 2015; reviewed by Tang et al.,
2015) and alleviation of the symptoms of various mental conditions (Zhihong et al., 2018;
Parmentier et al., 2019; Haider et al., 2021; Geurts et al., 2021). Given these important
implications, uncovering the neural correlates of meditation is a crucial challenge that, if
solved, could help us improve our scientific understanding of consciousness, and the
implementation of meditation-assisted psychotherapy. While early work focused on
uncovering underlying mechanisms of meditation in the frequency domain mostly via
electroencephalography (EEG), providing insights into the power or intensity of different
frequency bands in brain activity (reviewed by Cahn & Polich, 2006), there have been many
efforts in recent years to uncover cortical regions and networks, examining the functional



magnetic resonance imaging (fMRI) activity and connectivity patterns between brain
elements (e.g., reviewed by Fox et al., 2014, 2016; Fox & Cahn 2018; Young et al, 2018).

In addition to these more traditional approaches, recent years have seen a growing interest in
the use of complexity-inspired measures in the study of consciousness, particularly in the
characterisation of different altered states of consciousness (ASCs) (partially reviewed in
Sarasso et. al, 2021; Lau et. al, 2022). In general, ASCs refer to temporary states in which
there is a significant qualitative shift in subjective experience, including changes in
perception, thought processes, emotions, and sense of self (Farthing, 1992; Tart, 1990). These
ASCs can be induced by various means, including meditation, psychoactive substances,
hypnosis, sleep deprivation, sensory deprivation, and other interventions that alter brain
function (Tart, 1972; Vaitl et al., 2005). In effect, the field of complexity science (Jensen,
2022) has developed widely applicable theories describing emergent phenomena generated
by the interplay of many parts of a system, such as different regions of the human brain
(Sporns, 2022), that allow description of the informational richness and self-organization
seen in brain activity. As these approaches offer complementary insights into brain
functioning, beyond the classical approaches of frequency or network activity and
connectivity, they should be combined to gain a more comprehensive understanding of the
brain's meditation-induced intricate dynamics.

To date, complexity research of meditation lacks an explicit organizing framework, which
should include theory, empirical comparison, and accepted guidelines for conducting
research. To fill this gap, here we present a comprehensive review on the existent work
relating meditation and complexity, providing an overview of conceptual issues and a review
of the existing empirical studies. In the following, we first describe the notion of complexity
and entropy of neural activity, and their use in consciousness studies. We then provide an
overview on the use of complexity measures in the budding field of psychedelic neuroscience
— an ASC relevant as a comparison to the meditative state (Milliere et al., 2018; Letheby,
2022). Then, we elaborate on the definition and typology of meditation, and lay out
theoretical considerations on complexity and meditation, before presenting a systematic
review of the current literature on the subject. We conclude by discussing our main findings
and offering suggestions for future research in this growing field.

Consciousness and Complexity

Metrics of Complexity in Neuroscience

Complexity science is a scientific discipline that aims to describe systems in which relatively
simple components collectively give rise to emerging system-wide behavior (Mitchel, 2009).
As noted by the philosopher Paul Cilliers: “a complex system cannot be reduced to a
collection of its basic constituents, not because the system is not constituted by them, but
because too much of the relational information gets lost in the process” (Cilliers, 1998, p. 10).
The human brain is one of such complex systems, where the intricate interactions between



billions of nerve cells give rise to sophisticated processes involving cognition and
consciousness (Turkheimer et. al, 2021). In neuroscience, complexity science has provided
important conceptual and computational tools to advance our understanding of how the brain
works, including brain networks that describe the topology of interactions between brain
regions (Sporns, 2011), metastability and dynamical phase transitions that characterize
sudden shifts in modes of activity (Kelso, 1995), criticality that distinguishes a balance
between rigidity and disorder (Cocchi et. al, 2017; O’Byrne & Jerbi, 2022), and the
integration-differentiation coexistence as a key enabler of high brain functions (Tononi et al.,
1998).

Measures inspired by principles of complexity science have been found to have the capability
for discerning — to some degree — changes in consciousness, presenting an opportunity for
empirical convergence beyond classical approaches (Sarasso et al., 2021). Overall, empirical
studies show a general trend of increase in the complexity of brain dynamics in relation to an
increase in the felt richness of conscious experience — for example, differentiating between
sleep stages (Burioka et al., 2005) and indexing depth of anesthesia (Liang et al., 2015;
Zhang et al., 2001). Typically, states of lower conscious level, such as anesthesia and
non-rapid eye movement (NREM) sleep, score lower on complexity measures than
wakefulness (Casali et al.,, 2013). In turn, states of altered phenomenology of conscious
experience, such as the psychedelic state, have been systematically shown to exhibit higher
complexity than normal wakefulness (Mediano et al., 2020; Schartner et al., 2017;
Timmermann et al., 2019; Varley et al., 2020).

While during the early days of complexity science researchers strived to find a unique and
all-encompassing signature of “complexity,” there is a growing consensus that there are
multiple flavors of complexity (Mitchel, 2009) and that distinguishing and differentiating
them is an important contribution of complexity science (Feldman & Crutchfield, 1998).
Hence, when talking about complexity it is crucial to specify what type of complexity one is
focusing on. Sarasso and colleagues (2021) offer a provisional taxonomy of strategies to
approach complexity in neuroscience: topological (spatial), temporal, and a combination of
the two. When estimating complexity through the topological strategy, typically topological
properties of a network of interdependencies are extracted from time series data, and the
complexity of this topology is then captured by measures of network science (i.e. modularity,
small-worldness, etc). This strategy can be implemented on networks built from measures
such as effective or functional connectivity, and is best applied using measurement techniques
with good spatial resolution such as magnetoencephalography (MEG) or functional magnetic
resonance imaging (fMRI). In the temporal strategy, complexity is estimated based on the
size of the repertoire of patterns generated by the temporal dynamics of neural activity. This
strategy can be implemented via measures such as Sample Entropy (SE), Permutation
Entropy (PE), Lempel-Ziv complexity (LZc) and Higuchi’s Fractal Dimension (HFD), and is
best applied using measurement techniques with good temporal resolution such as
electroencephalography (EEG) or MEG.



While results obtained from measures utilizing temporal and spatial strategies to estimate
complexity may correlate in practical scenarios, they strongly differ conceptually and
algorithmically. For the sake of simplicity, the rest of this review will focus only on measures
utilizing the strategy of temporal differentiation, motivated by their high empirical accuracy
in capturing changes in states of consciousness.

Entropy and Fractal Dimension as Facets of Dynamical Complexity

Even within the topic of temporal complexity, there are many qualitatively different ways in
which a system can be said to be complex. Here we draw a distinction between two types of
complexity: entropy and firactal dimension. In essence, entropy' quantifies how well one can
predict the future state of a system given its past, such that more unpredictable systems are
generally seen as more complex. On the other hand, fractal dimension quantifies the degree
of self-similarity and scale-invariance of a system, such that a system that exhibits more
intricate repeating patterns at larger scales is seen as more complex.

Entropy

Entropy is an important concept in complexity science that stands at the core of
thermodynamics and information theory (Thurner et. al, 2017). While entropy was originally
introduced to quantify heat transfer, the seminal work of Boltzmann and Gibbs in statistical
mechanics established entropy as an informational property — specifically, the degree of
uncertainty an observer has about the microscopic realization of a given macroscopic state
(Schroeder, 2000). In this context, entropy is sometimes described as quantifying the amount
of “order” that the system exhibits, i.e., highly ordered systems tend to have relatively less
possible constituting microstates compatible with given macrostates, and therefore less
entropy. On a separate line of inquiry, Shannon (1948) found that the same formulation of
entropy was capable of characterizing various communication processes, including data
transmission and compression. In such scenarios entropy captures the amount of information
in a given message, or the informational capabilities of a given communication channel.
These seemingly disparate applications of entropy found a unification in the work of E.T.
Jaynes (1957), who by adopting a Bayesian perspective proposed that probabilities reflect
states of knowledge of observers, and entropy is a natural metric to quantify degrees of
uncertainty — which can take place in thermodynamic or communication scenarios.

In the context of neural activity, entropy can be used to measure two important properties:
diversity of activity and predictability (Mediano et. al, 2023). On the one hand, entropy is
directly related to how diverse the patterns exhibited by the neural system are, as
demonstrated by the asymptotic equipartition principle’. Crucially, entropy ignores which
patterns are exhibited by the system, and just focuses on quantifying how diverse they are.

' To be mathematically precise, entropy rate — see Mediano and colleagues (2023).

* This theorem shows that the entropy is the number of fair coins that are needed to simulate a variable
with an equivalent amount of uncertainty, or, put simply, the number of yes/no questions that are
needed in average to reveal the value of the variable in question (Cover & Thomas, 2012).



On the other hand, entropy is also related to how hard it is to predict a system, providing an
upper bound to the performance of an optimal predictor (Fano, 1961; Feder & Merhav, 1994).
Hence, entropy does not measure the performance of a specific prediction strategy, but
captures the intrinsic limitations on prediction given by the statistics of the system. The link
between diversity and predictability establishes an important bridge between dynamical
systems theory, which focuses on the dynamics of systems, and inferential and learning
approaches, both of which have long-standing traditions in neuroscience (Mediano et. al,
2023). An illustration of the differences between time-series exhibiting low and high entropy
values can be seen in Fig 1.
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Figure 1. Simulated time-series sampled at 200 Hz with increasing Shannon entropy values. The left
graph corresponds to the lowest Shannon entropy.

The entropic brain hypothesis (Carhart-Harris et. al, 2014; 2018), specifically addresses the
relationship between entropy and consciousness, suggesting that the rich ASCs, e.g., induced
by psychedelic drugs, may depend on a parallel enriching effect on the dynamics of neuronal
activity, which is reflected in an increase of the entropy in the corresponding neuroimaging
data. Conversely, ASCs involving loss of consciousness, such as anesthesia, would
correspond to overly-ordered states where entropy is reduced. Crucially, the entropic brain
hypothesis does not propose an identity between consciousness and entropy, but just a
correlation, positing entropy as a useful marker of conscious activity. In particular, it is
hypothesized (Carhart-Harris et. al, 2014) that the correspondence between entropy and level
of consciousness may only hold on the range of normal brain activity, but may break when
entropy grows too much — e.g. hot gas is not regarded as having a very rich experience,
although it has very high entropy.

Fractal Dimension

Dimensionality refers to the number of independent variables required to describe a system or
object. Dimensionality is often associated with the spatial extent of an object, such as the
length, area, or volume. However, in complex systems, dimensionality can have a broader
interpretation, encompassing not only spatial dimensions but also dimensions in time and in
the system’s configuration space. Traditional Euclidean objects have an integer dimension
(e.g., the dimension of a line is 1 and the dimension of a surface is 2), yet many natural
phenomena do not behave according to these Euclidian idealizations — they tend to possess a



property named self-similarity (or self-affinity), exhibiting intricate patterns that repeat at
different scales. Classic examples of such phenomena are coastlines, snowflakes, cloud
formations, and stock market fluctuations (Husain et al., 2022). This observation has a long
history in mathematics, but it was Bennoit Mandlebrot (1967), who formalized this notion
introducing the concept of fractal dimension. This formalization allows for non-integer values
to describe the dimension of an object. For example, the Koch curve, illustrated in Fig. 2, has
a fractal dimension of approximately 1.2619. The fractal dimension goes beyond the
traditional notion of integer dimension, capturing the fine details and self-similarity that are
present at different levels of scaling by quantifying how a pattern fills space. A pattern that
fills space more densely and exhibits more intricate details at smaller scales will have a
higher fractal dimension. For dynamical systems, the fractal dimension quantifies how
quickly a system fills its space of possible states as it evolves over time.
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Figure 2. First 4 iterations of the Koch curve, which is created by a repeated application of the
following rule: “for each line segment, replace its middle third by two sides of a triangle, each of
length 1/3 of the original segment” (Mitchel, 2009 pp. 105-106). The Koch curve has a dimension of
approximately 1.2619

The relationship between fractal dimension and complexity stems from the understanding
that complex systems often display self-similarity and scale invariance. Fractal dimension
then becomes a valuable tool for characterizing complexity because it provides a quantitative
measure of the system's structure across different scales. A higher fractal dimension is usually
associated with a greater degree of complexity, indicating a more intricate pattern within the
system. In the case of neural activity, fractal dimensions offer insight into the complexity and
self-organization of the underlying neural dynamics by providing an estimation to the degree
of self-similarity of a signal. The fractal dimension of a time series (such as EEG) can be
estimated either by reconstructing the multidimensional attractor that represents how neural
activity evolves over time in the space of its possible states, or by directly treating the time
series as a fractal pattern (Lau et. al, 2021).

Perhaps counterintuitively, measures of fractal dimension are also tightly connected to
measures of the “memory” of a process (Mandelbrot, 1985). In time series statistics literature,
memory accounts for the amount of information about the past behavior of a system needed
to make an optimal prediction regarding the future state of that system. In the complexity
literature, a long-memory process is said to have long-range temporal correlations (LRTC).



For this reason, measures of LRTC that were found in the reviewed studies are grouped
together with measures of fractal dimension, as they both provide information on the
self-similarity of a stochastic process.

Elevated Complexity — the Case of the Psychedelic State

One scenario where studies have found robust increases of complexity associated with
changes in conscious experience is the psychedelic state. In effect, multiple studies have
shown an increase of the brain entropy of neuroimaging time series (Mediano et al., 2020;
Schartner et al., 2017; Timmermann et al., 2019; Varley et al. 2020; for overviews see
McCulloch et al., 2022; Girn et. al, 2023), with at least one study also showing an increase in
fractal dimension (Varley et al. 2020). One theoretical account of these findings is the
“relaxed beliefs under psychedelics” (REBUS) theory (Carhart-Harris & Friston, 2019).
Following predicting processing principles (elaborated in the next section), REBUS proposes
that the ingestion of a psychedelic substance triggers a “relaxation” of the strength with
which high-level priors guide normal processes of hierarchical generative modeling. By
reducing the grip of top-down constraints, this yields more complex sensory information to
flow up the hierarchy, which would allow for novel experiences that would not be able to
arise during normal wakefulness. Correspondingly, the theory posits that the neural dynamics
supporting these enriched psychological activity would display higher complexity.

In addition to the empirical findings mentioned above, the REBUS theory has gained further
empirical support including studies applying complexity-related measures under the effect of
ketamine (Farnes et al., 2020; Li & Mashour, 2019), lysergic acid diethylamide (LSD,
Lebedev et al., 2016; Mediano et al., 2020; Ruffini et al., 2023), psilocybin (Schartner et al.,
2017; Varley et al., 2020), dimethyltryptamine (DMT, Timmermann et al., 2019, 2023a) and
Ayahuasca (Viol et al., 2016). Crucially to the purpose of the present review, the psychedelic
state is the only ASC — to date — to consistently exhibit higher complexity than restful
wakefulness.

Meditation and its Neurological Basis

In this section we elaborate on the definition of meditation, and describe categorizations of
meditation techniques. We then lay out some relevant theoretical perspectives on the neural
mechanisms of meditation, drawing mainly upon predictive processing frameworks, and
building on that we offer some tentative hypotheses regarding the expected changes in
complexity during meditation compared to normal wakefulness.

Meditation — A Gross Typology

Meditation refers to a family of contemplative practices that involve regulating both body and
mind through cultivating a state of heightened awareness, which can lead to specific types of
ASCs. This is typically accomplished by monitoring mental and/or physical processes,



including perception, emotion, and body sensations, by employing a specific attentional set
(Cahn and Polich, 2006). Various cultures have developed a range of meditation techniques,
resulting in many diverse practices (e.g., Goleman, 1988).

Researchers have attempted to categorize these practices based on their primary aims and
techniques, leading to several typologies (such as those proposed by Dahl et al., 2015; Lutz et
al., 2008; Travis & Shear, 2010). Despite some variations, it is generally agreed that most
practices can be grouped within two broad categories: focused attention (FA) and open
monitoring (OM) (Lutz et al., 2008). FA involves maintaining attention on a specific object
or sensation, such as the breath, counting, or bodily sensations (examples include one-pointed
awareness or visualization meditation), while OM involves cultivating a non-judgmental and
non-selective awareness of the present moment (examples include vipassana and mindfulness
meditation). Additionally, some practices aim to develop emotional qualities (such as
compassion and loving-kindness (LK) towards oneself and others (Lippelt et al., 2014), and
some practices aim to transcend the self (ST) and experience a sense of oneness with the
universe (e.g., transcendental meditation (Travis & Shear, 2010) and nondual meditation
(Dunne, 2011)). This categorization is helpful when attempting to group different traditions
for the sake of research, yet clearly over-simplifies the practice of meditation, as many
practices involve cultivating skills from different categories, even in one meditation session.
Each of these practices results in different subjective ASCs (as recently demonstrated by
Woods et al., 2022) and subsequently involves different neural activity patterns (as reported
by Amihai et al,, 2014; Lehman et al 2001). In this review, we will use the gross
categorization of FA, OM, LK and ST practices, albeit its over-simplicity, in order to attempt
categorical conclusions.

Predictive Processing Accounts of Meditation and their Implications
for Complexity

The use of complexity-related measures in analyzing neural activity allows a link to currently
leading predictive processing accounts of brain function. In this section we outline proposed
mechanisms of meditation which build upon the predictive processing framework, and offer
tentative hypotheses for the directionality of change in complexity in meditation in light of
these hypotheses.

Predictive processing (Clark 2013; Hohwy & Seth 2020) is a widely applied theory in
neuroscience which assumes that the brain constantly generates and updates an internal
model of the environment, which includes the body and the outside world. This generative
model has a hierarchical nature, in which higher levels in the hierarchy project predictions of
the incoming input to lower levels in the hierarchy, the lowest level being the senses. These
predictions are then compared to the actual input and the discrepancy between the two is
referred to as the prediction error. Prediction errors travel up the hierarchy, and are given a
precision-weighting based on their reliability, which is based on the variance of the signal
(Friston, 2010). Importantly, the top-down projection of expected precision is theorized to
correspond to the process of attention allocation (Feldman & Friston, 2010). The brain strives



to minimize the prediction errors, either by updating the internal model accordingly, or by
action that changes the input to fit predictions.

From the lens of the predictive processing framework, meditation may involve the refinement
of predictive models by bringing attention to the present moment and attenuating the
influence of pre-existing biases and expectations. Through sustained practice, meditators may
become more skilled at detecting and disentangling the predictions generated by the brain
from the actual sensory inputs. This process may allow for a clearer perception of the present
moment and a reduction in cognitive biases and automatic thought patterns (Lutz et al.,
2019). Furthermore, as meditation requires maintaining attention to sensory input in the
present moment, high precision weighting might be given to bottom-up information. At the
same time, the meditative stable posture (as many meditations instruct to inhibit all
movements), is suggested to actively inhibit adjustments in bodily posture, thus may inhibit
correction of prediction errors via motor action, which otherwise would have allowed for
minimization of prediction error without the need to update priors (Pagnoni, 2019). Another
predictive processing theoretical account on meditation (Laukkonen & Slagter, 2021)
proposes a somewhat similar mechanism to that of the REBUS theory suggested for
psychedelics (Carhart-Harris & Friston, 2019), pointing to the possible decreased influence of
previously formed generative models on neural processing during meditation. In this
proposal, as the depth of meditation increases, conceptual processing in the form of
high-level priors gradually falls away, subsequently revealing a state of pure awareness, a
process referred to as a “flattening” of the counterfactually and temporally “thick™
self-model.

The theoretical frameworks described above do not explicitly generate hypotheses regarding
the complexity of neural dynamics during meditation, and could be interpreted in either
direction. On the one hand, we may interpret these proposed mechanisms as leading to higher
neural complexity during meditation: the practice of meditation may lead to a relaxation of
high-level priors and less suppression of prediction error through action, therefore allowing
for more information to flow “bottom-up”, resulting in more intricate neural activity. This
interpretation is similar to the claims of the REBUS theory for the psychedelic state
(Carhart-Harris & Friston, 2019), supported by ample empirical findings in the psychedelic
research (e.g. Mediano et al., 2020; Schartner et al., 2017; Timmermann et al., 2019; Varley
et al. 2020). On the other hand, the same process of “flattening” the counterfactual depth of
the generative self-model, alongside attenuation of sensory information that usually serves as
basis for the self-model (as suggested by Limanowski and Friston, 2020) may be interpreted
as resulting in a decrease of complexity. This direction may also be supported by findings that

> A generative model aimed at predicting the causes of sensory inputs is said to be temporally “thin”
and concrete on the lower (sensory) levels of the hierarchy and more abstract and temporally “thick”
(making inferences about the past and predictions about the future and generalizing the present

moment) in higher levels (Friston, 2008; Corcoran et al.,2020; Laukkonen & Slagter, 2021).



meditation involves “switching off” neural networks supporting the narrative-self, i.e. the
default mode network, both as a state (short-term) effect (Brewer et al., 2011; Farb et al.,
2007; Garrison et al., 2015) and as a trait (long-term) effect (Berkovich-Ohana et al., 2016;
Garrison et al., 2015), or attenuating networks supporting the embodied self (Dor-Ziderman
et al., 2013, 2016). In light of these theories and the ambiguous hypotheses regarding changes
in complexity in the meditative state offered here, we proceed to review the experimental
literature of complexity measures in meditation.

A Systematic Review of Complexity in Meditation

To investigate the current empirical evidence regarding complexity of neural activity in the
meditative state (short-term) and trait (long-term) changes in meditators, we conducted a
systematic literature review searching the electronic databases PubMed and Google Scholar
using the following query: ("meditation” OR "mindfulness") AND ("complexity" OR
"entropy" OR "fractal" ). Deolindo and colleagues (2020) provided a brief overview on
studies of meditation through non-linear measures applied to EEG data, reviewing mixed
empirical findings that suggest either an increase or decrease of complexity associated with
meditation. Their conclusion was that the considered studies are not directly comparable
because of the heterogeneity in designs and measures. Here we substantially broaden the
amount of studies reviewed and aspire to provide a comprehensive framework for comparing
these studies, that takes into account and explains the methodological differences as best as
possible.

We found 20 articles published in peer-reviewed journals, 11 conference proceedings and 1
PhD thesis. Out of these, we include 17 studies in this review, for which we report here only
the significant results relevant to our review of complexity in meditation. The inclusion
criteria were sufficient sample size (n > 6), report of statistical analyses, description of the
directionality of changes, and a relevant contrast (contrasting a similar condition between two
groups or contrasting two conditions within one group). We excluded 3 studies due to small
sample size (n=3: Davis et al., 2020; n=2: Lin & Li, 2017; n=2: Pradhan & Narayana Dutt,
1995), 4 studies that utilized complexity-related measures in meditation for machine learning
classifiers and reported classification accuracy but did not report any descriptive analysis on
the directionality of change in complexity (Han et al., 2020; Jachs, 2022; Korde et al., 2018;
Pandey et al., 2023), 6 studies which reported results but did not apply basic statistical
significance testing (Harne, 2014; Kamthekar & Iyer, 2021; Kaur et al., 2017; Motghare &
Thorat, 2018; Lo & Huang, 2007; Pandey & Miyapuram, 2021) and 2 studies contrasting a
condition of experienced meditators during meditation vs. resting state of controls, which is
an irrelevant contrast for our purposes* (Huang & Lo, 2009; Shaw & Routray, 2016).

* A contrast which compares both different groups and different conditions does not allow to discern if
the measured changes in complexity-related measures arise from the accumulating long-term effect of
meditation, which requires a contrast of the same condition between groups, or from the short-term
effect of meditation which requires a contrast of different conditions within the same group.



All reviewed studies performed measurement of neural activity via EEG. A summary of the
results and design of the reviewed meditation studies can be found in Tables 1-3.

Measures Used in the Reviewed Meditation Studies

Following our identification of two ‘flavors’ of complexity previously described, we divided
the measures found in the reviewed studies into these two main families: entropy and fractal
dimension measures. A description of each of the reviewed measures can be found in
Appendix 1.

The “entropy measures” family includes Shannon entropy, sample entropy (SE), multiscale
entropy (MSE), permutation entropy (PE), wavelet entropy (WE) and minimum variance
modified fuzzy entropy (MVMFE). These measures all estimate the Shannon entropy of the
time series, via different manipulations prior to calculating the entropy. Closely related to the
above is Lempel-Ziv complexity (LZc) which counts the number of distinct patterns in a
binarized time series, converging to the entropy rate of the process generating the signal.

The “fractal dimension measures” family includes Higuchi’s fractal dimension (HFD) and
Sevcik’s fractal dimension (SFD) which directly treat the time series as a fractal pattern, and
dimensional complexity (DCx) which estimates the amount of squares/cubes the trajectory of
the signal in phase space fills as it evolves. We also include measures of LRTC which came
up in our search: Hurst’s exponent (HE) and detrended fluctuation analysis (DFA). Hurst’s
exponent quantifies the rate at which autocorrelations between value pairs in the time series
decay as the time distance between the pair increases, and DFA computes a scaling exponent
which is an estimation of the Hurst exponent by dividing the time-series into segments and
calculating the amount of fluctuation in the data as a function of segment size. As mentioned
previously, under the assumption of a self-similar time series’, the Hurst exponent is directly
related to the fractal dimension by FD=2-HE for 1<FD<2 (Mandelbrot, 1985). Specifically in
the case of EEG, a signal that contains both fractal and oscillatory aspects, it has been shown
that HFD over-estimates the fractal dimension, while DFA under-estimates it (Krakovska &
Krakovska, 2021). Therefore it should be kept in mind when reading the review that under
the assumption of self-similarity, when a decrease in DFA or HE is demonstrated this actually
entails an increase in the fractal dimension, and vice versa.

Review and Analysis of Results

The first observation in our review is that there is substantial discrepancy between the
reviewed studies in the designs, analysis methods, measures used, etc. Therefore, a
comparison of the results of these studies is not straightforward, and a rigorous mathematical
meta-analysis is not possible. Hence, we first split the results into meditation state

> It should be noted that for more general stochastic processes this relation is broken, and the Hurst
exponent and fractal dimension can be independent of each other (Gneiting & Schlather, 2004).



(short-term) and trait (long-term) studies®, and then offer an analysis based on study design,
categorization of complexity-related measures, meditation experience and style, and
preprocessing steps applied in each study. For a detailed description of each study please
refer to Tables 1-3.

Studies of the Meditative State (Short-term Effects) - Within Subject
Design

First, we review studies contrasting meditation with a control condition, typically eyes-closed
rest or mind-wandering, in a within-subjects design. As the variability in baseline neural
complexity is large (Mediano et al., 2021), examining changes in complexity-related
measures in a within-subject design is preferable. For a summary of results in this category,
please refer to Table 1.

Table 1

Table 1. Studies of meditation short term effects in a within-subjects design. Where information for
two adjacent cells is the same, cells are merged. Calculated Cohen's d: Where in bold, no effect sizes
or standard deviation (SD) of difference were reported, so Cohen’s d was calculated based on groups
mean and SD assuming independent samples. Where effect was shown within the same group and
condition for different frequency bands/regions, the calculated Cohen’s d is an average of the effect
sizes. For Kakumanu and colleagues (2018), effect sizes were reported only through scalp topography
graphs, hence a range is written, and the calculated Cohen’s d is a weighted average of the effect sizes
seen on the scalp topography.

Six studies demonstrated an increase in measures for the meditative state compared to control
conditions. For meditation-naive subjects performing FA meditation, Lu and
Rodriguez-Larios (2022) report an increase in LZc, SE and HFD compared to
mind-wandering. Four studies demonstrated an increase in measures in experienced
meditators for various meditation styles compared to resting state. The first study
demonstrated an increase in MVMFE in highly experienced Rajayoga (ST) meditators
(Kumar et al., 2021), the second demonstrated an increase in HFD for a ST meditation and an
increase in MSE for FA meditation performed by highly experienced meditators (Walter &
Hinterberger, 2022), the third demonstrated an increase in PE and HFD for FA, OM and LK
meditation conditions for highly experienced meditators, and an increase in HFD and PE for
the OM meditation in beginner meditators (Kakumanu et. al, 2018), and the fourth study
reported an increase in LZc for both FA and OM meditation performed by highly experienced
Theravada meditators (D’Andrea et al., 2024). Additionally, one study demonstrated an
increase in HFD in meditation compared to podcast listening for meditation-naive subjects at
week 6 of a mindfulness-based stress reduction (MBSR) course, and an increase in HFD in
the meditation condition from week 4 to week 6 of the course (Do et. al, 2023). In addition,
three studies demonstrated a decrease in the Hurst exponent, as estimated using DFA in

® Note that several studies examine both state and trait effects of meditation, and therefore appear in
both categories.


https://docs.google.com/spreadsheets/d/1PWufCUwCQsFpBH6JV34x5qNpK3LiVpudOysEjytBiW8/edit?usp=sharing

meditation compared to resting-state in experienced meditators. The first study reported a
decrease in FA meditation for two independent groups (Irmischer et al., 2018), with one of
the groups showing an enhanced effect after an additional year of meditation training, the
second study reported decreases for different meditation conditions including FA, OM and ST
(Walter and Hinterberger, 2022), and the third study reported a decrease for both FA and OM
meditation (D’ Andrea et al., 2024).

Three studies demonstrated a decrease in different measures for the meditative state
compared to control conditions. One study demonstrated a decrease in LZc in highly
experienced meditators performing different styles of meditation compared to mind
wandering (Young et. al, 2021). Two studies demonstrated a decrease in different measures
for the meditative state compared to resting state. The first demonstrated a decrease in DCx in
experienced Sahaja Yoga (OM) meditators (Aftanas & Golocheikine, 2002), and the second
demonstrated a decrease in WE in novice meditators undergoing an MBSR course (Sik et al.,
2017). Additionally, Irmischer et. al. (2018) report an increase in DFA in a FA meditation
performed by meditation-naives, compared to resting state.

Two studies reported inconsistent results within a single dataset. The first study demonstrated
an increase in SFD and a decrease in PE for an FA meditation and a decrease in PE for an
OM meditation performed by experienced meditators (VySata et. al, 2014). The second study
reported a change in HFD for meditation-naives performing an OM meditation before and
after an MBSR course, showing an increase for some EEG channels and a decrease for
others, with no significant overall difference (Anasi et al., 2018).

Finally, one study reported a decrease of Shannon entropy in meditation compared to video
watching in experienced meditators (Davis et. al, 2023). This may be a poor choice of
contrast, as it has been shown that video watching induces a very large increase in LZc
compared to resting state (Mediano et. al, 2021). Furthermore, the effect of video-watching
substantially diminishes the measurable changes in LZc under LSD ingestion, and also the
correlation between LZc and subjective experience ratings (Mediano et al., 2020). Since LSD
has been shown in other studies to have a strong and consistent effect on neural complexity,
we argue that video-watching probably masks the effects of the subtler meditation. Therefore,
this study was omitted from the summarizing Fig. 3.
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Figure 3. A summary of the within-subject studies comparing meditative state to a control condition
of rest or mind-wandering. Each data-point represents a unique combination of group, meditation
style and measure, therefore some studies contribute more than one data point. Colors indicate
measures, and shapes indicate meditation styles. Data points are annotated with the number of their
corresponding study in Table 1. Meditation years are either directly reported or estimated through
reported meditation hours (assuming 200 hours per year, where average practice per day was not
reported). Cohen’s d was calculated with an online tool (based on the book “Practical Meta-Analysis”
by Lipsey & Wilson, 2001) from effect sizes (t,F,z or d) where reported, and from means and SD
where effect size was not reported. In the latter case, as the SD of the difference is not reported,
Cohen's d was calculated assuming independent samples (unpaired t-test) and corresponding
data-points are outlined in black. This assumption does not affect the directionality of the results, but
typically produces a smaller effect size than when assuming dependent samples. Data-points with no
outline indicate an effect size based on dependent samples (paired t-test). It should also be noted that
as the Hurst exponent (HE) relates to fractal dimension (FD) through the formula FD=2-HE for
1<FD<2, a decrease in DFA, which estimates the Hurst exponent, will correspond to an increase in
fractal dimension. Hence, for the purpose of visualization, we switch the sign of DFA effect sizes.
Due to the estimated values, and the different designs of the studies, this figure should be understood
as a heuristic schema and not as a rigorous mathematical meta-analysis.

We can see that meditation experience is an important factor when interpreting results of our
reviewed studies. When meditation experience exceeds 5 years, almost all studies show an
increase, while for less experienced meditators results vary. On the other hand, meditation
style is not very informative when attempting to discern factors of variation in the direction
of change. ST meditation consistently produces an increase in the measures, LK which was
investigated in only one study shows an increase, yet OM and FA meditation show both.



The family of entropy measures (yellow-red colors) show an increase in the majority of
studies, with an average effect size of d=0.717. When accounting for meditation experience 5
years or less these measures produce an average effect size of d=-0.001 and above 5 years an
average effect size of d=1.201. Fractal dimension measures (green colors) show an increase
in the majority of studies, with an average effect size of d=0.173, with d=0.142 for
inexperienced meditators (5 years or less) and d=0.25 for experienced meditators (more than
5 years). DFA shows decrease in the majority of studies (corresponding to an increase in
fractal dimension), with an average effect size of d=-0.755, while the average effect size is
d=-1.037 for experienced meditators and an increase (corresponding to a decrease in fractal
dimension) for meditation-naives (shown in one study) with effect size of d=1.22. It should
be noted that this averaging of effect sizes takes one data point for each measure and group,
averaging across meditation styles to create each data point. In principle, there are several
ways to create the data points for averaging and we chose the aforementioned scheme to
account for different measures, therefore this analysis should be read as a general way of
showing numerical trends and not as a rigorous mathematical meta-analysis.

We furthermore attempted to analyze the discrepancies in results based on different data
acquisition procedures and preprocessing pipelines applied in the studies. In principle, factors
such as sampling frequency, number of EEG sensors, frequency filters, cleaning of the EEG
signal, data points per epoch for measure calculation and other preprocessing such as a
detrend of the data and Hilbert transformation of the signal prior to measure calculation can
have a substantial impact on measure outcome (Durschmid et. al, 2020; Lau et. al, 2022).
When analyzing the results in light of these factors, we could perform only a limited analysis
due to the fact that not all studies fully reported their pre-processing pipelines. In the analysis
done, we didn’t find any specific trend regarding the effect of different preprocessing
pipelines on measure outcomes.

Studies of Meditation State (Short-term Effects) - Between Subjects
Design

Next, we review between-subject designs. Here the small number of studies do not allow for
a thorough analysis of the inconsistencies in results (as done in the previous section) as well
as impede reaching a conclusion. For a summary of results in this category please refer to
Table 2.

Table 2

Table 2. Studies of meditation state (short-term) effects in a between-subjects design. The “Number”
column continues and corresponds to the count from Table 1. Where information for two adjacent
cells is the same, cells are merged.

We found two studies demonstrating an increase in measures when comparing a meditation
condition of experienced meditators with novices (i.e., inexperienced controls). Martinez
Vivot and colleagues (2020) demonstrated higher SE in meditation of Himalayan Yoga (FA)
and Vipassana meditators (OM) compared to an FA meditation performed by controls. The


https://docs.google.com/spreadsheets/d/1e9w7-jYDfMiFElFAcN4o41L4YG_t21BYT2Cg6R31Vjc/edit?usp=sharing

second study utilized the same dataset for the Himalayan Yoga and control groups, confirmed
the result of higher SE in the meditators than in controls, and also reported lower HE for the
same comparison, as well as higher SE and lower HE for an additional Hare Krishna mantra
(ST) group, compared to controls FA (Singh et al., 2023).

On the other hand, Kakumanu and colleagues (2018) demonstrated that for all meditation
conditions (OM, FA, LK), overall HFD and PE values were lower for seniors and teachers
when compared to beginner meditators.

Finally, Irmischer and colleagues (2018) also contrasted the difference between meditation
and rest, between the meditator and control groups. They demonstrate that for meditators
there is a stronger decrease in DFA during FA meditation than for the controls doing the same
meditation.

Studies of Meditation Trait (Long-term Effects)

Studies in which analysis were carried out during resting state or cognitive tasks, comparing
experienced meditators to novice meditators or comparing the same participants before and
after a meditation intervention, are regarded as trait studies. Albeit the small amount of
studies, the results here seem less ambiguous, showing a decrease in trait entropy and fractal
dimension measures, as a function of meditation proficiency. For a summary of results in this
category please refer to Table 3.

Table 3

Table 3. Studies of meditation trait (long-term) effects. The “Number” column continues and
corresponds to the count from Tables 1,2. Where information for two adjacent cells is the same, cells
are merged.

Kakumanu and colleagues (2018) compared resting-state between experienced meditators
(seniors and teachers) and beginner meditators, and reported that HFD and PE values were
considerably lower for the experienced group. Tibdewal and colleagues (2022) compared
resting-state of meditation-naives before and after a one-month meditation intervention, and
reported a post-intervention increase in SE for the delta and beta bands and a decrease for the
theta and alpha bands. Irmischer and colleagues (2018) examined resting state of experienced
meditators before and after a one year FA meditation intervention. They demonstrated a
post-intervention increase in resting-state DFA. Finally, Gupta and colleagues (2021)
compared a cognitive task performed by meditation-naives before and after a two-month FA
meditation intervention, and reported a post-intervention decrease in HFD .
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Discussion

In this paper we provided an organizing framework for the study of complexity of neural
activity in meditation, and reviewed the empirical work that has accumulated in this field. As
studies varied in their design, applied measures, and preprocessing pipeline, ambiguous
findings were reported. In order to organize the results, we divided our review by
differentiating between state from trait effects, different families of complexity-related
measures, meditation styles and experience, and also pre-processing steps. Our findings show
that the most meaningful differentiation was meditation state-vs-trait, and meditation
experience, as discussed below. Analyzing other factors of variation such as meditation style,
or pre-processing factors (including number of EEG sensors, frequency filter values, signal
cleaning and time window for calculation) did not yield meaningful results.

Our analyses support a trend towards higher complexity in the meditative state compared to
resting-state wakefulness and mind-wandering, with a majority of the meditation-state studies
reviewed pointing to this direction. This increase is more prominent in studies examining
experienced (>5 years) meditators, and more consistent for the fractal dimension measures
than for entropy measures.

Our analyses also showed that during meditation proficient meditators, compared to novices,
tend to have higher neural complexity — albeit one study (Kakumanu et. al, 2018) showing
opposite results. In contrast, studies of trait (long-term) effect consistently show a reduction
in baseline complexity as a function of meditation proficiency, when comparing individuals
before and after meditation training in a within-subject design, and when comparing between
individuals with low and high meditation proficiency.

This finding of elevated complexity during the meditative state and decreased complexity as
a trait in experienced meditators has also received direct empirical support in a recent fMRI
study pre-print (Atasoy et. al, 2023).

Overall, the results of our review suggest that meditation practice may operate in a way that
increases complexity of neural activity during the practice, and decreases baseline complexity
as a function of meditation proficiency. In the following, we first discuss these tentative
findings in light of predictive processing theories of meditation and in relation to the
psychedelic state, and finally offer guidelines for future research in the field.

Results in Light of Predictive Processing Accounts of Meditation

The trend towards increased neural complexity in the meditative state (compared to
mind-wandering and rest) can be interpreted, under predictive processing principles, as
suggesting that meditation increases bottom-up information flow. This interpretation stands in
stark contrast with the idea that a “switching off” of neural networks during meditation could
be thought of as leading to lower complexity in the neural dynamics. That said, one possible
way to integrate the idea of a “switching off” of neural networks with the observed trend of
higher complexity could be to argue that the prediction-based control of high-level networks
(such as the DMN, which is known to decrease in activity during meditation (Brewer et al.,



2011; Farb et al., 2007; Garrison et al., 2015)) may regularly suppress information conveyed
by lower-level systems (e.g. systems conveying sensory information), but this suppression
may be weakened during meditative states.

The result of our analysis is also consistent with claims that, in meditation, prediction errors
travel farther up the predictive processing hierarchy thanks to a combination of (i) a
relaxation of high-level priors, and (i1) the refraining from physical action or mental gestures
that would otherwise minimize prediction errors (Lutz et. al, 2019). Under the assumption
that information about the world is conveyed in the form of prediction errors, it can be argued
that more information is processed in the brain during meditation — and indeed, this has been
phenomenologically demonstrated by Petitmenging and colleagues (2018). Moreover, the
process of relaxation of high-level priors and a refraining from action to minimize prediction
error can be seen as somewhat orthogonal to the basic tendency to minimize prediction
errors. This may allow for a temporary state in which the brain is forced to account for
information that is usually repressed. Interestingly, this interpretation directly relates to some
of the traditional definitions of the purposes of meditation (Harvey, 2015), as in Buddhism,
meditation is used for “a direct experiential realization of the nature of reality” (Dreyfus &
Thompson, 2007), which might correspond to the relaxation of priors. In a similar vein,
equanimity, defined as an even-mindedness toward all experiences regardless of their origin
or affective valence (Desbordes et al., 2015), may correspond to the process (and long-term
realization) in which prediction errors are less automatically suppressed.

Comparison to the Psychedelic State

Our analysis suggests that the meditative state, similar to psychedelic ingestion, is
characterized by higher complexity compared to normal wakefulness. In the entropic brain
hypotheses, Carhart-Harris and colleagues (2014) suggest that in normal waking
consciousness, the brain is operating in a subcritical regime, and that states of primary
consciousness (such as early psychosis, sensory deprivation, dreaming, psychedelics, and
infant consciousness) may push neural dynamics closer to the point of criticality. Following
this line of reasoning, it could be argued that meditative states also involve states of primary
consciousness, following the idea that the meditative state corresponds to a “begginer” state
of mind in which previously formed biases (i.e., predictions of previously formed generative
models) are attenuated, allowing for a more present-focused state (Austin, 1999; Suzuki &
Dixon, 1982).

While sometimes ignored, the entropic brain hypothesis also makes a prediction that an
increase in entropy surpassing the critical point may lead to a loss of consciousness.
However, to the best of our knowledge no ASCs have been yet observed reflecting this
change of trend. The results of this review allow us to propose a candidate ASC for the
category of loss of consciousness due to an increase in entropy possibly, which build on the
fact that meditation is a gradual process that involves a continuous practice, and that finding
that the meditative state tends to entail increased entropy of the corresponding neural activity.
The ASC we propose is the state of Nirodha-Samapatti, which is a pinnacle of meditation



practice and is phenomenologically characterized by an increasing sense of meditative depth,
followed by a transient cessation in conscious experience (Sharp 2011; Berkovich-Ohana
2015; Laukkonen et. al, 2023). The study of this ASC, and the process leading to it, in the
context of complexity of neural activity, is a promising avenue for future work, which may
propose a first example of passing beyond the hypothesized critical point proposed by the
entropic brain hypotheses.

Another interesting phenomena arising from our analysis is the reduction of baseline
complexity as a function of meditation experience. It has been suggested (Carhart-Harris &
Nutt, 2017; Carhart-Harris & Friston, 2019) that transient increase in entropy induced by
psychedelics allows for the neural system to explore new regimes of information processing,
which could in principle allow the brain to find new and more efficient functional pathways
that may persist after the experience (Hipolito et al., 2022). We see the results of increased
complexity during the meditative state, and decreased baseline complexity as a function of
meditation experience as a support to this notion, with numerous potential mental-health
implications.

Limitations and Guidance for Future Studies in the Field

Firstly, although in our analysis we didn’t find any specific trend in results as a factor of
different preprocessing pipelines, complexity-related measures are in principle sensitive to
preprocessing steps, and especially to the time-window used for calculation, the signal to
noise ratio (Lau et. al, 2022), and the values of frequency filters (Durschmid et. al, 2020).
Therefore we call for more open data practices, which will allow a re-examination of reported
results under different pipelines. In the case that sharing data is not possible, we encourage
researchers to fully report the study design, especially the meditation instructions or
phenomenology if it exists, and the employed data preprocessing pipelines. While some
studies did report these in detail, this practice is still not widely adopted, and the lack of it
adds unnecessary difficulties when attempting to reach overarching conclusions.

Second, as previously elaborated, the notion of complexity is (to date) more a set of
overarching principles rather than a single well-specified measurable property. Consequently,
we encourage researchers to take caution when interpreting results of complexity-related
measures, bearing in mind that each measure may only be able to capture aspects of a specific
facet of a complex system. In light of these issues, we encourage researchers to apply a
predefined set of measures when attempting to estimate complexity, as well as analyze the
dependencies and correlations that may exist between these measures, as discussed in Walter
& Hinterberger (2022). In particular, the following is a set of measures that we deem as
useful: MSE, LZc, and HFD, as each of these measures theoretically captures a
complementary aspect of complexity. Additionally, it is worth keeping in mind that changes
observed in complexity-related measures can, in many cases, be accounted for by traditional
spectral measures (Mediano et al, 2023). This issue can be addressed by computing both
spectral and complexity-related measures and contrasting the variance explained by each of



these, or by applying estimators that inherently disentangle spectral power from complexity
effects, such as the one presented by Mediano and colleagues (2023).

Finally, analyzing the results according to our categorization of meditation styles failed to
account for differences in results. This finding may have at least two interpretations: either
complexity-related measures are able to characterize meditation beyond the differences in
meditation techniques, or this categorization is gross and does not truly reflect the actual
experience of meditators (especially for novices). Confirming or rejecting the first
interpretation is an interesting avenue for future experimental work that may directly
compare different meditation styles. The second interpretation points toward the deeper
challenge of bridging first-person experience (and reports of the experience) and third-person
measurements. This challenge has been discussed thoroughly in the literature, and a research
program that we regard as particularly promising is neurophenomenology (Varela, 1996).

Thus, considering the important variance introduced by the wide range of meditation
techniques, and given that our analysis shows that a categorization of meditation styles fails
to account for discrepancies between studies, we recommend neurophenomenology as a
framework to aid bridging the gap between subjective and objective data. Phenomenological
studies can be developed through many methods. For example, deep phenomenology allows
us to go beyond classical categorizations of meditation and address the specific experience of
participants (e.g. Nave et al., 2021). Also, the use of neurophenomenology in the study of
ASCs has been strongly advocated by Timmerman and colleagues (2023b), and a practical
guide for some strategies of application was offered by Berkovich-Ohana and colleagues
(2020). Some examples of such methods include micro-phenomenology (Petitmengin, 2006),
temporal experience tracking (Jachs, 2021), descriptive experience sampling (Hurlburt &
Akhter, 2006) and even repeatedly introducing a simple question during measurement of
neural activity (Lu & Rodriguez-Larios, 2022). Considering the range of choices, choosing a
neuro-phenomenological method for investigation should take into account the following
aspects: depth of reports, practical implications, relevance to the time-course of the
experience and the risk of biased information.

We hope that this review will inform the growing field of applying complexity-related
measures to the study of meditation and its underlying neural activity, and will serve as an
organizing back-bone for future studies, as well as inspire the use of open data and
neurophenomenology, to enable reaching wider conclusions.
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Appendix - Measures Used in the Reviewed Studies

To facilitate an easier reading of the review, here we provide a brief description of the
complexity measures considered in the studies reviewed. For a complete description of each
measure, please refer to the relevant article in which the measure was formulated, or to the
relevant study in the review utilizing the measure.

Entropy and Related Measures

Shannon Entropy (Shannon, 1948), is a measure of the uncertainty associated with a random
variable. It quantifies the average amount of information that is gained when an observed
measures the variable in question, or equivalently, the information needed to describe or
predict it. Shannon Entropy is calculated by taking the average value of the logarithm of the
probability of each possible event.

Permutation Entropy (PE, Bandt & Pompe, 2002) is a measure that quantifies the diversity of
patterns of a time series by analyzing the distribution of ordinal sequences, which are
determined by the relative orderings of data points within a sliding window. PE then
calculates the Shannon Entropy of the ordinal pattern distribution, providing a measure of the
complexity or unpredictability of patterns observed on the time series.

Sample Entropy (SE, Richman & Moorman, 2000) is a measure similar to PE, also used to
quantify the diversity of patterns in time series. It calculates the probability of finding
repeating patterns of a certain length within the data by comparing the similarity of
overlapping subsequences. The Shannon Entropy is then calculated based on these
probabilities to determine the SE value.

Multiscale Entropy (MSE, Costa et al., 2002) is an extension of SE, which calculates SE at
different multiple levels of down-sampling or smoothing of the time series, choosing different
values for a scaling factor. MSE thus provides a scale-dependent assessment of irregularity,
allowing the identification of complex dynamics at different temporal resolutions.

Wavelet Entropy (WE, Zheng-you et al., 2006) is a measure that combines the concepts of
wavelet analysis, using wavelet decomposition to capture both frequency and temporal
information of the data and calculating the Shannon entropy of the resulting wavelet
coefficients. Wavelet Entropy can reveal the complexity of different frequency components
and their interactions within the time series.

Minimum Variance Modified Fuzzy Entropy (MVMFzEn, Raghu et al, 2018) combines fuzzy
sets and Shannon entropy to capture both fuzziness and irregularity in the data. Fuzziness
represents uncertainty or vagueness, indicating the lack of clear boundaries when assigning
membership to categories or sets. It is calculated by assessing the ambiguity or overlap
between different membership values. Irregularity refers to randomness or the absence of a
predictable pattern. MVMFzEn incorporates a modification to enhance robustness by
reducing sensitivity to outliers and noise.



Lempel-Ziv Complexity (LZc, Lempel & Ziv, 1976) measures the complexity or
compressibility of a binary string by identifying repeated patterns. It quantifies the number of
distinct patterns found in the data. For estimating the complexity of a non-binary time series,
such as EEG neural activity, a threshold is defined for binarization, usually chosen as the
mean of the detrended time series. Under the condition of stationarity of the data, the LZc can
be used as an effective estimator of the entropy rate of the time series (Mediano et. al, 2023).

Fractal Dimension and Related Measures

Higuchi’s Fractal Dimension (HFD, Higuchi,1988) is a method used to estimate the fractal
dimension of a time series. This approach analyzes the scaling behavior of the curve through
a process of dividing the time series into shorter segments and measuring the average length
of the curve in each segment. The fractal dimension is then obtained by fitting a linear
regression to the relationship between segment length and the corresponding average curve
length.

Sevcik's Algorithm (Sevcik, 2006) is another method for estimating the fractal dimension of a
time series. Sevcik's Algorithm calculates the autocorrelation function of the time series and
then uses a specialized algorithm to estimate the fractal dimension based on the decay rate of
the autocorrelation.

Dimensional Complexity (DCx, Pritchard & Duke, 1995) is a measure used to assess the
complexity of a dynamical system, capturing the richness and diversity of its dynamics by
evaluating the system’s behavior in its phase space. This is done by laying a grid over a phase
space reconstructed from the time-series and estimating the amount of squares/cubes the
trajectory of the signal in this space fills as it evolves through time.

Hurst Exponent (Hurst, 1951) is a measure of long range temporal correlation (LRTC) of a
time series. It describes the rate at which autocorrelations between value pairs in the time
series decay as the time distance between the pair increases. The interpretation of the Hurst
exponent in the context of complexity is not straightforward, as a value of H=0.5 indicates no
temporal correlations while values of 0<H<0.5 indicate the presence of anti-correlations,
stronger when closer to 0 and values of 0.5<H<I indicate the presence of correlations which
are stronger when closer to 1. For monofractals, the Hurst exponent (H) directly relates to the
fractal dimension (D) following the formula D=2-H. Correspondingly, a smaller value of H
entails a larger fractal dimension and vice versa.

Detrended Fluctuation Analysis (DFA, Peng et. al, 1995) is a method for estimating the Hurst
exponent of a time-series. DFA involves dividing the time series into smaller segments,
removing the local trends within each segment, and then calculating the fluctuation of the
detrended data as a function of segment size. By examining the relationship between the
fluctuation and the segment size, DFA computes a scaling exponent, which is an estimation
of the Hurst exponent.
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