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Abstract
Tendeiro and Kiers (2019) provide a detailed and scholarly critique of Null
Hypothesis Bayesian Testing (NHBT) and its central component —the Bayes
factor— that allows researchers to update knowledge and quantify statisti-
cal evidence. Tendeiro and Kiers conclude that NHBT constitutes an im-
provement over frequentist p-values, but primarily elaborate on a list of
eleven ‘issues’ of NHBT. We believe that several issues identified by Ten-
deiro and Kiers are of central importance for elucidating the complementary
roles of hypothesis testing versus parameter estimation and for appreciating
the virtue of statistical thinking over conducting statistical rituals. But al-
though we agree with many of their thoughtful recommendations, we believe
that Tendeiro and Kiers are overly pessimistic, and that several of their ‘is-
sues’ with NHBT may in fact be conceived as pronounced advantages. We
illustrate our arguments with simple, concrete examples and end with a crit-
ical discussion of one of the recommendations by Tendeiro and Kiers, which
is that “estimation of the full posterior distribution offers a more complete

picture” than a Bayes factor hypothesis test.

Keywords: Bayes factors, Bayesian hypothesis testing, parameter estima-

tion.



RESPONSE TO NHBT 2

but who attempts to eat an orange without first disposing of the peel, or what manner of

a dwelling could be erected unless an adequate foundation be first provided?

Ernest Bramah Smith, Kai Lung’s Golden Hours

In recent years, Bayesian hypothesis tests have become increasingly visible as
a way to supplement or even supplant the standard ‘frequentist’ p-value hypothesis
tests (e.g., Vandekerckhove, Rouder, & Kruschke, 2018; Hoijtink & Chow, 2017). One
of the most prominent Bayesian tests, explicitly developed to offer an alternative to
p-values, quantifies evidence for two rival hypotheses by comparing their predictive
success for the observed data (i.e., the Bayes factor; Jeffreys, 1939; Kass & Raftery,
1995). In the context of significance testing, the rival hypotheses usually consist of a
point null hypothesis H, instantiating the skeptic’s position that the effect is absent,
and an alternative hypothesis H;, which postulates that the effect is present but of
unknown size; in order to be able to evaluate the predictive adequacy of H;, the
unknown effect size is assigned a prior distribution. In what follows, the Bayes factor
hypothesis test for H, versus H; is denoted as Null Hypothesis Bayesian Testing (i.e.,
NHBT).

In their article “A review of issues about Null Hypothesis Bayesian Testing”,
Tendeiro and Kiers (2019; henceforth TK) provide an in-depth discussion of NHBT.
We agree with TK that “NHBT is an improvement over NHST [Null Hypothesis
Significance Testing]”. We also agree that NHBT is important to discuss, and that
it is important for practitioners to know more about what NHBT is and what it is
not. However, we disagree with TK when they identify eleven issues associated with
NHBT and interpret all of them as potentially problematic (i.e., in their abstract,
TK equate the term ‘issues’ with “limitations or sources of misinterpretation” and

“shortcomings”). In our opinion, many of the ‘issues’ listed by TK are a blessing
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Table 1

The eleven issues of NHBT according to TK. The left column contains TK’s assess-
ment of each of these issues, and the right column contains our own assessment.
Xindicates a disadvantage; = indicates a neutral property; v  indicates an advantage.
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Bayes factors can be hard to compute

Bayes factors are sensitive to within-model priors

Use of ‘default’ Bayes factors

Bayes factors are not posterior model probabilities

Bayes factors do not imply a model is probably correct
Qualitative interpretation of Bayes factors

Bayes factors test model classes

Mismatch between Bayes factors and parameter estimation

© RN W

Bayes factors favor the point null model

—
=

Bayes factors favor the alternative
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—_
—_

Bayes factors often agree with p-values

rather than a curse. The issues identified by TK are listed in Table 1. All eleven
issues are interpreted as problematic by TK; in contrast, we believe that five of the
eleven issues are actually advantages, and six are neutral. Below we first discuss each
issue in turn, with the express purpose of providing the reader with a perspective
that balances and complements that of TK. We then provide a more detailed critique
of TKs alternative inference procedure that bases inference solely on the continuous
posterior distribution under H;. This alternative procedure is simple and easy to ap-
ply, but Bayesian literature (e.g., Berger & Delampady, 1987; Jeffreys, 1961) suggest
that it is beguiling and can easily fool practitioners into believing that they answered
a question that they in fact never asked (e.g., Wagenmakers, Lee, Rouder, & Morey,
2020).
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1. “Bayes factors can be hard to compute”

TK point out that Bayes factors are hard to compute, as they involve a multidi-
mensional integral across the parameter space. This statement is true for some Bayes
factors (e.g., those that involve composite hypotheses and lack an analytic expression
for the marginal likelihood), but we teach Bayes factors to our first-year undergrad-
uate students with examples that can be calculated by hand. The first author of
this paper habitually uses an example of a Bayes factor as a simple likelihood ratio
based on the umbrella scenario presented in chapter 17 of Navarro (2015). In the
example, the student sees me walking into the lecture hall (that has no windows)
with an umbrella. The student wishes to know whether or not it rains outside. It
is given that the prior that it rains is 45% (based, for instance, on data from the
Dutch weather institute, the way the sky looked six hours ago when they entered
the building, etc.), that the probability of me carrying an umbrella if it rains is 80%
(sometimes I forget), and that the probability of me carrying an umbrella if it does
not rain is 10% (better safe than sorry). The Bayes factor is the simple ratio of the
likelihoods, i.e. 0.8/0.1 = 8 (and the resulting posterior probability that it rains, not
relevant here, is (8 x .45) /(8 x .45+ (1 — .45)) ~ .87).

Bayes factors for more realistic scenarios can be hard to compute, but this is no
different for NHST (we know of no-one that can calculate an exact p-value without the
help of software). More to the point, the difficulty in computation is relevant mostly
for mathematical statisticians who wish to develop novel Bayes factor tests or for those
who wish to use idiosyncratic prior distributions (e.g., a trimodal prior distribution
on a binomial chance parameter ). And even for this relatively small group of
statistical experts, there exist convenient ways to obtain the Bayes factor (e.g., the

Savage-Dickey density ratio test, Dickey & Lientz, 1970; Wagenmakers, Lodewyckx,
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Kuriyal, & Grasman, 2010; bridge sampling, Gronau, Singmann, & Wagenmakers,
2020; Gronau et al., 2017; for an overview see Gamerman & Lopes, 2006; Martin,
Frazier, & Robert, 2020; see also Chib, 1995; Chib & Jeliazkov, 2001). Furthermore,
introductory papers on some of the more technical aspects of Bayesian inference are
on the rise (e.g., van Ravenzwaaij, Cassey, & Brown, 2018; Etz & Vandekerckhove,
2018; van Ravenzwaaij & Etz, in press), gradually expanding the group of statistical
experts who are comfortable with computing their own Bayes factor.

For the practitioner interested in applying existing statistical models, how-
ever, the fact that Bayes factors involve a multidimensional integral is irrelevant,
as the computation is usually done by software programs in a matter of sec-
onds. As acknowledged by TK, specialized software such as JASP (JASP Team,
2020, jasp-stats.org) or the BayesFactor R-package (Morey et al., 2018) allow
users to obtain Bayes factors with relatively little effort. Other recently developed
Bayes factor software includes Baln (e.g., Gu, Mulder, & Hoijtink, 2018; Gu, Hoi-
jtink, Mulder, & Rosseel, 2019; Hoijtink, Mulder, van Lissa, & Gu, 2019), BFPack
(e.g., Mulder, Gu, et al., 2019; Mulder, Hoijtink, & Gu, 2019), BAS (e.g., Clyde,
Ghosh, & Littman, 2011; Clyde, 2016; van den Bergh, Clyde, et al., in press),
and the Bayes factor calculator developed by Zoltan Dienes available at http://
www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm. A com-
prehensive overview at https://cran.r-project.org/web/views/Bayesian.html
lists many other packages that produce Bayes factors with ease. For linear models,
the theoretical work by Zellner and Siow (1980), Liang, Paulo, Molina, Clyde, and
Berger (2008), and Rouder, Speckman, Sun, Morey, and Iverson (2009) has further
reduced the need for time-consuming numerical integration techniques.

In general, almost all statistical analyses are hard to compute by hand. Struc-

tural equation models, network models, machine-learning methods, analysis of vari-
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ance (ANOVA) — all of these would constitute formidable or even insurmountable
challenges for practitioners if the analyses had to be conducted by hand. However, in
the modern era of statistical computing, virtually all analyses are conducted in silico,
such that the practitioner need not worry about the details of the computation but is
free to focus on the substantive interpretation of the results. In sum, we agree with
TK when they state “Given the availability of Bayes factor-friendly software (...), we
may conclude that the difficulty [of computing the marginal likelihood] is a feature
of Bayes factors that does not offer major problems for practitioners, at least for the
most common types of tests used in the social sciences.”

One could argue that perhaps the issue is not that NHBT is harder to compute
than NHST, but that it is harder to understand.! We find this argument unconvincing:
there is ample evidence of the difficulty that scientific practitioners experience when
trying to understand NHST (Gigerenzer, 2004, 2018; Oakes, 1986; Haller & Krauss,
2002; Lyu, Xu, Zhao, Zuo, & Hu, 2020). Our admittedly limited experience suggests
that if taught from day one, NHBT may be more intuitive and easier to understand

than NHST (see also Haucke, Miosga, Hoekstra, & van Ravenzwaaij, in press).

2. “Bayes factors are sensitive to within-model priors”

In NHBT, the exact value of the Bayes factor depends on the prior of the effect
size parameter under the alternative model H;. Considered an issue by TK, we
believe this is an advantage (e.g., Etz & Vandekerckhove, 2016; Vanpaemel, 2010).
The reason that Bayes factors are sensitive to within-model priors is that Bayes factors
evaluate models by the predictions they make, and predictions are determined partly

by the prior.?2 So the negative statement that “the Bayes factor is sensitive to the

'We thank a reviewer for bringing this to our attention.
2The connection is implicit in the linguistic similarity between the words “prediction” and “prior”.
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within-model prior” is the same as the positive statement “the Bayes factor evaluates
models based on their predictive adequacy”. The argument may therefore be turned
on its head: any method that fails to take into account the predictions that a hypothesis
makes is seriously deficient.

Within-model priors determine the nature of a model (Box, 1980). In par-
ticular, narrow priors instantiate parsimonious models that make risky predictions.
When such risky predictions come true, the Bayes factor will indicate that the model
outperformed more flexible models who were hedging their bets instead. As a con-
crete example, consider the study reported by Tawakol et al. (2017) on the relation
between amygdalar activity and perceived stress in 13 patients with post-traumatic
stress disorder (see also van Dongen et al., 2019). The top panel of Figure 1 shows
the result of a default two-sided analysis, where the prior on effect size under H;
is symmetric around zero; specifically, H; : p ~ Uniform[—1,1] (Jeffreys, 1961). In
other words, the Bayes factor test compares the predictive performance of Hy (i.e.,
the correlation is absent) against that of an alternative hypothesis which states that
all values of the population correlation coefficient are equally likely a priori. This
comparison yields a Bayes factor in favor of H; of about 2.

However, it may be argued that the alternative hypothesis ought to be amended
in order to incorporate the theoretical knowledge that the relation between amygdalar
activity and perceived stress is assumed to be positive rather than negative. In other
words, we can define the alternative hypothesis so that it allows only positive popu-
lation correlation coefficients: H, : p ~ Uniform[0, 1] (see also Jeffreys, 1961, p. 283;
Wagenmakers et al., 2010). By allocating all prior mass to positive coefficients, the
sharpened alternative hypothesis makes predictions that are more risky and better
reflect the theory under test. The middle panel of Figure 1 shows that sharpening

the alternative hypothesis has increased its predictive advantage over Hy and yields a
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Figure 1. A model’s predictive performance depends on the prior distribution:
a demonstration for the correlation between Amygdalar Activity and Perceived
Stress reported in Tawakol et al. (2017). Top panel: Results from a two-sided
prior, H; : p ~ Uniform[—1,1]. Middle panel: Results from a one-sided prior,
Hi : p ~ Uniform[0,1]. Bottom panel: Results from a highly peaked prior,
H;y : p ~ Stretched-Beta[1000, 1000]. Figures from JASP.
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Bayes factor of about 3.9, almost a doubling of the evidence.> Note that, in this par-
ticular case, sharpening the alternative hypothesis does not result in a large change in
the posterior distribution for the correlation coefficient (see van Ravenzwaaij, Mon-
den, Tendeiro, & loannidis, 2019 for many other applied examples of the effect of
one-sided versus two-sided hypotheses on the Bayes factor). One could state that the
posterior distribution is ‘robust’ to the specification of the model as two-sided (i.e.,
undirectional) or one-sided (i.e., directional), but the epithet ‘insensitive’ appears to

be more apt.

To underscore the importance of the prior distribution for assessing relative
predictive success, the bottom panel of Figure 1 shows the result when the al-
ternative hypothesis is specified to be extremely similar to Hg; here, we used
Hi : p ~ Stretched-Beta[1000, 1000]. The predictions from this alternative hypoth-
esis are virtually identical to those from the point-null hypothesis Hy, and with a
Bayes factor of approximately 1, the data are almost perfectly nondiagnostic.* Conse-
quently, it hardly matters whether we use the point H, or the peaked H; for inference
and prediction; this is an important point that we will revisit later when we discuss

a pragmatic solution to the critique that ‘the point null hypothesis is never true’.

The upshot is that the prior distribution does affect the model predictions (and,
consequently, the Bayes factor), but that this is hardly an ‘issue’ (Rouder, Morey, &
Wagenmakers, 2016; Rouder, Morey, Verhagen, Province, & Wagenmakers, 2016;
Rouder & Morey, 2019). Moreover, reasonable choices of priors will have a relatively
moderate effect on the Bayes factor (see e.g., Stefan, Katsimpokis, Gronau, & Wa-

genmakers, 2021). The demonstration of TK was taken from Liu and Aitkin (2008)

3Nevertheless, this degree of evidence remains insufficient to convince a skeptic, as the data lower
a 50% prior probability for H to about 20%, a non-negligible number.

4These Bayesian analyses can be obtained from JASP with a handful of mouse clicks and key
strokes.
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who used two extreme prior distributions — the Jeffreys’s prior and the Haldane prior
— that were proposed for estimation, and emphatically not for testing (e.g., Jeffreys,
1961, p. 251). No software package should offer these two prior distributions as a
default for testing, and researchers with the statistical and technical skills to specify
custom priors are unlikely to use these priors for testing. The fact that Liu and Aitkin
(2008) employed these priors for testing (and the fact that TK followed their lead)
bolsters our argument, outlined in the next section, that it is useful to offer practi-
tioners a default prior distribution from which they can deviate only in the presence
of strong prior information.

When strong prior information exists, it may come from theoretical constraints
(e.g., M. D. Lee & Vanpaemel, 2018) or from expert knowledge (e.g., O’'Hagan et
al., 2006). The development of reliable procedures to elicit strong prior knowledge is
challenging but holds considerable promise, as it makes the test more diagnostic (e.g.,
Stefan, Gronau, Schonbrodt, & Wagenmakers, 2019; Stefan, Evans, & Wagenmakers,

in press).

3. “Use of ‘default’ Bayes factors”

TK worry that the existence of ‘default’ Bayes factors might give practitioners
the false impression that there exists only a single reasonable Bayes factor. First,
although TK are right to worry about the blind application of Bayes factors, this
worry applies to any statistical technique. Most data sets can be analyzed using a
large variety of different statistical models (e.g., Silberzahn et al., 2018) and present a
multitude of data selection options (e.g., Gelman & Loken, 2014). One may argue that
any statistical method whatsoever requires experience, quantitative understanding,
and sound judgment.

Second, in our experience the adoption of reasonable non-default prior distribu-
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tions has only a modest impact on the Bayes factor (e.g., Stefan et al., 2021; Gronau,
Ly, & Wagenmakers, 2020). This impact is typically much smaller than that caused
by a change in the statistical model, by variable transformations, by different treat-
ment of outliers, and so forth. To explain why the impact of prior distributions is
often surprisingly modest, consider TK’s critique that the default prior for the t-
test —a Cauchy distribution centered at zero with scale parameter .707- is too wide.
Specifically, this distribution assigns 50% of its mass to values larger than |.707|: if
this is unrealistically wide, maybe the default prior distribution is of limited use, and
the resulting Bayes factor misleading? Indeed, we ourselves have been worried in
the past that the default Cauchy distribution is too wide, despite literature reviews
showing that large effect sizes occur more often than one may expect (e.g., Aczel,
2018, slide 20; Wagenmakers, Wetzels, Borsboom, Kievit, & van der Maas, 2013).
However, we recently realized that the impact of the ‘wideness’ is much more modest

than one may intuit.

Consider two researchers, A and B, who analyze the same data set. Researcher
A uses the default zero-centered Cauchy prior distribution with inter-quartile range
of .707; researcher B uses the same prior distribution, but truncated to have mass
only within the interval from —.707 to +.707. Assume that, in a very large sample,
the observed effect is relatively close to zero. Researcher A reports a Bayes factor
of 3.5 against the null hypothesis. It is now clear that the truncated default prior
used by researcher B will provide better predictive performance, because no prior
mass is ‘wasted’ on large values of effect size that are inconsistent with the data. As
it turns out, truncating the default Cauchy to its interquartile range increases the
predictive performance of the alternative hypothesis by a factor of at most 2. This
means that the Bayes factor for B’s truncated alternative hypothesis versus A’s default

‘overly wide’ alternative hypothesis is at most 2; consequently, B will report a Bayes
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factor against the null hypothesis that cannot be any larger than 2 x 3.5 = 7. This
means that the potential predictive benefit of truncating the default distribution to
its interquartile range is just as large as the potential predictive benefit of conducting
a one-sided test instead of a two-sided test.” In other words, suppose a very large
data set has an effect size of 0.3 with almost all posterior mass ranging from 0.2 to
0.4; the predictive benefit of knowing in advance the direction of the effect is just
as large as the predictive benefit of knowing in advance that it falls within the prior
interquartile range; consequently, the Bayes factor from a one-sided default Cauchy
distribution is virtually identical to the Bayes factor from a two-sided default Cauchy

distribution that is truncated to the [—.707,4.707] interval.

What the foregoing shows is that although the width of the prior distribution is
important for assessing relative predictive success, its impact should not be overstated.
In particular, prior distributions that are overly wide (but not grotesquely wide) will
nevertheless yield informative outcomes. We recommend that future critiques of the
Bayes factor being dependent on the prior distribution include a careful robustness

analysis across a range of plausible options.

Third, as acknowledged by TK, the default prior distributions are not chosen
haphazardly, but are constructed to fulfill general desiderata that apply across a
wide range of scientific contexts (e.g., Bayarri, Berger, Forte, & Garcia-Donato, 2012;
Consonni, Fouskakis, Liseo, & Ntzoufras, 2018). Consequently, the default prior
allows a reference analysis that provides an objective point of departure in the possible
formulation of alternative hypotheses that make riskier predictions. Default priors
also act as an anchor in the sense that, if the non-default prior distribution yields a

Bayes factor that is qualitatively different from that associated with the default prior,

5Note that this happens for exactly the same statistical reason: in both cases, 50% prior mass of
poorly predicting values is eliminated.
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this encourages the researcher to acknowledge explicitly that the result is substantially
affected by the prior knowledge that was used to define the alternative hypothesis.

Fourth, default Bayes factors allow efficient communication of evidence that
many researchers may consider less sensitive to human bias than more subjective or
‘informed’ alternatives. Fifth, without default distributions every researcher would be
required to define their own prior distributions for every application, an unfamiliar
activity that may deter many researchers from using Bayes factors at all. In our
opinion, a default Bayes factor, however blindly applied, is usually preferable over no
Bayes factor at all.

Sixth, for relatively complex models such as repeated-measures ANOVA and lin-
ear regression with many predictors, subjective specification of the prior distribution
may be near impossible, and there is no realistic alternative to a default specification.

Seventh, software programs that offer Bayesian analyses, such as JASP (JASP
Team, 2020), usually offer a sensitivity analysis, that is, a comprehensive investigation
of the extent to which the Bayes factor differs across alternative specification of the
prior distribution. The presence of a default prior allows this sensitivity analysis to

proceed in a more systematic fashion.

4. “Bayes factors are not posterior model probabilities”

TK warn that Bayes factors quantify the relative probability of the data given
two rival models, and not the relative probability of two rival models given the data,
which TK believe is the more relevant number. In other words, posterior model prob-
abilities quantify the models’ relative plausibility after the data have been observed,
whereas the Bayes factor quantifies the change in this plausibility brought about by
the observed data. Thus, posterior probabilities quantify belief, whereas Bayes factors

quantify evidence (e.g., Evans, 2015).
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Although it is clearly important to distinguish between belief and evidence, both
concepts are important. The question at hand is what concept is more relevant when
researchers wish to communicate the results of their experiments to their peers. In
our opinion, what researchers should refrain from doing is to present posterior model
probabilities without clarifying the extent to which those probabilities are a result of
the evidence. Thus, whenever posterior model probabilities are reported, so should
its constituent elements: the prior model probabilities and the evidence. And in such
a case, one may further debate how much added value is provided by reporting the
prior model probabilities, as these mostly measure the researchers’ enthusiasm for the
hypotheses under consideration. Barring exceptional cases such as extra-sensory per-
ception, it therefore seems prudent for empirical reports to emphasize the evidence,
and leave it to individual readers to construct their own posterior probabilities by
combining that evidence with one’s prior conviction, information, or enthusiasm. An
alternative reporting format is to present the Bayes factor and accompany it by a
range of prior model probabilities, yielding an associated range of posterior model
probabilities (Etz, Haaf, Rouder, & Vandekerckhove, 2018). A recent survey suggests
that among 31 authors of articles published in Nature Human Behaviour, none be-
lieve their key claims were either outlandish or trivial a priori, with the lowest prior
probability at 0.20 and the highest at 0.75 (van Doorn et al., in press). Regardless, we
personally believe that for drawing conclusions from data in most scientific applica-
tions, evidence is the key concept. When the goal is to convince a skeptical scientific
audience that a particular claim has empirical support, it is evidence —and not belief—
which is required. The extent to which practitioners agree with this statement is an
open empirical question.

In sum, we agree with TK that “It is essential to understand this distinction [be-

tween evidence and belief — DvR & EJW] in order to avoid erroneous interpretations
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of Bayes factors. As stated in one of the first statistics articles on the Bayes factor,
“To raise the probability of a proposition from 0.01 to 0.1 does not make it the most
likely alternative.” (Jeffreys, 1935, p. 221). We disagree with TK that researchers are
primarily interested in degree of belief and not evidence when communicating and

consuming scientific results.

5. “Bayes factors do not imply a model is probably correct”

TK warn that Bayes factors are a model comparison tool that ignores absolute
model performance. Specifically, the Bayes factor concerns the relative predictive
adequacy of rival models. Model A may be favored by the Bayes factor and decisively
outpredict model B, but this does not mean that model A is likely to be the “true
model”, as both models may be dramatically misspecified (for a concrete example see
Wagenmakers et al., 2018, p. 50).

In general, Bayes’ rule shows that all Bayesian inference is inherently relative
— probability is distributed across a range of alternatives, and knowledge updates are
relative to the performance of those alternatives. As explained by Lindley (1993, p.
25):

“The Bayesian method is comparative. It compares the probabilities
of the observed event on the null hypothesis and on the alternatives to
it. In this respect it is quite different from Fisher’s approach which is
absolute in the sense that it involves only a single consideration, the null
hypothesis. All our uncertainty judgements should be comparative: there
are no absolutes here. A striking illustration of this arises in legal trials.
When a piece of evidence E is produced in a court investigating the guilt
G or innocence I of the defendant, it is not enough merely to consider the

probability of E assuming G; one must also contemplate the probability
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of E supposing I. In fact, the relevant quantity is the ratio of the two
probabilities. Generally if evidence is produced to support some thesis,
one must also consider the reasonableness of the evidence were the thesis
false. Whenever courses of action are contemplated, it is not the merits
or demerits of any course that matter, but only the comparison of these

qualities with those of other courses.”

So the comparative nature of the Bayes factor pertains to all Bayesian infer-
ence, and is also a feature of the posterior distribution under H;, whose inspection is
the method TK recommend in the model misspecification context when they state,
“Instead, analyzing the posterior distribution for the parameter being tested offers
a much richer insight”. In fact, we believe the opposite is true: the TK-posterior-
inspection method is arguably more susceptible to model misspecification than the
Bayes factor, because the Bayes factor does not commit fully to a single model —in
this case, H;— entirely on a priori grounds. The Bayes factor involves the specification
of two models, not just one, and the Bayes factor methodology may be seamlessly
expanded to include very many models —~hundreds, thousands, or even millions, de-
pending on the application— thereby increasing robustness and decreasing the prob-
ability of problematic model misspecification (e.g., Hinne, Gronau, van den Bergh,
& Wagenmakers, 2020). In contrast, the TK-posterior-inspection method takes one
of the models from the Bayes factor model space and ignores all others. Ignoring
alternative models is not a good method to detect model misspecification and make
statistical inference more robust. This disadvantage of the TK-posterior-inspection
method becomes clear with informed priors. Suppose we estimate a binomial chance
0 and assign it a highly informed beta(500,500) prior distribution. The data consist

of 20 successes, which yields a beta(520, 500) posterior distribution, hardly different
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from the prior distribution. Inspecting only the beta(520, 500) posterior distribution,
one may conclude “a posteriori, the binomial chance 6 is likely to be very close to
0.5”. The considerable conflict between data and prior (i.e., the model misspecifica-

tion; Box, 1980) is not evident from the posterior distribution.

One may generalize the TK-posterior-inspection method and include a visual
inspection of the prior distribution. This is better, but in the above scenario it can
still easily lead to the erroneous conclusion that “the data are not very informative;
after all, the posterior distribution is very close to the prior distribution”. Again,
this conclusion ignores the model misspecification, that is, the data-prior conflict.
So the TK-posterior-inspection method is not a panacea, and the spectre of model
misspecification haunts almost all of statistical inference, and will continue to do so

in the foreseeable future.

In sum, for all statistical work it is essential to check for model misspecification
and confirm that the inference is valid (e.g., Anscombe, 1973). Putting all one’s
inferential eggs into one model basket, as the TK-posterior-inspection method does,

is not a solution to this long-standing and pernicious problem.

6. “Qualitative interpretation of Bayes factors”

Bayes factors provide a continuous measure of evidence. TK are concerned that
—despite several proposals in the literature (Jeffreys, 1961; Kass & Raftery, 1995)—
no objective amount of evidence counts as ‘strong’, or ‘much’. In general, it is rarely
the case that a quantitative measure can be categorized in a qualitative fashion that
is context-independent, objective, or universally accepted. A notable exception is
Bayesian decision analysis (Berger, 1985; Lindley, 1985), where a specific criterion

level of evidence is required in order to trigger a particular all-or-none decision (e.g.,
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allowing a particular drug on the market).6

We believe that the evidence categories proposed by Jeffreys (1961) are use-
ful as a rough heuristic, a rule-of-thumb guideline that helps prevent enthusiastic
researchers from overinterpreting Bayes factors that represent weak evidence. How-
ever, any discretization of a statistical measure that is inherently continuous (e.g.,
p-values, bounds on confidence intervals, Bayes factors, or indeed posterior probabili-
ties) will be somewhat arbitrary and lead to a loss of information. This was mentioned
by Jeffreys himself when he discussed thresholds on BFy; (which he termed K): “we
are at liberty to surround K = 1 by two other values and say that within this range
the data are not sufficiently decisive, and even this device would be purely one of con-
venience and sacrifice some information given by the actual values of K. (Jeffreys,
1938, p. 378). To facilitate the interpretation of the continuous strength of evidence,
JASP (JASP Team, 2020) presents Bayes factors by probability wheels.

TK conclude that “the best solution is to not report Bayes factors only, but
to also report posterior model probabilities”. The main advantage of this proposal is
that the Bayes factor evidence is placed in context. For instance, a Bayes factor of
200 may be ‘extreme’ (M. D. Lee & Wagenmakers, 2013) when it concerns the test
of list-strength effects in recall, but it may be inconsequential when the hypothesis is
that neutrinos travel faster than the speed of light. As explained above under issue
4, our preference is to emphasize the evidence (cf. Aczel et al., 2020; Jeffreys, 1935),
but we acknowledge that prior model probabilities are currently undervalued and that

they can be useful when it comes to interpreting the evidence in qualitative terms.

6 A Bayesian decision analysis requires not only prior belief and evidence, but also utilities, that is,
the costs associated with acting on incorrect beliefs (e.g., approving an ineffective drug and rejecting
an effective drug).



RESPONSE TO NHBT 19

7. “Bayes factors test model classes”

NHBT compares a single null hypothesis (typically Ho : 6 = 0) to a composite
alternative hypothesis, or what TK call a model class (typically H; : 0 #0, H_ : § <
0, or Hy : § > 0 with associated prior distributions for ¢). TK provide an example
of how, in the case of a sample size typically found in psychology, it can happen
that when the true parameter value is close to the point null value, the Bayes factor
favors the point null model over the composite alternative due to the fact that the
composite model is a weighted average over all parameter values, many of them much
larger than the true parameter value. This finding may appear undesirable, but as it

follows directly from Bayes’ rule, it warrants a closer look.

Consider the researcher interested in computing the Bayes factor, that is, the
relative predictive performance of Hy and H;. The researcher is unable to specify the
alternative hypothesis as a single point, because the true population value is usually
highly uncertain a priori. This uncertainty translates into a prior distribution on the
test-relevant parameter . An immediate benefit of this prior distribution is that it
acts as an implicit correction for multiple testing: the price the researcher pays for not
committing to a single J is that the prior resources have to be distributed across the
different options. This is similar to when a risk-averse gambler distributes his stake
across many potential winners; doing so will inevitably reduce his payoff compared

to putting his entire stake on the winner.

The prior distribution therefore reflects one’s uncertainty about the size of the
effect; it can be interpreted as a bet on effect size, given that H; holds. It follows
that when the observed effect is surprisingly small (compared to the expectations
encoded in the prior distribution), the bet was poor and, with a typical sample

size, the evidence may therefore favor ‘Hy. We regard this as desirable rather than
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problematic. What is problematic is that the expectations were overly optimistic and
the sample is small. In a comment online, Richard Morey concludes that “the ‘bias’
toward the null for small effect sizes is exactly what must happen for any reasonable
method...Although it is counter intuitive, we would be worried if it didn’t happen
for some measure of evidence.”” Similarly, Jeffreys (1961, p. 248) addresses the TK

concern directly when he explains the rationale of the Bayes factor hypothesis test:

“The difficulty pointed out before (...) about the uniform assessment
of the prior probability was that even if o [DvR & EJW: the true value of
the test-relevant parameter] was 0, a [DvR & EJW: the sample estimate]
would usually be different from 0, on account of random error, and to
adopt a as the estimate would be to reject the hypothesis o = 0 even if it
was true. We now see how to escape from this dilemma. Small values of |al
up to some multiple of s [DvR & EJW: the standard error| will be taken
to support the hypothesis @ = 0, since they would be quite likely to arise
on that hypothesis, but larger values support the need to introduce «. In
suitable cases high probabilities may be obtained for either hypothesis.
The possibility of getting actual support for the null hypothesis from the
observations really comes from the fact that the value of « indicated by it
is unique. ¢’ [DvR & EJW: H,] indicates only a range of possible values,
and if we select the one that happens to fit the observations best we must
allow for the fact that it is a selected value. [italics ours] If |a] is less than
s, this is what we would expect on the hypothesis that « is 0, but if o was
equally likely to be anywhere in a range of length m it requires that an
event with a probability 2s/m shall have come off. If |a| is much larger

"See https://richarddmorey.org/category/bayes-factor/, post “All about that ‘bias, bias,
bias‘ (it’s no trouble)”, April 10, 2015.
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than s, however, a would be a very unlikely value to occur if a was 0, but
no more likely than any other if a was not 0. In each case we adopt the

less remarkable coincidence.”

In a later chapter, Jeffreys mentions that as sample size grows, our judgement

can be revised:

“It is worth while to devote some attention to considering how a law
[DvR & EJW: H,|, once well supported, can be wrong. A new param-
eter rejected by a significance test [DvR & EJW: Jeffreys’s Bayes factor
significance test] need not in fact be zero. All that we say is that on the
data there is a high probability that it is. But it is perfectly possible that
it is not zero but too small to have been detected with the accuracy yet
attained. We have seen how such small deviations from a law may be
detected by a large sample when they would appear to have been denied
by any sub-sample less than a certain size [DvR & EJW: this refers to the
concrete example on p. 333], and that this is not a contradiction of our

general rules.” (Jeffreys, 1961, p. 367)

8. “Mismatch between Bayes factors and parameter estimation”

TK observe that there can be situations where 95% credible intervals include
the null value, but Bayes factors indicate support for the alternative hypothesis, or
vice versa. This is again a direct consequence of Bayes’ rule. The reason for the
discrepancy is that the 95% credible interval (‘estimation’) is usually conditional on
H1, whereas Bayes factors (‘testing’) concern the tenability of Hg vs. H;. As the two
analyses depart from different assumptions and address different questions, there is

no reason to expect them to produce the same answer. Indeed, the discrepancy be-
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tween these two approaches was the main motivation for Jeffreys’s pioneering work in
Bayesian inference (e.g., Etz & Wagenmakers, 2017; Howie, 2002; Jeffreys, 1935, 1939;
Ly, Verhagen, & Wagenmakers, 2016; Ly et al., 2020; Robert, Chopin, & Rousseau,
2009; Wrinch & Jeffreys, 1921). As remarked by Berger (2006, p. 383): “Bayesians
cannot test precise hypotheses using confidence intervals. In classical statistics one
frequently sees testing done by forming a confidence region for the parameter, and
then rejecting a null value of the parameter if it does not lie in the confidence re-
gion. This is simply wrong if done in a Bayesian formulation (and if the null value
of the parameter is believable as a hypothesis).” (see also Bayarri & Berger, 2013).
Because classical confidence intervals are often numerically close (or even identical)
to Bayesian credible intervals, Berger’s admonition still holds, that is, Bayesians can-
not test precise hypotheses using credible intervals (for an extended discussion see

Wagenmakers et al., 2020).

Practically speaking, a 95% confidence interval that does not overlap with zero
can be interpreted as a two-sided significance test rejecting the null hypothesis with
significance level o = .05. What sort of parallel interpretation could novice practition-
ers of NHBT make? If the Bayesian 95% credible interval does not encompass zero,
it is not immediately obvious what ‘significant Bayes factor’ level would be falsely
implied. One common misinterpretation is as follows. Suppose 96% of the continu-
ous posterior mass is on positive effect sizes, and 4% is on negative effect sizes. This
could be misinterpreted to mean that the Bayes factor against the null hypothesis is
.96/.04 = 24. After all, the posterior probability that the effect is positive is .96. This
interpretation is incorrect, because the continuous prior distribution did not assign
any mass to the null hypothesis a priori; the null hypothesis was deemed false from
the outset, and hence no amount of data can either support or undercut it. Instead,

with a continuous prior distribution that does not express a preference for positive or
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negative effect sizes, the Bayes factor of 24 quantifies the evidence that the effect is
positive rather than negative, under the assumption that the effect is not zero. This
misinterpretation is not, however, a risk of using a Bayes factor; instead, it is a risk of
abusing the posterior distribution to address a question (i.e., “what evidence do the
data provide for the null hypothesis versus an alternative hypothesis?) that only a
Bayes factor can answer. In other words, a question of hypothesis testing ought not

be answered by estimating a parameter.

The estimation and testing frameworks can be brought in line, however, by
considering the unconditional prior and posterior distributions for effect size 4, that
is, a “spike and bell” distribution, where the mass on the spike at § = 0 represents the
plausibility of the null hypothesis. Traditionally, in parameter estimation, the focus
is firmly on the location and width of the bell (i.e., the posterior knowledge about §
under ;) and no attention is paid to the height of the spike. But, as recently pointed
out by Rouder, Haaf, and Vandekerckhove (2018, p. 108) “If one admits the possibility
of the spike, then assuredly it should affect posterior estimation as well.” (for a more
detailed treatment see van den Bergh, Haaf, Ly, Rouder, & Wagenmakers, in press).
Another way to bring the estimation and testing frameworks in line is by constructing
an interval that encompasses only values that receive a certain minimum Bayes factor
support from the data (e.g., Evans, 2015; Wagenmakers, Gronau, Dablander, & Etz,
in press). The final way is to recognize that Bayesian parameter estimation, just
as Bayes factor hypothesis testing, is fundamentally about changes in plausibility
brought about by relative predictive success (Rouder & Morey, 2019; Wagenmakers,
Morey, & Lee, 2016): regardless of whether they are labelled parameters or models,
accounts of the world that predict observed data relatively well experience a gain in

plausibility, whereas accounts that predict relatively poorly suffer a decline.
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9. “Bayes factors favor the point null model”

TK observe that default Bayes factors are more conservative than p-values (see
also van Ravenzwaaij & loannidis, 2017). That is, whereas p-values just below .05
may prompt the conclusion to “reject the null hypothesis”, the corresponding Bayes
factors usually indicate the evidence against the null hypothesis is only weak; for
large sample sizes, the Bayes factor may even reveal that the point null hypothesis is
supported rather than undercut (e.g., Jeffreys, 1935; Lindley, 1957). Several remarks
are in order. First, as far as p-values are concerned, their all-or-none nature in
Neyman-Pearson a-level NHST implies that strong decisions will sometimes be made
on weak evidence. We agree with Robinson (2019, p. 246): “In my opinion, inference
(as opposed to merely choosing) must always allow the additional option of stating
that the evidence is not sufficiently strong for a reliable choice to be made between
the hypotheses.” (see also Rouder, Morey, & Wagenmakers, 2016; Rouder, Morey,
Verhagen, et al., 2016). Second, it is important that the Bayes factor is a unique and
deterministic consequence of the prior distribution and the data; complaints about
the behavior of the Bayes factor are therefore indirectly complaints about the prior
distribution or the data. When the prior distribution is specified to one’s satisfaction,

the data then give rise to a single Bayes factor that reflects the evidence.

This ‘backward propagation of discontent’ is a general property of Bayesian
inference that is worth emphasizing. Bayesian inference is coherent, in the sense
that it disallows conclusions that are internally inconsistent. As stated by Lindley
(2006, p. 37), “Coherence is the most important tool that we have today for the
measurement of uncertainty, in that it enables you to pass from simple, measurable

events to more complicated ones. Coherence plays a role in probability similar to the
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role Euclidean geometry plays in the measurement of distance.”® Imagine a perfect
chef who creates the best possible dish (tailored to your tastes) given the available
ingredients. If you nevertheless strongly dislike the dish, this can only mean that the
ingredients were poor, and it would be inappropriate to critique the chef. Similarly,
if you find posterior conclusions entirely unacceptable, this signals a problem with

prior knowledge or with the data, but not with the learning mechanism itself.

Consequently, we maintain that is is impossible to devise a statistical scenario
where a rational actor would be pleased, a posteriori, with the statistical specification
of the rival models and the data, but at the same time displeased with the resulting

Bayes factor—coherence forbids this scenario from arising.

Quite correctly, in our opinion, TK do not blame the Bayes factor for being con-
servative; instead, they conclude that p-values are trigger-happy: “p-values overstate
the evidence against the point null model, both in terms of the Bayes factor as in
terms of posterior model probabilities. In this regard, NHBT does offer an advantage
over NHST.” TK also point out that, for tests of direction (i.e., is the effect larger
or smaller than zero), Bayes factors and p-values are relatively similar (Casella &
Berger, 1987). Indeed, from a Bayesian perspective, the p-value is an approximate
Bayes factor test for direction (Marsman & Wagenmakers, 2017). A test for the di-
rection of an effect, however, is qualitatively different from a test for the presence of

an effect.

Where we disagree is that TK argue that the point null hypothesis is almost
never true, and consequently should not be assigned separate prior mass. This popular
argument has met with several rejoinders (e.g., Kass & Raftery, 1995, pp. 788-789;

Iverson, Wagenmakers, & Lee, 2010, pp. 175-176) and it would have been interesting

8cf. “This theorem [DvR & EJW: Bayes’s theorem)] is to the theory of probability what Pythago-
ras’s theorem is to geometry.” (Jeffreys, 1931, p. 19).
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to learn why TK believe these do not carry much weight. Briefly, we believe that there
is scientific merit to Jeffreys’s razor, which states that “variation must be taken as
random until there is positive evidence to the contrary” (Jeffreys, 1939, p. 345). The
notion that variation is entirely random constitutes the idealized position of a skeptic;
one may dismiss this position on a priori grounds (i.e., in nature, ‘everything affects
everything else’), but we believe that it is more compelling to dismiss a skeptic’s
position based on data. The legitimacy of the point null hypothesis is bolstered by
the fact that several effects from psychology failed to replicate, even in very large
samples (e.g., Camerer et al., 2018; Klein et al., 2018; Wagenmakers, Beek, et al.,
2016); empirically, it appears that the point null hypothesis is not so easily discarded
after all. In addition, it should be stressed that the Bayes factor is based on a
comparison of predictive performance that is independent of the notion of absolute
or relative model truth. (Wagenmakers, Griinwald, & Steyvers, 2006). The idea that
we should not use models that we know to be false can easily result in an inferential
impasse, because all statistical models are ultimately false.

Another rejoinder, one that was acknowledged explicitly by TK, is that the
point null is merely a mathematically convenient approximation, “a hazily defined
small region rather than a point” (Edwards, Lindman, & Savage, 1963, p. 235). As
explained by Cornfield (1966, p. 582):

“There is a psychological difficulty felt by some to the concentration
of a lump of probability at a single point. Thus, even though entirely
convinced of the ineffectiveness of whiskey in the treatment of snake bite
they would hesitate to offer prior odds of p to 1 —p that the true mortality
difference between treated and untreated is zero to an arbitrarily large

number of decimal places.[DvR & EJW: Note that ‘p’ here refers to the
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posterior probability for the null hypothesis, not to the classical p-value]
But if the concentration is regarded as the result of a limiting process
it appears unexceptional. To say that the treatment is ineffective means
that the hypothesis H; : |0 # |J] is true, where § is quite small, perhaps
of the order of 1 death among all persons bitten by venomous snakes in
a decade, but not specifiable more precisely. For finite sized samples the
probability of rejecting either Hy or Hs will be nearly equal, and concern
about the high probability of rejecting one is equivalent to concern about

rejecting the other.”

One reviewer pointed out that it would nevertheless be worthwhile to specify the
null hypothesis as a sharply peaked prior distribution (i.e., a ‘peri-null hypothesis’)
rather than a spike (i.e., a ‘point-null hypothesis’). The predictive advantage of
specifying a peri-null hypothesis over a point-null hypothesis is given by the Bayes
factor that directly compares both null hypotheses (Morey & Rouder, 2011). When
the peri-null hypothesis is sharply peaked around the null value, and the number of
observations is not astronomical, the predictive performance of both null models will
be highly similar (e.g., van Ravenzwaaij & Etz, in press), and consequently (1) the
Bayes factor for the peri-null hypothesis versus the point-null hypothesis will be near
1; and (2) the Bayes factor against the alternative hypothesis will be virtually the
same regardless of whether one uses the peri-null or the point-null hypothesis.

As a concrete example, consider again the analysis of the correlation between
amygdalar activity and preceived stress reported by Tawakol et al. (2017). The top
panel of Figure 1 showed that the Bayes factor in favor of H; over the point-null
hypothesis was 2.025. But instead of the point-null hypothesis we could have specified

a peri-null hypothesis, for instance as H, : p ~ Stretched-Beta[1000,1000]. The

9See also https://jasp-stats.org/2017/10/25/test-interval-null-hypotheses-jasp/.
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bottom panel of Figure 1 shows that for the Tawakol et al. data set of 13 patients,
the predictive performance of the point-null H, is almost equal to that of the peri-
null 7-[6; in fact, the rounded value of the Bayes factor between both null hypotheses
is 1.000. Consequently, the Bayes factor for H; over the peri-null hypothesis is also

2.025, the same value that was obtained for a comparison to the point-null hypothesis.

Although the predictive advantage of the peri-null over the point-null will gen-
erally be modest at best, we acknowledge that the peri-null specification may prove
useful from a rhetorical point of view, as it nips in the bud any discussion about ‘the
null hypothesis is never true’. However, use of the peri-null will naturally spark a
new discussion, one about the extent to which the peri-null resembles the point-null
(i.e., the width of the peri-null). If the peri-null is adopted merely to respect the
theoretical argument that, with an astronomical number of observations, it will be
discovered that the point-null is never exactly true, then we believe that the peri-null

should be extremely narrow.

Alternatively, there may be practical reasons to replace the point-null hypothesis
with an interval-null hypothesis that restricts effect size to lie within a certain range
from zero. This interval-null represents effect sizes that are too small to matter for the
specific practical application under consideration (e.g., Morey & Rouder, 2011). The
parameter space covered by the interval-null hypothesis usually does not overlap with
that covered by the alternative hypothesis. Bayes factors for the resulting equivalence
tests can be obtained using various software programs (e.g., baymedr, Linde & van
Ravenzwaaij, 2019; Baln, Hoijtink et al., 2019; BayesFactor, Morey et al., 2018, and
JASP).
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10. “Bayes factors favor the alternative”

TK observe that when sample size is very large, Bayes factors will favor the
alternative hypothesis even when the non-zero true effect size is minuscule. Note that
this is how Bayes factors should behave — as sample size goes to infinity, default Bayes
factors will increasingly support the true model (e.g., Consonni et al., 2018).

Consider an example even more extreme than that offered by TK: The predic-
tions from a model that stipulates the true population effect size to be § = .01 are
virtually indistinguishable from the predictions of the null model. Such highly simi-
lar accounts can only be discriminated with an overwhelming amount of informative
data. For instance, if the sample effect size equals the population effect size of 0.01,
for a one-sample t-test one needs 114,035 participants before a default JZS Bayes
factor starts supporting the alternative hypothesis (see also Figure 5 in Rouder et al.,
2009).10

Nevertheless, we agree with TK that it is good practice to report effect sizes.
This is also consistent with Jeffreys’s strategy, which was to start the statistical
investigation with a test in order to determine whether the null hypothesis could
be discarded, meaning some effect exists that is worthy of estimation (Haaf, Ly,
& Wagenmakers, 2019). Only if the data provided clear evidence against the null
hypothesis would Jeffreys turn to estimation, which he then based on the alternative
hypothesis. Thus, for the case of § = .01 with an overwhelmingly large data set,
Jeffreys would have concluded “Yes, the effect exists (this follows from testing), but
the size of the effect is tiny (this follows from estimation).” In our opinion, this
conclusion is intuitive and eminently reasonable — we are unsure what qualitatively
different conclusion could be drawn.

This can be verified in the R-package BayesFactor (Morey & Rouder, 2018): “exp
(ttest.tstat(t=.01*sqrt(114035), n1=114035, rscale = 1/sqrt(2))[['bf’]])”.
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Mistakes in interpretation can arise when either testing or estimation is applied
to the exclusion of the other. With a sole focus on testing, one would report only a
Bayes factor and state “the effect exists”. Without any other information, this state-
ment may tempt the reader to conclude that the effect is large or practically relevant.
In other words, the “test-only” approach stops the inference process prematurely.
With a sole focus on estimation, on the other hand, one would report only a credible
interval and state “95% of the posterior mass falls between .006 and .014 (say)”. This
leaves unaddressed the question of whether the effect exists in the first place; the
statement may tempt the reader to conclude that the data support the hypothesis
that the effect is present. In the estimation framework, this conclusion (i.e., “the ef-
fect exists”) is already assumed from the outset. In other words, the “estimate-only”
approach jumps the gun and skips the first stage of the scientific process — to establish
that a phenomenon is worth estimating in the first place. (e.g., Fisher, 1928, p. 274;
Jeffreys, 1939, p. 345).

Related to this, a reviewer reminded us that in their paper, TK state that
“Johnson and Rossell (2010) show the following: Bayes factors accumulate evidence
in favor of true M; much faster than they do in favor of true M, as the sample size
increases, for fixed sample-based estimates of #. That is, although Bayes factors allow
drawing support for either My or My, they do so asymmetrically. This property is
in contrast with the commonly praised feature of Bayes factors being symmetric (in
the sense that they allow accumulating evidence for either model), unlike p-values.”

The contrast that TK allude to does not exist. Bayes factors do quantify evi-
dence, either for Hy or for Hq, but they do not need to do this at an equal rate, nor
is it clear why this would be at all desirable. In general, the claim that something is
absent is more difficult to support than the claim that something is present, at least

when one is uncertain about the size of the phenomenon that is present. Consider,
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for instance, the null hypothesis “There is no animal in this room”, tested against the
alternative hypothesis: “There is an animal in this room, but it could be as small as
an ant or as big as a cow”. Now if the “effect” is of medium size (say a cat), it can be
quickly discovered and H; then receives decisive support. But if a cursory inspection
does not reveal any animal, then support for H, will only be weak (after all, it is easy
to miss an ant). Now there is a way to collect strong evidence for H,, but it requires
more effort — a systematic search with a magnifying glass, for instance. So instead of
being problematic, the asymmetry in the rate of increase in evidence is desirable, in
line with common sense, and indeed a direct mathematical consequence of how the

competing models were constructed.

11. “Bayes factors often agree with p-values”

TK argue that in certain cases, Bayes factors and p-values lead to similar con-
clusions. This is both trivially true and trivially false. It is trivially true because
of what is known as Berkson’s interocular traumatic test (Edwards et al., 1963, p.
217): “you know what the data mean when the conclusion hits you between the eyes.
The interocular traumatic test is simple, commands general agreement, and is often
applicable; well-conducted experiments often come out that way.” The interocular
traumatic test also brings to mind Lord Rutherford’s statement that “if your exper-

2

iment needs statistics, you ought to have done a better experiment”. Simply put,
careful experimental design will reduce measurement error to such a degree that any
reasonable method of inference (and even some unreasonable ones) will arrive at the
same conclusion.

At the same time, the fact that p-values often lead to conclusions that are similar

to those from Bayes factors is also trivially false. After all, conclusions that follow

from p-values are usually dichotomous: the result is either statistically significant



RESPONSE TO NHBT 32

or non-significant. In contrast, conclusions that follow from Bayes factors are of
a graded nature, as Bayes factors quantify relative predictive performance of two
rival hypotheses. The coarsest categorization of Bayes factors applied in practice is
trichotomous: the result yields a satisfactory level of evidence for Hy, a satisfactory
level of evidence for H;, or an unsatisfactory level of evidence, meaning that both
hypotheses are supported by the data to a degree that is about equal, and more
observations are needed to reach a definite conclusion.

As a demonstration of the difference between dichotomous p-values and tri-
chotomous Bayes factors, consider the following two scenarios that may arise from a

two-sided one-sample test with H; : § ~ Cauchy(0, v/2/2):

e For t =2, n=10: p-value = 0.077 (“not statistically significant”), but BF, =

1.28 (a smidgen of evidence for #,).

e Fort =2, n=100: p-value = 0.048 (“statistically significant”), but BF;y = 0.75

(a smidgen of evidence for H,).

The Core of the Disagreement

The core of our disagreement with TK is twofold. First, TK argue that “We find
it ill-advised to suggest that researchers move from NHST towards NHBT without en-
during the growing pains of learning the basics of this new statistical tool.” Although
this remark appears eminently reasonable, we worry that in practice, researchers will
refer to the TK paper mainly as an excuse for avoiding NHBT altogether and not
learning anything new at all. Suggestions by reviewers to report a Bayes factor may
be countered by referring to the TK paper, listing the eleven ‘issues’ and suggesting
that advanced statistical knowledge is required to safely traverse a veritable Bayes

factor mine field. But the relevant question is not “will NHBT be used responsibly,
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after careful deliberation, and without resorting to statistical rituals?” Instead, the
relevant questions are “does NHBT constitute a step forward compared to the sta-
tus quo?” and “can NHBT usefully supplement the inference from NHST?” or even
“when it comes to answering the questions that researchers care about, is there any
alternative to NHBT at all?” We note that if a thorough understanding were a pre-
requisite for statistical reporting, the use of p-values and confidence intervals would
be all but forbidden (e.g., Hoekstra, Morey, Rouder, & Wagenmakers, 2014; Morey,
Hoekstra, Rouder, Lee, & Wagenmakers, 2016, and references therein). As summa-
rized by Sellke, Bayarri, and Berger (2001, p. 71), “The most important conclusion
is that, for testing ‘precise’ hypotheses, p values should not be used directly, because
they are too easily misinterpreted. The standard approach in teaching—of stressing
the formal definition of a p value while warning against its misinterpretation—has
simply been an abysmal failure.”

We believe that NHBT, even if executed as a thoughtless ritual, still markedly
improves on the status quo. We believe that in most situations, the default prior dis-
tributions are reasonable, and informed prior distributions will generally not greatly
alter the qualitative pattern of results (see also Dawid, 2011). The ability of NHBT
to obtain evidence in favor of the null hypothesis, to discriminate between absence of
evidence and evidence of absence, and to monitor the evidence as data accumulate
are profound steps forward compared to the standard report of ‘p < .05 or ‘p > .05
(e.g., Wagenmakers, Morey, & Lee, 2016). In fact, by being able to deviate from the
default settings and specify an informed prior distribution, NHBT invites statistical
thinking more than does NHST, whose procedures are etched in stone.

In sum, one may certainly argue that NHBT is like handing a toddler the keys
to a Tesla. However, the Tesla comes equipped with an autopilot (i.e., the default

prior settings and the intuitive interpretation of the results); moreover, up to this
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point the toddler has been driving a 1970s Trabant (i.e., NHST). The choice is not
between Tesla or binky — the status quo is the Trabant. We do support the call for
more statistical thinking, but we are pessimistic about the prospects of substantially
reducing the use of statistical rituals. It is true that TK advocate NHBT over NHST
(e.g., “we want to state very clearly that NHBT is an improvement over NHST”) but
we are afraid that, for many readers, the take-away message is exactly the opposite.

Our second disagreement centers on the TK claim that Bayesian estimation
(e.g., inspecting the posterior for effect size under H;) constitutes an adequate alter-
native to NHBT. For instance, TH state “Having the full posterior distribution can
suffice for model comparisons too. For instance, comparing the model M, : |0] < €
that the parameter is close to zero, with its complement, M : |#] > € can be done by
simply directly computing the posterior odds ratio for these two models on the basis
of the full posterior distribution.” and “estimation of the full posterior distribution
offers a more complete picture”. The procedure that TK propose is simple, intuitive,
and has a history that dates back to Bayes and Laplace. Unfortunately, the method
can also be seriously misleading, as it begs the question — it assumes the falsity of the
null hypothesis, which is often the very target of inference. The deficiencies of the
posterior estimation methodology were first outlined by Wrinch and Jeffreys (1921),
and it was to address these deficiencies that Jeffreys later developed NHBT (see also
Etz & Wagenmakers, 2017). To regress from Jeffreys’s approach (i.e., first do test-
ing, then follow it up by estimation in case the data undercut #H,) back to Laplace’s
approach (i.e., only use estimation) requires that Jeffreys’s arguments are discussed
and refuted — which is something that neither TK nor anybody else has done.

We grant TK that in many scenarios, the presence of an effect is not of interest;
the value of 0 is not special, and, consequently, what is needed is Laplacian estimation

by means of a continuous posterior distribution. For instance, when the purpose is
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to learn about someone’s IQ, interrater reliability, or the proportion of Starbucks

customers who order a latte, hypothesis tests are simply not appropriate.

Nevertheless, many psychological experiments are designed to answer a question
formulated as a hypothesis test. In such scenarios, the value of 0 (i.e., the absence
of an effect) stands out as special and warrants separate attention. For instance,
D. S. Lee, Kim, and Schwarz (2015, Study 2) examined the hypothesis that people
perform better on the Wason rule discovery task when they are exposed to the smell of
fish (supposedly arousing suspicion; “something smells fishy”). The authors reported
that “As predicted, participants were more likely to generate at least one negative test
in the fishy condition (21 out of 44, 47.7%) than in the control condition (13 out of 47,
27.7%), x*(1, N = 91) = 3.91, p = 0.048”.'1 Suppose that these results were reported
by means of a posterior distribution on the log odds ratio, assuming that the effect is
present. We believe that researchers who interpret this posterior distribution would
find it almost impossible to resist the temptation to include some sort of comparison
to the value of 0, for instance by stating “most of the posterior distribution is located
away from 0”7 or “most posterior mass is assigned to values higher than 0”. After all,
the primary claim under scrutiny is that there exists an effect. In sharp contrast,
there would be no such temptation to draw comparisons to any other value of effect
size; for instance, the statement that “most of the posterior distribution is located
away from 0.0257251” would be preposterous. This state of affairs suggests that there
is something special about 0, and that skeptical scientists will demand that the data
undercut this special value before entertaining the proposition that fishy smells indeed

affect performance on the Wason rule discovery task.

1INB. A Bayesian reanalysis with a one-sided default alternative hypothesis (i.e., a folded standard
normal prior on the log odds ratio) yields a Bayes factor of 4.14 in favor of H over Hg; with equal
prior model probability this leaves 19.5% for Hg. For details see Gronau, Raj, and Wagenmakers
(in press).
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More generally, Harold Jeffreys developed NHBT because he felt it represented
the process of scientific learning, where new effects are accepted by the scientific
community only after the data have undercut the null hypothesis: “The principle of
testing possible complications by significance tests and not introducing them unless
they pass them has important consequences for scientific procedure. In the first place,
the onus of proof is always on the advocate of the more complicated hypothesis.”
(Jeffreys, 1977, p. 90). Similarly, Jeffreys (1937, p. 252 ) states that, until the Bayes
factor favors the alternative hypothesis, “the simpler hypothesis holds the field”.

We are in agreement with Jeffreys that hypothesis testing is an essential com-
ponent of scientific work (see also Morey, Rouder, Verhagen, & Wagenmakers, 2014).
Specifically, we believe that questions of estimation ought to be addressed by a
methodology of estimation, but that questions of hypothesis testing ought to be
addressed by a methodology of testing, and that testing usually precedes estimation.
TK find this procedure “overly complex and unnecessary”. We disagree and refer the
reader to the epigraph of this manuscript, taken from Jeffreys (1950).

A pragmatic researcher may feel that in practice, little harm could come from
omitting the testing stage and directly proceeding to the estimation stage. This is not
true. First, consider the care of polynomial regression: y = 8y + B1x + o2 + By +
o + Bnx™ + €. How many terms should be included in the model? An estimation
perspective does not address this question, and offers no principled way to whittle
down the number. From an estimation point of view, it is asserted, without any
empirical evidence whatsoever, that it is necessarily better to include one predictor
than no predictor at all; but also that it is better to include two predictors rather
than one, three rather than two, and so on. This sequence of preferences, each of
them rash and unsupported by data, ultimately results in the unshakable conviction

that the model that should be used for inference and prediction should contain (at a
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minimum) as many predictors as there are observations. In other words, by violating
the statistical razor that “the onus of proof is always on the advocate of the more
complicated hypothesis”, the estimation perspective results in the recommendation to

use models that dramatically overfit the data, unless special precautions are taken.!?

A second practical problem with the “estimate-only” perspective is that it
tempts researchers into believing that they conclusively answered a key question
that was in fact never asked. For instance, at the time of writing, medical trials
are conducted to examine the effect of remdesivir on COVID-19. The goal of these
trials is not to assess the efficacy of remdesivir assuming that it works. Neither is the
goal to determine whether remdesivir helps or harms the progression of COVID-19.
Instead, the goal is to establish that remdesivir works, and the only way to do so is
for the data to undercut the null hypothesis that remdesivir is ineffective. If remde-
sivir proves effective, then one may proceed, either by developing similar drugs or
changing the drug dosage. However, the estimation-only framework invites reports
such as “the posterior probability that remdesivir is effective against COVID-19 is
98%”. This report is formally correct, but it is easily forgotten that the comple-
mentary probability of 2% refers to remdesivir actually being harmful, and that the
proposition that remdesivir is ineffective was ruled out and deemed utterly irrelevant
from the very beginning (Berger, 2006; Berger & Delampady, 1987; Jeffreys, 1961;
Wagenmakers et al., 2020). In sum, we believe that the estimation-only framework
is beguiling and usually not the correct methodology to answer the primary question
that most experimental psychologists wish to address, namely, “am I just looking at

random noise or are my sample estimates indicative of an effect that generalizes to

128pecifically, within the estimation framework one may apply “shrinkage priors” that drive the
estimate of the regression coefficients to 0 (van Erp, Oberski, & Mulder, 2019). Among these
shrinkage priors, the “spike-and-slab” prior is consistent with the approach to take seriously the
proposition that a predictor may not be needed.
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the population?”

Concluding Comments

Tendeiro and Kiers (in press) have written a thought-provoking, scholarly arti-
cle on Null Hypothesis Bayesian Testing (NHBT). We agree on the statistical facts
presented by TK, and we support several of their recommendations — some cautiously
(e.g., to be explicit about the prior model probabilities), and some enthusiastically
(e.g., to prefer Bayes factors over p-values). Superficially, our disagreement mostly
concerns the interpretation of Bayes factor features. TK identified eleven ‘issues’ that
they deemed potentially problematic, whereas our perspective is much more positive
(cf. Table 1). More deeply, we feel that only Bayes factors can address the key
question common to most empirical research in psychology: “to what extent do the
data support the hypothesis that there is an effect?”. Alternative approaches such
as visualizing and summarizing the continuous posterior distribution under H,, al-
though easy, are fundamentally unable to address the key question of interest. In
other words, researchers who wish to make an evidential omelette need to break the
Bayes factor eggs (see also Evans, 2015).

We worry that the TK article can be misused as an excuse not to present
Bayes factors. We agree that Bayes factors bring their own conceptual challenges
and opportunities, but more important is the insight that to avoid Bayes factors is to
skirt the key question of interest. Researchers will nevertheless want to answer this
question, however, and consequently they may be tempted to misapply an estimation-
only approach to a situation that demands a hypothesis test.

We expect and hope that Bayes factors will earn themselves a permanent po-
sition in the statistical toolkit of the experimental psychologist. Future practice will

ultimately have to reveal whether the Bayes factor features identified by TK are more
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of a help or a hindrance. In the mean time, as with any relatively new method, it
is important that early adopters are aware of the features — or, as we believe, the

advantages — of the Bayes factor.
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