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This is a preprint of a manuscript to appear in Psychonomic Bulletin and Review.

We introduce the fundamental tenets of Bayesian inference, which derive from two basic laws of probability theory. We cover the interpre-
tation of probabilities, discrete and continuous versions of Bayes’ rule, parameter estimation, and model comparison. Using seven worked
examples, we illustrate these principles and set up some of the technical background for the rest of this special issue of Psychonomic
Bulletin & Review. Supplemental material is available via https://osf.io/wskex/.
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Dark and difficult times lie ahead. Soon we must all face the
choice between what is right and what is easy.

A. P. W. B. Dumbledore

1. Introduction

Bayesian methods by themselves are neither dark nor, we believe,
particularly difficult. In some ways, however, they are radically
different from classical statistical methods and as such, rely on
a slightly different way of thinking that may appear unusual at
first. Bayesian estimation of parameters will usually not result in
a single estimate, but will yield a range of estimates with varying
plausibilities associated with them; and Bayesian hypothesis test-
ing will rarely result in the falsification of a theory but rather in a
redistribution of probability between competing accounts.

Bayesian methods are also not new, with their first use dating
back to the 18th century. Nor are they new to psychology: They
were introduced to the field over 50 years ago, in what today re-
mains a remarkably insightful exposition by Ward Edwards, Harold
Lindman, and L. J. Savage (1963).

Nonetheless, until recently Bayesian methods have not been
particularly mainstream in the social sciences, so the recent in-
crease in their adoption means they are new to most practitioners
– and for many psychologists, learning about new statistical tech-
niques can evoke understandable feelings of anxiety or trepidation.
At the same time, recent revelations regarding the reproducibility
of psychological science (e.g., 10, 43) have spurred interest in the
statistical methods that find use in the field.

In the present article, we provide a gentle technical introduction
to Bayesian inference (and set up the rest of this special issue
of Psychonomic Bulletin & Review), starting from first principles.
We will first provide a short overview involving the definition of
probability, the basic laws of probability theory (the product and
sum rules of probability), and how Bayes’ rule and its applications
emerge from these two simple laws. We will then illustrate how
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the laws of probability can and should be used for inference: to
draw conclusions from observed data. We do not shy away from
showing formulas and mathematical exposition, but where possible
we connect them to a visual aid, either in a figure or a table, to
make the concepts they represent more tangible. We also provide
examples after each main section to illustrate how these ideas can
be put into practice. Most of the ideas outlined in this paper only
require mathematical competence at the level of college algebra;
as will be seen, many of the formulas are obtained by rearranging
equations in creative ways such that the quantity of interest is on
the left hand side of an equality.

At any point, readers more interested in the bigger picture than
the technical details can safely skip the equations and focus on the
examples and discussion. However, the use of verbal explanations
only suffices to gain a superficial understanding of the underly-
ing ideas and implications, so we provide mathematical formulas
for those readers who are interested in a deeper appreciation.
Throughout the text, we occasionally use footnotes to provide extra
notational clarification for readers who may not be as well-versed
with mathematical exposition.

While we maintain that the mathematical underpinnings serve
understanding of these methods in important ways, we should also
point out that recent developments regarding Bayesian statistical
software packages (e.g., 39, 58, 64, 65) have made it possible
to perform many kinds of Bayesian analyses without the need
to carry out any of the technical mathematical derivations. The
mathematical basis we present here remains, of course, more
general.

First, however, we will take some time to discuss a subtle se-
mantic confusion between two interpretations of the key concept
“probability.” The hurried reader may safely skip the section that
follows (and advance to “The Product and Sum Rules of Probabil-
ity”), knowing only that we use the word “probability” to mean “a
degree of belief”: a quantity that indicates how strongly we believe
something to be true.

What is probability?. Throughout this text, we will be dealing with
the concept of probability. This presents an immediate philosoph-
ical problem, because the word “probability” is in some sense
ambiguous: it will occasionally switch from one meaning to another
and this difference in meaning is sometimes consequential.

In one meaning—sometimes called the epistemic*—probability
is a degree of belief : it is a number between zero and one that

*From Greek epistēmē, meaning knowledge.
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quantifies how strongly we should think something to be true based
on the relevant information we have. In other words, probability is
a mathematical language for expressing our uncertainty. This kind
of probability is inherently subjective—because it depends on the
information that you have available—and reasonable people may
reasonably differ in the probabilities that they assign to events (or
propositions). Under the epistemic interpretation, there is hence
no such thing as the probability—there is only your probability (34).
Your probability can be thought of as characterizing your state of
incomplete knowledge, and in that sense probability does not exist
beyond your mind.

We may for example say “There is a 60% probability that the
United Kingdom will be outside the European Union on December
31, 2018.” Someone who believes there is a 60% probability
this event will occur should be willing to wager up to $6 against
$4 on the event, because their expected gain would be at least
60%×(+4$)+40%×(−6$), which is zero. In other words, betting
more than $6 would be unsound because they would expect to
lose money, and to take such an action would not cohere with
what they believe. Of course, in scientific practice one is rarely
forced to actually make such bets, but it would be unfortunate if
our probabilities (and hence our inferences) could not be acted on
with confidence if such an occasion were to arise (18).

The fact that epistemic probabilities of events are subjective
does not mean that they are arbitrary. Probabilities are not acts
of will; they are subjective merely in the sense that they may differ
from one individual to the next. That is just to say that different
people bring different information to a given problem. Moreover, if
different people update their beliefs in a rational way, then as data
accumulate they will gradually approach agreement (unless they
have a priori ruled out the point of agreement entirely; see, e.g.,
26). In fact, it can be shown that the only way that our pre-data
beliefs (whatever those may be) will cohere with our post-data
beliefs is to use probability to represent our uncertainty and update
our beliefs according to the laws of probability (34).

In another meaning—the physical or aleatory† interpretation—
probability is a statement of an expected frequency over many
repetitions of a procedure. A statement of aleatory probability
might be “If I flip a fair coin very many times, the ratio of flips on
which the coin will come up heads is 50%. Thus, the probability that
a fair coin will come up heads is 50%.” These statements express
properties of the long-run behavior of well-defined processes, but
they can not speak to singular events; they require assumptions
about physical repeatability and independence among repetitions.
It is important to grasp that these frequencies are seen as being
a real part of the physical world, in that “the relative frequencies
of a die falling this way or that way are ‘persistent’ and constitute
this die’s measurable properties, comparable to its size and weight”
(42, p. 99). Neyman’s quote provides an interesting contrast to the
epistemic interpretation. Italian probabilist and influential Bayesian
statistician Bruno de Finetti famously began his treatise Theory
of Probability by stating “Probability does not exist” and that “the
abandonment of superstitious beliefs about the existence of the
Phlogiston, the Cosmic Ether, Absolute Space and Time, . . . or
Fairies and Witches was an essential step along the road to scien-
tific thinking. Probability, too, if regarded as something endowed
with some kind of objective existence, is no less a misleading mis-
conception, an illusory attempt to exteriorize or materialize our true
probabilistic beliefs” (5, p. x). This is not to say that we cannot
build models that assign probabilities to the outcomes of physical

†From Latin alea, meaning dice.

processes, only that they are necessarily abstractions.
It is clear that these two interpretations of probability are not the

same. There are many situations to which the aleatory definition
does not apply and thus probabilities could not be determined: we
will not see repeated instances of December 31, 2018, in which
the UK could be inside or outside the EU, we will only see one
such event. Similarly, “what is the probability that this coin, on the
very next flip, will come up heads?” is not something to which an
aleatory probability applies: there are no long-run frequencies to
consider if there is only one flip that matters.

Aleatory probability may—in some cases—be a valid concep-
tual interpretation of probability, but it is rarely ever an operational
interpretation (see 21, 68, 69): it cannot apply to singular events
such as the truth or falsity of a scientific theory, so we simply cannot
speak of aleatory probabilities when wrestling with the uncertainty
we face in scientific practice. That is to say, we may validly use
aleatory probability to think about probability in an abstract way,
but not to make statements about real-world observed events such
as experimental outcomes.

In contrast, epistemic probability applies to any event that we
care to consider—be it singular or repetitive—and if we have rele-
vant information about real-world frequencies then we can choose
to use that information to inform our beliefs. If repetition is possible
and we find it reasonable to assume that the chance a coin comes
up heads on a given toss does not change based on the outcome
of previous tosses, then a Bayesian could reasonably believe both
(a) that on the next toss there is a 50% chance it comes up heads;
and (b) 50% of tosses will result in heads in a very long series of
flips. Hence, epistemic probability is both a conceptual interpre-
tation of probability and an operational interpretation. Epistemic
probability can be seen as an extension of aleatory probability
that applies to all the cases where the latter would apply and to
countless cases where it could not.

Why this matters. We argue that the distinction above is directly
relevant for empirical psychology. In the overwhelming majority of
cases, psychologists are interested in making probabilistic state-
ments about singular events: this theory is either true or not; this
effect is either positive or negative; this effect size is probably be-
tween x and y; and either this model or the other is more likely
given the data. Seldom are we merely interested in the frequency
with which a well-defined process will achieve a certain outcome.
Even arbitrarily long sequences of faithful replications of empirical
studies serve to address a singular question: “is this theory cor-
rect?” We might reasonably define a certain behavioral model and
assign parameters (even parameters that are probabilities) to it,
and then examine its long-run behavior. This is a valid aleatory
question. However, it is not an inferential procedure: it describes
the behavior of an idealized model but does not provide us with
inferences with regard to that model. We might also wonder how
frequently a researcher will make errors of inference (however
defined) under certain conditions, but this is a purely academic
exercise; unless the proportion of errors is 0 or 1, such a long-run
frequency alone does not allow us to determine the probability the
researcher actually made an error regarding any singular finding
– regarding this coin, this effect, or this hypothesis. By contrast,
epistemic probability expresses degrees of belief regarding spe-
cific, individual, singular events, and for that reason should be the
default for scientific inference.

In the next section, we will introduce the basic rules of
probability theory. These rules are agnostic to our concep-
tion of probability—they hold equally for epistemic and aleatory

2 of 24 Etz et al.



DRAFT

DO
NOT

DIS
TRIB

UTE

DO
NOT

CIT
E

Start

A

¬A

A, B

A, ¬B

¬A, B

¬A, ¬B

P (A, B) = .40

P (A, ¬B) = .20

P (¬A, B) = .15

P (¬A, ¬B) = .25

P (A) = .6

P (¬A) = .4

P (B|A) = .667

P (¬B|A) = .333

P (B|¬A) = .375

P (¬B|¬A) = .625

Fig. 1. An illustration of the Product Rule of probability: The probability of the joint events on the right end of the diagram is obtained by multiplying the probabilities along the
path that leads to it. The paths indicate where and how we are progressively splitting the initial probability into smaller subsets. A suggested exercise to test understanding and
gain familiarity with the rules is to construct the equivalent path diagram (i.e., that in which the joint probabilities are identical) starting on the left with a fork that depends on the
event B instead of A.

probability—but throughout the rest of this paper and particularly
in the examples, we will, unless otherwise noted, use an epistemic
interpretation of the word “probability.”

The Product and Sum Rules of Probability. Here we will intro-
duce the two cardinal rules of probability theory from which essen-
tially all of Bayesian inference derives. However, before we venture
into the laws of probability, there are notational conventions to draw.
First, we will use P (A) to denote the probability of some event A,
where A is a statement that can be true or false (e.g., A could be
“it will rain today”, “the UK will be outside the EU on December 31,
2018”, or “the 20th digit of π is 3”). Next, we will use (B|A) to de-
note the conditional event: the probability that B is true given that
A is true (e.g., B could be “it will rain tomorrow”) is P (B|A): the
probability that it will rain tomorrow given that it rained today. Third,
we will use (A,B) to denote a joint event: the probability that A
and B are both true is P (A,B). The joint probability P (A,B) is
of course equal to that of the joint probability P (B,A): the event
“it rains tomorrow and today” is logically the same as “it rains today
and tomorrow.” Finally, we will use (¬A) to refer to the negation
of A: the probability A is false is P (¬A). These notations can be
combined: if C and D represent the events “it is hurricane season”
and “it rained yesterday,” respectively, then P (A,B|¬C,¬D) is
the probability that it rains today and tomorrow, given that (¬C) it
is not hurricane season and that (¬D) it did not rain yesterday (i.e.,
both C and D are not true).

With this notation in mind, we introduce the Product Rule of
Probability:

P (A,B) = P (B)P (A|B)
= P (A)P (B|A). [1]

In words: the probability that A and B are both true is equal
to the probability of B multiplied by the conditional probability of
A assuming B is true. Due to symmetry, this is also equal to
the probability of A multiplied by the conditional probability of B
assuming A is true. The probability it rains today and tomorrow
is the probability it first rains today multiplied by the probability it
rains tomorrow given that we know it rained today.

If we assume A and B are statistically independent then P (B)
equals P (B|A), since knowing A happens tells us nothing about
the chance B happens. In such cases, the product rule simplifies
as follows:

P (A,B) = P (A)P (B|A) = P (A)P (B). [2]

Keeping with our example, this would mean calculating the proba-
bility it rains both today and tomorrow in such a way that knowledge
of whether or not it rained today has no bearing on how strongly
we should believe it will rain tomorrow.

Understanding the Sum Rule of Probability requires one fur-
ther concept: the disjoint set. A disjoint set is nothing more than a
collection of mutually exclusive events. To simplify the exposition,
we will also assume that exactly one of these events must be true
although that is not part of the common definition of such a set.
The simplest example of a disjoint set is some event and its denial:‡

{B,¬B}. If B represents the event “It will rain tomorrow,” then ¬B
represents the event “It will not rain tomorrow.” One and only one
of these events must occur, so together they form a disjoint set. If
A represents the event “It will rain today,” and ¬A represents “It will
not rain today” (another disjoint set), then there are four possible
pairs of these events, one of which must be true: (A,B), (A,¬B),
(¬A,B), and (¬A,¬B). The probability of a single one of the
singular events, say B, can be found by adding up the probabilities
of all of the joint events that contain B as follows:

P (B) = P (A,B) + P (¬A,B).

In words, the probability that it rains tomorrow is the sum of two
joint probabilities: (1) the probability it rains today and tomorrow,
and (2) the probability it does not rain today but does rain tomorrow.

In general, if {A1, A2, . . . , AK} is a disjoint set, the Sum Rule
of Probability states:

P (B) = P (A1, B) + P (A2, B) + . . .+ P (AK , B)

=
K∑
k=1

P (AK , B). [3]

That is, to find the probability of event B alone you add up all the
joint probabilities that involve both B and one element of a disjoint
set. Intuitively, it is clear that if one of {A1, A2, . . . , AK} must be
true, then the probability that one of these and B is true is equal to
the base probability that B is true.

In the context of empirical data collection, the disjoint set of
possible outcomes is often called the sample space.

An illustration of the Product Rule of Probability is shown
by the path diagram in Figure 1. Every fork indicates the start of a

‡We use curly braces {. . . } to indicate a set of events. Other common examples of disjoint sets are
the possible outcomes of a coin flip: {heads, tails}, or the possible outcomes of a roll of a six-sided
die: {1, 2, 3, 4, 5, 6}. A particularly useful example is the truth of some modelM, which must
be either true or false: {M,¬M}.
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Table 1. The event A is that it rains today. The event B is that it
rains tomorrow. Sum across rows to find P (A), sum down columns
to find P (B). One can also divide P (A,B) by P (A) to find P (B|A),
as shown in the next section.

B ¬B B or ¬B
A P (A,B) = .40 P (A,¬B) = .20 ⇒ P (A) = .60
¬A P (¬A,B) = .15 P (¬A,¬B) = .25 ⇒ P (¬A) = .40

A or ¬A P (B) = .55 P (¬B) = .45 1.00

disjoint set, with each of the elements of that set represented by
the branches extending out. The lines indicate the probability of
selecting each element from within the set. Starting from the left,
one can trace this diagram to find the joint probability of, say, A and
B. At the Start fork there is a probability of .6 of going along the
top arrow to event A (a similar diagram could of course be drawn
that starts with B): The probability it rains today is .6. Then there
is a probability of .667 of going along the next top fork to event
(A,B): The probability it rains tomorrow given it rained today is
.667. Hence, of the initial .6 probability assigned to A, two-thirds of
it forks into (A,B), so the probability of (A,B) is .6× .667 = .40:
Given that it rained today, the probability it rains tomorrow is .667,
so the probability it rains both today and tomorrow is .4. The
probability of any joint event at the end of a path can be found by
multiplying the probabilities of all the forks it takes to get there.

An illustration of the Sum Rule of Probability is shown in
Table 1, which tabulates the probabilities of all the joint events
found through Figure 1 in the main cells. For example, adding
up all of the joint probabilities across the row denoted A gives
P (A). Adding up all of the joint probabilities down the column
denoted B gives P (B). This can also be seen by noting that in
Figure 1, the probabilities of the two child forks leaving from A,
namely (A,B) and (A,¬B), add up to the probability indicated in
the initial fork leading to A. This is true for any value of P (B|A)
(and P (¬B|A) = 1− P (B|A)).

2. What is Bayesian inference?

Together [the Sum and Product Rules] solve the problem of
inference, or, better, they provide a framework for its solution.

D. V. Lindley (34)

Bayesian inference is the application of the product and
sum rules to real problems of inference. Applications of
Bayesian inference are creative ways of looking at a problem
through the lens of these two rules. The rules form the basis
of a mature philosophy of scientific learning proposed by Dorothy
Wrinch and Sir Harold Jeffreys ((24, 25, 70); see also (36)). To-
gether, the two rules allow us to calculate probabilities and perform
scientific inference in an incredible variety of circumstances. We
begin by illustrating one combination of the two rules that is espe-
cially useful for scientific inference: Bayesian hypothesis testing.

Bayes’ Rule. Call event M (the truth of) an hypothesis that a
researcher holds and call ¬M a competing hypothesis. Together
these can form a disjoint set: {M,¬M}. The set {M,¬M}
is necessarily disjoint if ¬M is simply the denial of M, but in
practice the set of hypotheses can contain any number of models
spanning a wide range of theoretical accounts. In such a scenario,
it is important to keep in mind that we cannot make inferential
statements about any model not included in the set.

Before any data are collected, the researcher has some level
of prior belief in these competing hypotheses, which manifest
as prior probabilities and are denoted P (M) and P (¬M). The
hypotheses are well-defined if they make a specific prediction
about the probability of each experimental outcome X through
the likelihood functions P (X|M) and P (X|¬M). Likelihoods
can be thought of as how strongly the data X are implied by an
hypothesis. Conditional on the truth of an hypothesis, likelihood
functions specify the probability of a given outcome and are usually
easiest to interpret in relation to other hypotheses’ likelihoods. Of
interest, of course, is the probability thatM is true, given the data
X, or P (M|X).

By simple rearrangement of the factors of the Product Rule
shown in the first line of Equation 1, P (M, X) = P (X)P (M|X),
we can derive that

P (M|X) = P (M, X)
P (X) .

Due to the symmetric nature of the Product Rule, we can reformu-
late the joint event in the numerator above by applying the prod-
uct rule again as in the second line in Equation 1, P (M, X) =
P (M)P (X|M), and we see that this is equivalent to

P (M|X) = P (M)P (X|M)
P (X) . [4]

Equation 4 is one common formulation of Bayes’ Rule, and anal-
ogous versions can be written for each of the other competing
hypotheses; for example, Bayes’ Rule for ¬M is

P (¬M|X) = P (¬M)P (X|¬M)
P (X) .

The probability of an hypothesis given the data is equal to the
probability of the hypothesis before seeing the data, multiplied by
the probability that the data occur if that hypothesis is true, divided
by the prior predictive probability of the observed data (see below).
In the way that P (M) and P (¬M) are called prior probabilities
because they capture our knowledge prior to seeing the data X,
so P (M|X) and P (¬M|X) are called the posterior probabilities.

The prior predictive probability P (X). Many of the quantities in
Equation 4 we know: we must have some prior probability (belief or
prior information) that the hypothesis is true if we are even consid-
ering the hypothesis at all, and if the hypothesis is well-described
it will attach a particular probability to the observed data. What
remains is the denominator: the prior predictive probability P (X)—
the probability of observing a given outcome in the experiment,
which can be thought of as the average probability of the outcome
implied by the hypotheses, weighted by the prior probability of each
hypothesis. P (X) can be obtained through the sum rule by adding
the probabilities of the joint events P (X,M) and P (X,¬M), as
in Equation 3, each of which is obtained through an application of
the product rule, so we obtain the following expression:

P (X) = P (X,M) + P (X,¬M)
= P (M)P (X|M) + P (¬M)P (X|¬M), [5]

which amounts to adding up the right-hand side numerator of
Bayes’ Rule for all competing hypotheses, giving a weighted-
average probability of observing the outcome X.

Now that we have a way to compute P (X) in Equation 5, we
can plug the result into the denominator of Equation 4 as follows:

P (M|X) = P (M)P (X|M)
P (M)P (X|M) + P (¬M)P (X|¬M) . [6]

4 of 24 Etz et al.
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Equation 6 is for the case where we are only considering one
hypothesis and its complement. More generally,

P (Mi|X) = P (Mi)P (X|Mi)∑K

k=1 P (Mk)P (X|Mk)
, [7]

for the case where we are considering K competing and mutually-
exclusive hypotheses (i.e., hypotheses that form a disjoint set), one
of which isMi.

Quantifying evidence. Now that we have, in one equation, fac-
tors that correspond to our knowledge before—P (M)—and after—
P (M|X)—seeing the data, we can address a slightly alternative
question: How much did we learn due to the data X? Consider
that every quantity in Equation 7 is either a prior belief in an hy-
pothesis, or the probability that the data would occur under a
certain hypothesis—all known quantities. If we divide both sides of
Equation 7 by P (Mi),

P (Mi|X)
P (Mi)

= P (X|Mi)∑K

k=1 P (Mk)P (X|Mk)
, [8]

we see that after observing outcomeX , the ratio of an hypothesis’s
posterior probability to its prior probability is larger than 1 (i.e., its
probability goes up) if the probability it attaches to the observed
outcome is greater than a weighted-average of all such probabilities
– averaged across all candidate hypotheses, using the respective
prior probabilities as weights.

If we are concerned with only two hypotheses, a particularly
interesting application of Bayes’ Rule becomes possible. After
collecting data we are left with the posterior probability of two hy-
potheses, P (M|X) and P (¬M|X). If we form a ratio of these
probabilities we can quantify our relative belief in one hypothe-
sis vis-à-vis the other, or what is known as the posterior odds:
P (M|X)/P (¬M|X). If P (M|X) = .75 and P (¬M|X) = .25,
the posterior odds are .75/.25 = 3, or 3:1 (“three to one”) in favor
ofM over ¬M. Since the posterior probability of an hypothesis is
equal to the fraction in the right-hand side of Equation 6, we can
calculate the posterior odds as a ratio of two right-hand sides of
Bayes’ Rule as follows:

P (M|X)
P (¬M|X) =

P (M)P (X|M)
P (M)P (X|M) + P (¬M)P (X|¬M)

P (¬M)P (X|¬M)
P (M)P (X|M) + P (¬M)P (X|¬M)

,

which can be reduced to a simple expression (since the denomina-
tors cancel out),

P (M|X)
P (¬M|X)︸ ︷︷ ︸
Posterior odds

= P (M)
P (¬M)︸ ︷︷ ︸
Prior odds

× P (X|M)
P (X|¬M)︸ ︷︷ ︸

Bayes factor

. [9]

The final factor—the Bayes factor—can be interpreted as the extent
to which the data sway our relative belief from one hypothesis to the
other, which is determined by comparing the hypotheses’ abilities
to predict the observed data. If the data are more probable under
M than under ¬M (i.e., if P (X|M) is larger than P (X|¬M))
thenM does the better job predicting the data, and the posterior
odds will favorM more strongly than the prior odds.

It is important to distinguish Bayes factors from posterior proba-
bilities. Both are useful in their own role – posterior probabilities to
determine our total belief after taking into account the data and to
draw conclusions, and Bayes factors as a learning factor that tells

us how much evidence the data have delivered. It is often the case
that a Bayes factor favorsM over ¬M while at the same time the
posterior probability of ¬M remains greater thanM. As Jeffreys,
in his seminal paper introducing the Bayes factor as a method of
inference, explains: “If . . . the [effect] examined is one that previ-
ous considerations make unlikely to exist, then we are entitled to
ask for a greater increase of the probability before we accept it,”
and moreover, “To raise the probability of a proposition from 0.01
to 0.1 does not make it the most likely alternative” (22, p. 221).
This distinction is especially relevant to today’s publishing environ-
ment, where there exists an incentive to publish counterintuitive
results – whose very description as counterintuitive implies most
researchers would not have expected them to be true. Consider
as an extreme example Bem (1) who presented data consistent
with the hypothesis that some humans can predict future random
events. While Bem’s data may indeed provide positive evidence for
that hypothesis (50), it is staggeringly improbable a priori and the
evidence in the data does not stack up to the strong priors many
of us will have regarding extrasensory perception – extraordinary
claims require extraordinary evidence.

Since Bayes factors quantify statistical evidence, they can serve
two (closely related) purposes. First, evidence can be applied to
defeat prior odds: supposing that prior to the data we believe that
¬M is three times more likely thanM (i.e., the prior ratio favoring
¬M is 3, or its prior probability is 75%), we need a Bayes factor
favoringM that is greater than 3 so thatM will end up the more
likely hypothesis. Second, evidence can be applied to achieve a
desired level of certainty: supposing that we desire a high degree
of certainty before making any practical decision (say, at least
95% certainty or a posterior ratio of at least 19) and supposing
the same prior ratio as before, then we would require a Bayes
factor of 19 × 3 = 57 to defeat the prior odds and obtain this
high degree of certainty. These practical considerations (often
left implicit) are formalized by utility (loss) functions in Bayesian
decision theory. We will not go into Bayesian decision theory in
depth here; introductions can be found in Lindley (32) or Winkler
(68), and an advanced introduction is available in Robert (46).

In this section, we have derived Bayes’ Rule as a necessary
consequence of the laws of probability. The rule allows us to
update our belief regarding an hypothesis in response to data. Our
beliefs after taking account the data are captured in the posterior
probability, and the amount of updating is given by the Bayes factor.
We now move to some applied examples that illustrate how this
simple rule pertains to cases of inference.

Example 1: “The happy herbologist”. At Hogwarts School of
Witchcraft and Wizardry,§ professor Pomona Sprout leads the Her-
bology Department (see Illustration). In the Department’s green-
houses, she cultivates crops of a magical plant called green co-
dacle – a flowering plant that when consumed causes a witch or
wizard to feel euphoric and relaxed. Professor Sybill Trelawney,
the professor of Divination, is an avid user of green codacle and
frequently visits Professor Sprout’s laboratory to sample the latest
harvest.

However, it has turned out that one in a thousand codacle plants
is afflicted with a mutation that changes its effects: Consuming
those rare plants causes unpleasant side effects such as paranoia,
anxiety, and spontaneous levitation. In order to evaluate the quality
of her crops, Professor Sprout has developed a mutation-detecting
spell. The new spell has a 99% chance to accurately detect an

§With our apologies to J. K. Rowling.
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Illustration. Professor Pomona Sprout is Chair of the Herbology Department at
Hogwarts School of Witchcraft and Wizardry. ©Brian Clayton, used with permission.

existing mutation, but also has a 2% chance to falsely indicate
that a healthy plant is a mutant. When Professor Sprout presents
her results at a School colloquium, Trelawney asks two questions:
What is the probability that a codacle plant is a mutant, when your
spell says that it is? And what is the probability the plant is a
mutant, when your spell says that it is healthy? Trelawney’s interest
is in knowing how much trust to put into Professor Sprout’s spell.

Call the event that a specific plant is a mutant M, and that
it is healthy ¬M. Call the event that Professor Sprout’s spell
diagnoses a plant as a mutant D, and that it diagnoses it healthy
¬D. Professor Trelawney’s interest is in the probability that the
plant is indeed a mutant given that it has been diagnosed as a
mutant, or P (M|D), and the probability the plant is a mutant given
it has been diagnosed healthy, or P (M|¬D). Professor Trelawney,
who is an accomplished statistician, has all the relevant information
to apply Bayes’ Rule (Equation 7 above) to find these probabilities.
She knows the prior probability that a plant is a mutant is P (M) =
.001, and thus the prior probability that a plant is not a mutant is
P (¬M) = 1− P (M) = .999. The probability of a correct mutant
diagnosis given the plant is a mutant is P (D|M) = .99, and the
probability of an erroneous healthy diagnosis given the plant is
a mutant is thus P (¬D|M) = 1 − P (D|M) = .01. When the
plant is healthy, the spell incorrectly diagnoses it as a mutant with
probability P (D|¬M) = .02, and correctly diagnoses the plant as
healthy with probability P (¬D|¬M) = 1− P (D|¬M) = .98.

When Professor Sprout’s spell gives a mutant diagnosis, the
posterior probability that the plant is really a mutant is given by
Bayes’ Rule:

P (M|D) = P (M)P (D|M)
P (M)P (D|M) + P (¬M)P (D|¬M) .

Professor Trelawney can now consult Figure 2 to find that the
posterior probability the plant is a mutant given a mutant diagnosis
is:

P (M|D) = .001× .99
.001× .99 + .999× .02 ≈ .047.

A mutant diagnosis from Professor Sprout’s spell raises the proba-
bility the plant is a mutant from .001 to roughly .047. This means

that when a plant is diagnosed as a mutant, the posterior proba-
bility the plant is not a mutant is P (¬M|D) ≈ 1 − .047 = .953.
The low prior probability that a plant is a mutant means that, even
with the spell having 99% accuracy to correctly diagnose a mutant
plant as such, a plant diagnosed as a mutant is still probably safe
to eat – nevertheless, Professor Trelawney will think twice.

Analogous calculations show that the posterior probability that
a plant is a dangerous mutant, given it is diagnosed as healthy, is:

P (M|¬D) = .001× .01
.001× .01 + .999× .98 ≈ .000010.

The posterior probability that a plant is a dangerous mutant despite
being diagnosed as healthy is quite small, so Trelawney can be
relatively confident she is eating a healthy plant after professor
Sprout’s spell returns a healthy diagnosis.

A major advantage of using Bayes’ Rule in this way is that
it gracefully extends to more complex scenarios. Consider the
perhaps disappointing value of P (M|D): a mutant diagnosis
only raises the posterior probability to just under 5%. Suppose,
however, that Trelawney knows that Professor Sprout’s diagnosis
(DS) is statistically independent from the diagnosis of her talented
research associate Neville Longbottom (DL) – meaning that for
any given state of natureM or ¬M, Longbottom’s diagnosis does
not depend on Sprout’s. Further suppose that both Sprout and
Longbottom return the mutant diagnosis (and for simplicity we also
assume Longbottom’s spells are equally as accurate as Sprout’s).
To find the posterior probability the plant is a mutant after two
independent mutant diagnoses, P (M|DS , DL), Trelawney can
apply a fundamental principle in Bayesian inference: Yesterday’s
posterior is today’s prior (34).

Since we take diagnosis DS and diagnosis DL as conditionally
independent, we know that P (DL|M, DS) = P (DL|M) and
P (DL|¬M, DS) = P (DL|¬M), giving

P (M|DS , DL)

= P (M|DS)P (DL|M)
P (M|DS)P (DL|M) + P (¬M|DS)P (DL|¬M)

= .047× .99
.047× .99 + .953× .02 ≈ .71,

where the probability the plant is a mutant prior to Longbottom’s
diagnosis DL, P (M|DS), is the probability it is a mutant posterior
to Sprout’s diagnosis DS . This illustrates the value of multiple
independent sources of evidence: a plant that has twice been inde-
pendently diagnosed as a mutant is quite likely to be one. A third
independent diagnosis would put the posterior probability over 99%.
Note that, crucially, we would have obtained precisely the same
final probability of .71 had we updated P (M) to P (M|DS , DL)
all at once. This is easily confirmed when we consider the two diag-
noses as a joint event (DS , DL) and use the conditional probability
P (DS , DL|M) = P (DS |M)× P (DL|M) (as in Equation 2) to
update P (M) to P (M|DS , DL) in a single step.

Discussion It is instructive to consider some parallels of this
(admittedly fictional) example to current practices in social science.
The scenario is similar in setup to a null-hypothesis significance
testing scenario in which one defines the null hypothesis H0 (e.g.,
that there is no effect of some manipulation) and its negation H1
(that there is an effect), and the end goal is to make a choice
between two possible decisions {D,¬D}; D means deciding to
rejectH0, and ¬D means deciding not to rejectH0. In the example
above the rate at which we falsely reject the null hypothesis (i.e.,
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Fig. 2. The event M is that a given codacle plant is a mutant. The event D is that Professor Sprout’s spell returns a mutant diagnosis. A mutant diagnosis D is in fact
observed, so the only paths that remain relevant are those that lead to a mutant diagnosis (events (M, D) and (¬M, D), shaded). Professor Trelawney takes the following
steps to find the posterior probability the plant is a mutant given the mutant diagnosis: Multiply P (M) by P (D|M) to find P (M, D); multiply P (¬M) by P (D|¬M) to
find P (¬M, D); add P (M, D) and P (¬M, D) to find P (D); divide P (M, D) by P (D) to find P (M|D). Professor Trelawney’s question can be rephrased as: of the
total probability remaining in the diagram after D is observed – which is equal to P (D) – what proportion of it originated at the M node? The results of Professor Trelawney’s
calculations are given in the text.

deciding to reject it when in fact it is true) is given by P (D|¬M) =
.02 – this is what is commonly called the false alarm rate. The rate
at which we correctly reject the null hypothesis (i.e., rejecting it if it is
false) is P (D|M) = .99. However, even with a low false alarm rate
and a very high correct rejection rate, a null hypothesis rejection
may not necessarily provide enough evidence to overcome the low
prior probability an alternative hypothesis might have.

Example 2: “A curse on your hat”. At the start of every school year,
new Hogwarts students participate in the centuries-old Sorting cer-
emony, during which they are assigned to one of the four Houses
of the School: Gryffindor, Hufflepuff, Ravenclaw, or Slytherin. The
assignment is performed by the Sorting Hat, a pointy hat which,
when placed on a student’s head, analyzes their abilities and per-
sonality before loudly calling out the House that it determines as
the best fit for the student. For hundreds of years the Sorting
Hat has assigned students to houses with perfect accuracy and in
perfect balance (one-quarter to each House).

Unfortunately, the Hat was damaged by a stray curse during a
violent episode at the School. As a result of the dark spell, the Hat
will now occasionally blurt out “Slytherin!” even when the student’s
proper alliance is elsewhere. Now, the Hat places exactly 40% of
first-years in Slytherin instead of the usual 25%, and each of the
other Houses get only 20% of the cohort.

To attempt to correct the House assignment, Professor Cuth-
bert Binns has developed a written test—the Placement Accuracy
Remedy for Students Erroneously Labeled or P.A.R.S.E.L. test—
on which true Slytherins will tend to score Excellent (SE), while
Ravenclaws will tend to score Outstanding (SO), Gryffindors Ac-
ceptable (SA), and Hufflepuffs Poor (SP ). Benchmark tests on
students who were Sorted before the Hat was damaged have re-
vealed the approximate distribution of P.A.R.S.E.L. scores within
each House (see Table 2). The test is administered to all students
who are sorted into Slytherin House by the damaged Sorting Hat,
and their score determines the House to which they are assigned.
Headmistress Minerva McGonagall, who is a Gryffindor, asks Pro-
fessor Binns to determine the probability that a student who was
sorted into Slytherin and scored Excellent on the P.A.R.S.E.L. test
actually belongs in Gryffindor.

The solution relies on the repeated and judicious application of
the Sum and Product Rules, until an expression appears with the
desired quantity on the left hand side and only known quantities on

the right hand side. To begin, Professor Binns writes down Bayes’
Rule (remembering that a joint event like (DS , SE) can be treated
like any other event):

P (MG|DS , SE) = P (MG)P (DS , SE |MG)
P (DS , SE)

Here,MG means that the true House assignment is Gryffindor,
DS means that the Sorting Hat placed them in Slytherin, and SE
means the student scored Excellent on the P.A.R.S.E.L. test.

In most simple cases, we often have knowledge of simple prob-
abilities, of the form P (A) and P (B|A), while the probabilities
of joint events (A,B) are harder to obtain. For Professor Binns’
problem, we can overcome this difficulty by using the Product Rule
to unpack the joint event in the numerator:¶

P (MG|DS , SE) = P (MG)P (SE |MG)P (DS |SE ,MG)
P (DS , SE) .

Now we discover the probability P (DS |SE ,MG) in the numerator.
Since the cursed hat’s recommendation does not add any informa-
tion about the P.A.R.S.E.L. score above and beyond the student’s
true House affiliation (i.e., it is conditionally independent ; the test
score is not entirely independent of the hat’s recommendation
since the hat is often right about the student’s correct affiliation and
the affiliation influences the test score), we can simplify this condi-
tional probability: P (DS |SE ,MG) = P (DS |MG). Note that the
numerator now only contains known quantities: P (SE |MG) can
be read off as 0.05 from Table 2; P (DS |MG) is the probability that
a true Gryffindor is erroneously sorted into Slytherin, and since that
happens to one in five true Gryffindors (because the proportion
sorted into Gryffindor went down from 25% to 20%), P (DS |MG)
must be 0.20; and P (MG) is the base probability that a student is
a Gryffindor, which we know to be one in four. Thus,

P (MG|DS , SE) = P (MG)P (SE |MG)P (DS |MG)
P (DS , SE)

= 0.25× 0.05× 0.20
P (DS , SE) .

This leaves us having to find P (DS , SE), the prior predictive
probability that a student would be Sorted into Slytherin and score

¶Note that this is an application of the Product Rule to the scenario where both events are conditional
onMG : P (DS , SE |MG) = P (SE |MG)P (DS |SE ,MG).
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Table 2. Probability of each P.A.R.S.E.L. score by true House affiliation. Each value indicates the conditional probability P (S|M), that is, the
probability that a student from houseM obtains score S.

Excellent (SE ) Outstanding (SO) Acceptable (SA) Poor (SP )
Slytherin (MS ) 0.80 0.10 0.05 0.05
Gryffindor (MG) 0.05 0.20 0.70 0.05
Ravenclaw (MR) 0.05 0.80 0.15 0.00
Hufflepuff (MH ) 0.00 0.10 0.25 0.65

Excellent on the P.A.R.S.E.L. test. Here, the Sum Rule will help us
out, because we can find the right hand side numerator for each
type of student in the same way we did for true Gryffindors above –
we can find P (DS , SE |Mi) for any House i = S,G,R,H . Hence
(from Equation 3),

P (DS , SE) =
∑
i

P (Mi)P (SE |Mi)P (DS |Mi)

= P (MS)P (SE |MS)P (DS |MS)
+ P (MG)P (SE |MG)P (DS |MG)
+ P (MR)P (SE |MR)P (DS |MR)
+ P (MH)P (SE |MH)P (DS |MH)

= 0.25× 0.80× 1.00
+ 0.25× 0.05× 0.20
+ 0.25× 0.05× 0.20
+ 0.25× 0.00× 0.20

= 0.2050.

So finally, we arrive at:

P (MG|DS , SE) = 0.0025
0.2050 = 0.0122,

which allows Professor Binns to return to the Headmistress with
good news: There is only around a 1% probability that a stu-
dent who is Sorted into Slytherin and scores Excellent on the
P.A.R.S.E.L. test is actually a Gryffindor. Binns claims that the prob-
ability that such a student is a true Slytherin is over 95%, and that
the combined procedure—that consists of first letting the Sorting
Hat judge and then giving Slytherin-placed students a P.A.R.S.E.L.
test and rehousing them by their score—will correctly place stu-
dents of any House with at least 90% probability. For example,
he explains, a true Ravenclaw would be sorted into their correct
House by the Hat with 80% (P (DR|MR)) probability, and would
be placed into Slytherin with 20% probability. In the second case,
the student would be given the P.A.R.S.E.L. test, in which they
would obtain an Outstanding with 80% (P (SO|MR)) probability.
Hence, they would be placed in their correct House with probability
P (DR|MR)+P (DS |MR)×P (SO|MR) = 0.80+0.20×0.80 =
0.96.

Discussion The Sorting Hat example introduces two extensions
from the first. Here, there are not two but four possible “models”
– whereas statistical inference is often seen as a choice problem
between two alternatives, probabilistic inference naturally extends
to any number of alternative hypotheses. The extension that allows
for the evaluation of multiple hypotheses did not require the ad hoc
formulation of any new rules, but relied entirely on the same basic
rules of probability.

The example additionally underscores an inferential facility that
we believe is vastly underused in social science: we selected
between models making use of two qualitatively different sources

of information. The two sources of information were individually
insufficient but jointly powerful: the Hat placement is only 80%
accurate in most cases, and the written test was only 50% accurate
for the Ravenclaw case, but together they are 90% accurate. Again,
this extension is novel only in that we had not yet considered it –
the fact that information from multiple sources can be so combined
requires no new facts and is merely a consequence of the two
fundamental rules of probability.

3. Probability theory in the continuous case

In Bayesian parameter estimation, both the prior and posterior
distributions represent, not any measurable property of the
parameter, but only our own state of knowledge about it. The
width of the [posterior] distribution. . . indicates the range of
values that are consistent with our prior information and data,
and which honesty therefore compels us to admit as possible
values.

E. T. Jaynes (20)

The full power of probabilistic inference will come to light when
we generalize from discrete events A with probabilities P (A), to
continuous parameters a with probability densities p(a).|| Probabil-
ity densities are different from probabilities in many ways. Densities
express how much probability exists “near” a particular value of
a, while the probability of any particular value of a in a continuous
range is zero. Probability densities cannot be negative but they
can be larger than 1, and they translate to probabilities through
the mathematical operation of integration (i.e., calculating the area
under a function over a certain interval). Possibly the most well-
known distribution in psychology is the theoretical distribution of
IQ in the population, which is shown in Figure 3.

By definition, the total area under a probability density function
is 1:

1 =
∫
A

p(a)da,

where capitalized A indicates that the integration is over the entire
range of possible values for the parameter that appears at the end
– in this case a. The range A is hence a disjoint set of possible
values for a. For instance, if a is the mean of a normal distribution,
A indicates the range of real numbers from −∞ to∞; if a is the
rate parameter for a binomial distribution, A indicates the range
of real numbers between 0 and 1. The symbol da is called the
differential and the function that appears between the integration
sign and the differential is called the integrand – in this case p(a).

We can consider how much probability is contained within
smaller sets of values within the range A; for example, when
dealing with IQ in the population, we could consider the integral
over only the values of a that are less than 81, which would equal

||When we say a parameter is “continuous” we mean it could take any one of the infinite number of
values comprising some continuum. For example, this would apply to values that follow a normal
distribution.

8 of 24 Etz et al.



DRAFT

DO
NOT

DIS
TRIB

UTE

DO
NOT

CIT
E

50 75 100 125 150
IQ

0.00

0.01

0.02

0.03

p
ro

b
ab

il
it
y

d
en

si
ty

Fig. 3. An example of a probability density function (PDF). PDFs express the relative
plausibility of different values and can be used to determine the probability that a
value lies in any interval. The PDF shown here is the theoretical distribution of IQ
in the population: a normal distribution (a.k.a. Gaussian distribution) with mean 100
and standard deviation 15. In this distribution, the filled region to the left of 81 has an
area of approximately 0.10, indicating that for a random member of the population,
there is a 10% chance their IQ is below 81. Similarly, the narrow shaded region on the
right extends from 108 to 113 and also has an area of 0.10, meaning that a random
member has a 10% probability of falling in that region.

the probability that a is less than 81:**

P (a < 81) =
∫ 81

−∞
p(a)da.

In Figure 3, the shaded area on the left indicates the probability
density over the region (−∞, 81).

The fundamental rules of probability theory in the discrete
case—the sum and product rules—have continuous analogues.
The continuous form of the product rule is essentially the same
as in the discrete case: p(a, b) = p(a)p(b|a), where p(a) is the
density of the continuous parameter a and p(b|a) denotes the con-
ditional density of b (i.e., the density of b assuming a particular
value of a). As in the discrete case of Equation 1, it is true that
p(a, b) = p(a)p(b|a) = p(b)p(a|b), and that p(a, b) = p(a)p(b)
if we consider a and b to be statistically independent. For the
continuous sum rule, the summation in Equation 3 is replaced by
an integration over the entire parameter space B:

p(a) =
∫
B

p(a, b)db.

Because this operation can be visualized as a function over two
dimensions (p(a, b) is a function that varies over a and b simultane-
ously) that is being collapsed into the one-dimensional margin (p(a)
varies only over a), this operation is alternatively called marginal-
ization, integrating over b, or integrating out b.

Using these continuous forms of the sum and product rules,
we can derive a continuous form of Bayes’ Rule by successively
applying the continuous sum and product rules to the numerator
and denominator (analogously to Equation 7):

p(a|b) = p(a, b)
p(b) = p(a)p(b|a)

p(b)

= p(a)p(b|a)∫
A
p(a)p(b|a)da

.

[10]

**Strictly speaking, this integral is the probability that a is less than or equal to 81, but the probability
of any single point in a continuous distribution is 0. By the sum rule, P (a ≤ 81) = P (a <
81) + P (a = 81), which simplifies to P (a ≤ 81) = P (a < 81) + 0.

Since the product in the numerator is divided by its own integral,
the total area under the posterior distribution always equals 1; this
guarantees that the posterior is always a proper distribution if the
prior and likelihood are proper distributions. It should be noted that
by “continuous form of Bayes’ Rule” we mean that the prior and
posterior distributions for the model parameter(s) are continuous –
the sample data can still be discrete, as in Example 3 below.

One application of Bayesian methods to continuous parameters
is estimation. If θ (theta) is a parameter of interest (say, the success
probability of a participant in a task), then information about the
relative plausibility of different values of θ is given by the probability
density p(θ). If new information becomes available, for example
in the form of new data x, the density can be updated and made
conditional on x:

p(θ|x) = p(θ)p(x|θ)
p(x) = p(θ)p(x|θ)∫

Θ p(θ)p(x|θ)dθ
. [11]

Since in the context of scientific learning these two densities
typically represent our knowledge of a parameter θ before and after
taking into account the new data x, p(θ) is often called the prior
density and p(θ|x) the posterior density. Obtaining the posterior
density involves the evaluation of Equation 11 and requires one to
define a likelihood function p(x|θ), which indicates how strongly
the data x are implied by every possible value of the parameter θ.

The numerator on the right hand side of Equation 11,
p(θ)p(x|θ), is a product of the prior distribution and the likelihood
function, and it completely determines the shape of the posterior
distribution (note that the denominator in that equation is not a
function of the parameter θ; even though the parameter seems
to feature in the integrand, it is in fact “integrated out” so that the
denominator depends only on the data x). For this reason, many
authors prefer to ignore the denominator of Equation 11 and simply
write the posterior density as proportional to the numerator, as
in p(θ|x) ∝ p(θ)p(x|θ). We do not, because this conceals the
critical role the denominator plays in a predictive interpretation of
Bayesian inference.

The denominator p(x) is the weighted-average probability den-
sity of the data x, where the form of the prior distribution determines
the weights. This normalizing constant is the continuous analogue
of the prior predictive distribution, often alternatively referred to
as the marginal likelihood or the Bayesian evidence.†† Consider
that, in a similar fashion to the discrete case, we can rearrange
Equation 11 as follows—dividing each side by p(θ)—to illuminate
in an alternative way how Bayes’ rule operates in updating the prior
distribution p(θ) to a posterior distribution p(θ|x):

p(θ|x)
p(θ) = p(x|θ)

p(x) = p(x|θ)∫
Θ p(θ)p(x|θ)dθ

. [12]

On the left hand side, we see the ratio of the posterior to the
prior density. Effectively, this tells us for each value of θ how
much more or less plausible that value became due to seeing
the data x. The equation shows that this ratio is determined by
how well that specific value of θ predicted the data, in comparison
to the weighted-average predictive accuracy across all values in
the range Θ. In other words, parameter values that exceed
the average predictive accuracy across all values in Θ have
their densities increased, while parameter values that predict

††We particularly like Evans’s take on the term Bayesian evidence: “For evidence, as expressed by
observed data in statistical problems, is what causes beliefs to change and so we can measure
evidence by measuring change in belief” (12, p. 243).
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worse than the average have their densities decreased (see
41, 66).

While the discrete form of Bayes’ rule has natural applications in
hypothesis testing, the continuous form more naturally lends itself
to parameter estimation. Examples of such questions are: “What
is the probability that the regression weight β is positive?” and
“What is the probability that the difference between these means is
between δ = −.3 and δ = .3?” These questions can be addressed
in a straightforward way, using only the product and sum rules of
probability.

Example 3: “Perfection of the puking pastille”. In the secretive
research and development laboratory of Weasley’s Wizarding
Wheezes, George Weasley works to develop gag toys and prank
foods for the entertainment of young witches and wizards. In a
recent project, Weasley is studying the effects of his store’s famous
puking pastilles, which cause immediate vomiting when consumed.
The target audience is Hogwarts students who need an excuse to
leave class and enjoy making terrible messes.

Shortly after the pastilles hit Weasley’s store shelves, customers
began to report that puking pastilles cause not one, but multiple
“expulsion events.” To learn more about this unknown behavior,
George turns to his sister Ginny and together they decide to set
up an exploratory study. From scattered customer reports, George
believes the expulsion rate to be between three to five events
per hour, but he intends to collect data to determine the rate
more precisely. At the start of this project, George has no distinct
hypotheses to compare – he is interested only in estimating the
expulsion rate.

Since the data x are counts of the number of expulsion events
within an interval of time, Ginny decides that the appropriate model
for the data (i.e., likelihood function) is a Poisson distribution (see
top panel of Figure 4):

p(x|λ) = 1
x! exp (−λ)λx, [13]

with the λ (lambda) parameter representing the expected number
of events within the time interval (note exp(−λ) is simply a clearer
way to write e−λ).

A useful prior distribution for Poisson rates is the Gamma distri-
bution (15, Appendix A):‡‡

p(λ|a, b) = ba

Γ(a) exp (−λb)λa−1, [14]

A visual representation of the Gamma distribution is given in the
second panel of Figure 4. A Gamma distribution has two param-
eters that determine its form, namely shape (a) and scale (b).§§

The Gamma distribution is useful here for two reasons: first, it
has the right support, meaning that it provides nonzero density
for all possible values for the rate (in this case all positive real
numbers); and second, it is conjugate with the Poisson distribution,
a technical property to be explained below.

Before collecting further data, the Weasleys make sure to spec-
ify what they believe to be reasonable values based on the reports
George has heard. In the second panel of Figure 4, Ginny set the

‡‡Recall that x! = x× (x− 1)× · · · × 1 (where x! is read as “the factorial of x,” or simply “x
factorial”). Similarly, the Gamma function Γ(a) is equal to (a−1)! = (a−1)×(a−2)×· · ·×1
when a is an integer. Unlike a factorial, however, the Gamma function is more flexible in that it can
be applied to non-integers.

§§To ease readability we use Greek letters for the parameters of a likelihood function and Roman
letters for the parameters of prior (posterior) distributions. The parameters that characterize a
distribution can be found on the right side of the conditional bar; for instance, the likelihood function
p(x|λ) has parameter λ, whereas the prior distribution p(λ|a, b) has parameters (a, b).
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Fig. 4. Top row: An example Poisson distribution. The function is p(x|λ = 7)
as defined in Equation 13. The height of each bar indicates the probability of that
particular outcome (e.g., number of expulsion events). Second row: The prior
distribution of λ; a Gamma distribution with parameters a = 2 and b = 0.2. This
is the initial state of the Weasley’s knowledge of the expulsion rate λ (the expected
number of expulsion events per hour). Third row: The likelihood functions associated
with x1 = 7 (left), x2 = 8 (center), and x3 = 19 (right). Bottom row: The posterior
distribution of λ; a Gamma distribution with parameters a = 36 and b = 3.2. This is
the final state of knowledge regarding λ.

prior parameters to a = 2 and b = 0.2 by drawing the shape of
the distribution for many parameter combinations and selecting a
curve that closely resembles George’s prior information: Values
between three and five are most likely, but the true value of the
expulsion rate could conceivably be much higher.

Three volunteers are easily found, administered one puking
pastille each, and monitored for one hour. The observed event
frequencies are x1 = 7, x2 = 8, and x3 = 19.

With the prior density (Equation 14) and the likelihood (Equa-
tion 13) known, Ginny can use Bayes’ rule as in Equation 10
to derive the posterior distribution of λ, conditional on the new
data points Xn = (x1, x2, x3). She will assume the n = 3 data
points are independent given λ, so that their likelihoods may be
multiplied.¶¶ This leaves her with the following expression for the
posterior density of (λ|Xn, a, b) :

p(λ|Xn, a, b) =
ba

Γ(a) exp (−λb)λa−1∏n=3
i=1

1
xi! exp (−λ)λxi∫

Λ
ba

Γ(a) exp (−λb)λa−1
∏n=3
i=1

1
xi! exp (−λ)λxidλ

.

This expression may look daunting, but Ginny Weasley is not
easily intimidated. She goes through the following algebraic steps
to simplify the expression: (1) collect all factors that do not depend
on λ (which, notably, includes the entire denominator) and call

¶¶The likelihood function of the combined data is p(Xn|λ) = p(x1|λ)× p(x2|λ)× p(x3|λ),

which we write using the more compact product notation,
∏n=3

i=1
p(xi|λ), in the following equa-

tions to save space. Similarly,
∏n=3

i=1
exp (−λ)λxi = exp(−3λ)λ(x1+x2+x3) .

10 of 24 Etz et al.



DRAFT

DO
NOT

DIS
TRIB

UTE

DO
NOT

CIT
E

them Q(Xn), and (2) combine exponents with like bases:

p(λ|Xn, a, b) = Q(Xn) exp (−λb)λa−1 ×
n=3∏
i=1

exp (−λ)λxi

= Q(Xn) exp [−λ(b+ n)]λ
(
a+
∑n=3

i=1
xi

)
−1
.

Note the most magical result that is obtained here! Comparing
the last equation to Equation 14, it turns out that these have exactly
the same form. Renaming (b + n) to b̂ and

(
a+

∑n

i
xi
)

to â
makes this especially clear:

p(λ|Xn, a, b) = b̂â

Γ (â) exp
(
−λb̂

)
λâ−1 = p(λ|â, b̂).

Here, Ginny has completed the distribution by replacing the scaling
constant Q(Xn) with the scaling constant of the Gamma distribu-
tion – after all, we know that the outcome must be a probability
density, and each density has a unique scaling constant that en-
sures the total area under it is 1.

The posterior distribution p(λ|Xn, a, b) thus turns out to be
equal to the prior distribution with updated parameters b̂ = b+ n
and â = a+

∑n

i=1 xi. Differently put,

p(λ|Xn, a, b) = p

(
λ | a+

n∑
i=1

xi, b+ n

)
. [15]

This amazing property, where the prior and posterior distributions
have the same form, results from the special relationship between
the Gamma distribution and the Poisson distribution: conjugacy.
The bottom panel of Figure 4 shows the much more concentrated
posterior density for λ: a Gamma distribution with parameters
â = 36 and b̂ = 3.2.

When priors and likelihoods are conjugate, three main advan-
tages follow. First, it is easy to express the posterior density
because it has the same form as the prior density (as seen in
Equation 15). Second, it is straightforward to calculate means
and other summary statistics of the posterior density. For ex-
ample, the mean of a Gamma distribution has a simple formula:
a/b. Thus, George and Ginny’s prior density for λ has a mean of
a/b = 2/.2 = 10, and their posterior density for λ has a mean of
â/b̂ = 36/3.2 = 11.25. The prior and posterior densities’ respec-
tive modes are (a− 1)/b = 5 and (â− 1)/b̂ = 35/3.2 ≈ 11, as
can be seen from Figure 4. Third, it is straightforward to update the
posterior distribution sequentially as more data become available.

Discussion Social scientists estimate model parameters in a
wide variety of settings. Indeed, a focus on estimation is the core
of the New Statistics ((4); see also (28)). The puking pastilles
example illustrates how Bayesian parameter estimation is a direct
consequence of the rules of probability theory, and this relationship
licenses a number of interpretations that the New Statistics does
not allow. Specifically, the basis in probability theory allows George
and Ginny to (1) point at the most plausible values for the rate
of expulsion events and (2) provide an interval that contains the
expulsion rate with a certain probability (e.g., a Gamma distribu-
tion calculator shows that λ is between 8.3 and 14.5 with 90%
probability).

The applications of parameter estimation often involve ex-
ploratory settings: no theories are being tested and a distributional
model of the data is assumed for descriptive convenience. Never-
theless, parameter estimation can be used to adjudicate between

theories under certain special circumstances: if a theory or hypoth-
esis makes a particular prediction about a parameter’s value or
range, then estimation can take a dual role of hypothesis testing. In
the social sciences most measurements have a natural reference
point of zero, so this type of hypothesis will usually be in the form
of a directional prediction for an effect. In our example, suppose
that George was specifically interested in whether λ was less than
10. Under his prior distribution for λ, the probability of that being
the case was 59.4%. After seeing the data, the probability λ is less
than 10 decreased to 26.2%.

Estimating the mean of a normal distribution. By far the most
common distribution used in statistical testing in social science,
the normal distribution deserves discussion of its own. The normal
distribution has a number of interesting properties—some of them
rather unique—but we discuss it here because it is a particularly
appropriate choice for modeling unconstrained, continuous data.
The mathematical form of the normal distribution is

p(x|µ, σ) = N(x|µ, σ2)

= 1√
2πσ2

exp
[
−1

2

(
x− µ
σ

)2
]
,

with the µ (mu) parameter representing the average (mean) of the
population from which we are sampling and σ (sigma) the amount
of dispersion (standard deviation) in the population. We will follow
the convention that the normal distribution is parameterized with the
variance σ2. An example normal distribution is drawn in Figure 3.

One property that makes the normal distribution useful is that
it is self-conjugate: The combination of a normal prior density
and normal likelihood function is itself a normal distribution, which
greatly simplifies the derivation of posterior densities. Using Equa-
tion 10, and given some data setXn = (x1, x2, ..., xn), we can de-
rive the following expression for the posterior density (µ|Xn, a, b):

p(µ|Xn, a, b) =
N(µ|a, b2)×

∏n

i
N(xi|µ, σ2)∫

M
N(µ|a, b2)×

∏n

i
N(xi|µ, σ2)dµ

Knowing that the product of normal distributions is also a normal
distribution (up to a scaling factor), it is only a matter of tedious al-
gebra to derive the posterior distribution of µ. We do not reproduce
the algebraic steps here – the detailed derivation can be found
in Gelman et al. (15) and Raiffa and Schlaifer (45), among many
other places. The posterior is

p(µ|Xn, a, b) = N
(
µ|â, b̂2

)
,

where
b̂2 = 1

n
σ2 + 1

b2

and

â =
(
b̂2

b2

)
a+

(
b̂2

σ2/n

)
x̄

= W 2a+
(
1−W 2) x̄,

where x̄ refers to the mean of the sample.
Carefully inspecting these equations can be instructive. To find

b̂, the standard deviation (i.e., spread) of the posterior distribution
of µ, we must compare the spread of the prior distribution, b, to the
standard error of the sample, σ/

√
n. The formula for b̂ represents

how our uncertainty about the value of µ is reduced due to the
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information gained in the sample. If the sample is noisy, such that
the standard error of the sample is large compared to the spread
of the prior, then relatively little is learned from the data compared
to what we already knew before, so the difference between b̂ and
b will be small. Conversely, if the data are relatively precise, such
that the standard error of the sample is small when compared to
the spread of the prior, then much will be learned about µ from the
data and b̂ will be much smaller than b.

To find â, the mean of the posterior distribution for µ, we need
to compute a weighted average of the prior mean and the sample
mean. In the formula above, the weights attached to a and x̄ sum
to 1 and are determined by how much each component contributes
to the total precision of the posterior distribution. Naturally, the
best guess for the value of µ splits the difference between what
we knew of µ before seeing the sample and the estimate of µ
obtained from the sample; whether the posterior mean is closer
to the prior mean or the sample mean depends on a comparison
of their relative precision. If the data are noisy compared to the
prior (i.e., the difference between prior variance b2 and posterior
variance b̂2 is small, meaning W 2 is near 1), then the posterior
mean will stay relatively close to the prior mean. If the data are
relatively precise (i.e., W 2 is near zero), the posterior mean will
move to be closer to the sample mean. If the precision of the prior
and the precision of the data are approximately equal then W 2 will
be near 1/2, so the posterior mean for µ will fall halfway between
a and x̄.

The above effect is often known as shrinkage because our sam-
ple estimates are pulled back toward prior estimates (i.e., shrunk).
Shrinkage is generally a desirable effect, in that it will lead to more
accurate parameter estimates and empirical predictions (see 9).
Since Bayesian estimates are automatically shrunk according to
the relative precision of the prior and the data, incorporating prior
information simultaneously improves our parameter estimates and
protects us from being otherwise misled by noisy estimates in
small samples. Quoting Gelman (16, p. 163): “Bayesian inference
is conservative in that it goes with what is already known, unless
the new data force a change.”

Another way to interpret these weights is to think of the prior den-
sity as representing some amount of information that is available
from an unspecified number of previous hypothetical observations,
which are then added to the information from the real observations
in the sample. For example, if after collecting 20 data points the
weights come to W 2 = .5 and 1−W 2 = .5, that implies that the
prior density carried 20 data points’ worth of information. In studies
for which obtaining a large sample is difficult, the ability to inject
outside information into the problem to come to more informed
conclusions can be a valuable asset. A common source of outside
information is estimates of effect sizes from previous studies in the
literature. As the sample becomes more precise, usually through
increasing sample size, W 2 will continually decrease, and even-
tually the amount of information added by the prior will become
a negligible fraction of the total (see also the principle of stable
estimation, described in 8).

Example 4: “Of Murtlaps and Muggles”. According to Fantastic
Beasts and Where to Find Them (55), a Murtlap is a “rat-like
creature found in coastal areas of Britain” (p. 56). While typically
not very aggressive, a startled Murtlap might bite a human, causing
a mild rash, discomfort in the affected area, profuse sweating, and
some more unusual symptoms.

Anecdotal reports dating back to the 1920s indicate that Mug-
gles (non-magical folk) suffer a stronger immunohistological reac-

tion to Murtlap bites. This example of physiological differences
between wizards and Muggles caught the interest of famed magi-
zoologist Newton (“Newt”) Scamander, who decided to investigate
the issue: When bitten by a Murtlap, do symptoms persist longer
in the average Muggle than in the average wizard?

The Ministry of Magic keeps meticulous historical records of
encounters between wizards and magical creatures that go back
over a thousand years, so Scamander has a great deal of informa-
tion on wizard reactions to Murtlap bites. Specifically, the average
duration of the ensuing sweating episode is 42 hours, with a stan-
dard deviation of 2. Due to the large amount of data available,
the standard error of measurement is negligible. Scamander’s
question can now be rephrased: What is the probability a Murtlap
bite on a Muggle results in an average sweating episode longer
than 42 hours?

Scamander has two parameters of interest: the population
mean—episode duration µ—and its corresponding population stan-
dard deviation σ. He has no reason to believe there is a difference
in dispersion between the magical and non-magical populations,
so he will assume for convenience that σ is known and does not
differ between Muggles and wizards (i.e., σ = 2; ideally, σ would
be estimated as well, but for ease of exposition we will take the
standard deviation as known).

Before collecting any data, Scamander must assign to µ a prior
distribution that represents what he believes to be the range of
plausible values for this parameter before collecting data. To char-
acterize his background information about the population mean µ,
Scamander uses a prior density represented by a normal distribu-
tion, p(µ|a, b) = N(µ|a, b2), where a represents the location of
the mean of the prior and b represents its standard deviation (i.e.,
the amount of uncertainty we have regarding µ). From his infor-
mal observations, Scamander believes that the mean difference
between wizards and Muggles will probably not be larger than
15 hours. To reflect this information, Scamander centers the prior
distribution p(µ|a, b) at a = 42 hours (the average among wizards)
with a standard deviation of b = 6 hours, so that prior to running
his study there is a 95% probability µ lies between (approximately)
27 and 57 hours. Thus, p(µ|a, b) = N(µ|42, 62).

With these prior distributions in hand, Scamander can compute
the prior probability that µ is less than 42 hours by finding the
area under the prior distribution to the left of the benchmark value
via integration. Integration from negative infinity to some constant
is most conveniently calculated with the cumulative distribution
function Φ:

p(µ < 42|a, b) =
∫ 42

−∞
N(µ|a, b2)dµ

= Φ
(
42|a, b2

)
,

which in this case is exactly 0.5 since the benchmark value is
exactly the mean of the prior density: Scamander centered his
prior on 42 and specified that the Muggle sweating duration could
be longer or shorter with equal probability.

Scamander covertly collects information on a representative
sample of 30 Muggles by exposing them to an angry Murtlap.*** He
finds a sample mean of x̄ = 43 and standard error of s = σ/

√
n =

2/
√

30 = 0.3651. Scamander can now use his data and the above
formulas to update what he knows about µ.

*** In order to preserve the wizarding world’s statutes of secrecy, Muggles who are exposed to magical
creatures must be turned over to a team of specially-trained wizards called Obliviators, who will
erase the Muggles’ memories, return them to their homes, and gently steer them into the kitchen.
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Since the spread of the prior for µ is large compared to the stan-
dard error of the sample (b = 6 versus s = 0.3651), Scamander
has learned much from the data and his posterior density for µ is
much less diffuse than his prior:

b̂ =
√

1
1
s2 + 1

b2
=
√

1
1

0.36512 + 1
62

= 0.3645.

With b̂ in hand, Scamander can find the weights needed to average
a and x̄: W 2 = (0.3645/6)2 = 0.0037 and 1 −W 2 = 0.9963,
thus â = 0.0037×42+0.9963×43 = 42.9963 hours. In summary,
Scamander’s prior distribution for µ, p(µ|a, b) = N(µ|42, 62),
is updated into a much more informative posterior distribution,
p(µ|â, b̂) = N(µ|42.9963, 0.36452). This posterior distribution is
shown in the left panel of Figure 5; note that the prior density looks
nearly flat when compared to the much more peaked posterior
density.

Now that the posterior distribution of µ is known, Scamander
can revisit his original question: What is the probability that µ is
greater than 42 hours? The answer is again obtained by finding the
area under the posterior distribution to the right of the benchmark
value via integration:

p(µ > 42|â, b̂) =
∫ ∞

42
N(µ|â, b̂2)dµ

= 1−
∫ 42

−∞
N(µ|â, b̂2)dµ

= 1− Φ
(
42|â, b̂2

)
= 1− Φ

(
42|42.9963, 0.36452) ≈ 0.9970.

In summary, the probability that the reaction to Murtlap bites in
the average Muggle is greater than in the average wizard increases
from exactly 50% to 99.70%.

Discussion The conclusion of a Bayesian estimation problem
is the full posterior density for the parameter(s). That is, once
the posterior density is obtained then the estimation problem is
complete. However, researchers often choose to report summaries
of the posterior distribution that represent its content in a mean-
ingful way. One common summary of the posterior density is a
posterior (credible) interval. Credible intervals have a unique prop-
erty: as Edwards et al. (8) put it, “The Bayesian theory of interval
estimation is simple. To name an interval that you feel 95% certain
includes the true value of some parameter, simply inspect your
posterior distribution of that parameter; any pair of points between
which 95% of your posterior density lies defines such an interval”
(p. 213). This property is made possible by the inclusion of a prior
density in the statistical model (52). It is important not to confuse
credible intervals with confidence intervals, which have no such
property in general (40). Thus, when Scamander reports that there
is a 99.70% probability that µ lies between 42 and positive infin-
ity hours, he is reporting a 99.70% credible interval. It is important
to note that there is no unique interval for summarizing the poste-
rior distribution; the choice depends on the context of the research
question.

4. Model comparison

[M]ore attention [should] be paid to the precise statement of
the alternatives involved in the questions asked. It is
sometimes considered a paradox that the answer depends not
only on the observations but on the question; it should be a
platitude.

H. Jeffreys (23)

Consider the following theoretical questions. Is participant per-
formance different than chance? Does this gene affect IQ? Does
stimulus orientation influence response latency? For each of these
questions the researcher has a special interest in a particular pa-
rameter value and entertains it as a possibility. However, when we
estimate a parameter using a continuous distribution the answers
to each of these questions is necessarily “yes.” To see why, recall
that a probability density function specifies how much probability
exists near—not at—a particular value of the parameter. That is,
with a continuous probability distribution, probability only exists
within a given range of the parameter space; the probability of
any single point within the distribution is zero. This is inconsistent
with our belief that a specified parameter value might hold true.
Moreover, this poses a problem for any research question that
focuses on a single value of a continuous parameter, because if
its prior probability is zero then no amount of data can cause its
posterior probability to become anything other than zero.

A simple but brilliant solution to this problem was first executed
by Haldane (17) but is credited mostly to Jeffreys (1939; see (11)).
The solution involves applying the sum and product rules across
multiple independent statistical models at once. We can specify
multiple separate models that have different implications about the
parameter of interest, call it θ, and calculate the probability of each
model after data are collected. One model, say M0, says θ is
equal to a single special value denoted θ0. A second model, say
M1, says θ is unknown and assigns it a continuous prior density,
implying θ is not equal to θ0. After collecting data X , there are two
main questions to answer: (1) What is P (M0|X), the posterior
probability that θ = θ0? And (2) what is p(θ|X,M1), the posterior
distribution††† of θ underM1 (i.e., considering the new data X, if
θ 6= θ0 then what might θ be)?

As before, this scenario can be approached with the product
and sum rules of probability. The setup of the problem is captured
by Figure 7 (focusing for now on the left half). We start at the initial
fork with two potential models:M0 andM1. This layer of analysis
is called the model space, since it deals with the probability of the
models. Subsequently, each model implies some belief about the
value of θ. This layer of analysis is called the parameter space
since it specifies what is known about the parameters within a
model, and it is important to note that each model has its own
independent parameter space. UnderM0 the value of θ is known
to be equal to θ0, so all of its probability is packed into a “spike” (a
point mass) at precisely θ0. UnderM1 the value of θ is unknown
and we place a probability distribution over the potential values of
θ in the form of a conditional prior density. Each model also makes
predictions about what data will occur in the experiment (i.e., the
model’s prior predictive distribution), information represented by

†††Note that we will now be using probabilities and probability densities side-by-side. In general, if the
event to which the measure applies (i.e., what is to the left of the vertical bar) has a finite number of
possible values, we will consider probabilities and use uppercaseP (·) to indicate that. If the event
has an infinite number of possible values in a continuum, we will consider probability densities and
use lowercase p(·). In the case of a joint event in which at least one component has an infinite set
of possibilities, the joint event will also have an infinite set of possibilities and we will use probability
densities there also.
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each model’s respective sample space. We then condition on
the data we observe, which allows us to update each layer of the
analysis to account for the information gained. Below is a step-by-
step account of how this is done, but we remind readers that they
should feel free to skip this technical exposition and jump right into
the next examples.

We answer our questions in reverse order, first deriving the
posterior distribution of θ underM1, for a reason that will become
clear in a moment. In this setup there are events that vary among
three dimensions: X, θ, andM1. When joint events have more
than two components, the product rule decomposes p(X, θ,M1)
one component at a time to create a chain of conditional probabili-
ties and densities (for this reason the product rule is also known as
the chain rule). This was seen above in Example 2. These chains
can be thought of as moving from one layer of Figure 7 to the
next. Thus, since we could choose any one of the three events to
be factored out first, the product rule creates three possible initial
chains with two probabilities per chain,

p(X, θ,M1) = P (M1)p(X, θ|M1)
= P (X)p(θ,M1|X)
= p(θ)p(X,M1|θ).

(where the use of P (X) or p(X) depends on whether the data are
discrete or continuous; we assume they are discrete here).

A natural choice is to work with the first formulation,
p(X, θ,M1) = P (M1)p(X, θ|M1), since P (M1), the prior prob-
ability of the model, is known to us (it corresponds to the probability
we take the right fork at the start of Figure 7). The product rule can
then be applied again to the remaining joint probability on the right
hand side as follows:

P (M1)×p(X, θ|M1) = P (M1)×P (X|M1)p(θ|X,M1), [16]

By symmetry of the product rule, we can also write

P (M1)×P (X, θ|M1) = P (M1)×p(θ|M1)P (X|θ,M1). [17]

If we now equate the right hand sides of Equations 16 and 17, we
can divide out P (M1) and P (X|M1):

P (M1)P (X|M1)p(θ|X,M1) = P (M1)p(θ|M1)P (X|θ,M1)

p(θ|X,M1) = p(θ|M1)P (X|θ,M1)
P (X|M1)

and by recognizing that P (X|M1) =
∫

Θ p(θ|M1)P (X|M1, θ)dθ
by way of the sum rule, we are left with the following:

p(θ|X,M1) = p(θ|M1)P (X|θ,M1)∫
Θ p(θ|M1)P (X|θ,M1)dθ

. [18]

This last formula is identical to the continuous form of Bayes’ Rule
(Equation 10), where now each term is also conditional onM1.

The implication of this finding is that it is possible to perform
inference using the distribution of θ underM1, p(θ|X,M1), ig-
noring everything relating to other models, since no other models
(such asM0) feature in this calculation. As before, the denomi-
nator is known as the marginal likelihood forM1, and represents
a predictive distribution for potential future data, P (X|M1). This
predictive distribution is shown in the sample space underM1 in
Figure 7, and can be thought of as the average prediction made
across all possible parameter values in the model (weighted by
the conditional prior density). Once the data are collected and the

result is known, we can condition on the outcome and use it to
update p(θ|M1) to obtain p(θ|X,M1).

To answer our first question—what is P (M0|X)?—we need
to find our way back to the discrete form of Bayes’ Rule (Equa-
tion 7). Recall that for hypothesis testing the key terms to find are
P (X|M0) and P (X|M1), which can be interpreted as how accu-
rately each hypothesis predicts the observed data in relation to the
other. Since the parameter space underM0 is simply θ = θ0, we
can write P (X|M0) = P (X|θ0). However, since the parameter
space underM1 includes a continuous distribution, we need to
findM1’s average predictive success across the whole parameter
space, P (X|M1) =

∫
Θ p(θ|M1)P (X|M1, θ)dθ. Conveniently,

as we just saw above in Equation 18, this is also the normalizing
constant in the denominator of the posterior distribution of θ under
M1. Hence, the discrete form of Bayes’ Rule for hypothesis testing
can be rewritten as

P (M1|X) = P (M1)P (X|M1)
P (M1)P (X|M1) + P (M0)P (X|M0)

=
P (M1)

∫
Θ p(θ|M1)P (X|θ,M1)dθ

P (M1)
∫

Θ p(θ|M1)P (X|θ,M1)dθ + P (M0)P (X|θ0)
.

Furthermore, in cases of model comparison between a “point null”
(i.e., an hypothesis that, like ourM0, involves a prior point mass
on some parameter) and an alternative with a continuous prior for
the parameter, one can rewrite the odds form of Bayes’ Rule from
Equation 9 as follows:

P (M1|X)
P (M0|X)︸ ︷︷ ︸
Posterior odds

= P (M1)
P (M0) ×

P (X|M1)
P (X|M0)

= P (M1)
P (M0)︸ ︷︷ ︸
Prior odds

×
∫

Θ p(θ|M1)P (X|θ,M1)dθ
P (X|θ0)︸ ︷︷ ︸

Bayes factor (BF10)

,

where the Bayes factor is the ratio of the marginal likelihoods from
the two models, and its subscript indicates which models are being
compared (BF10 meansM1 is in the numerator versusM0 in the
denominator).

Finally, we point out one specific application of Bayes’ rule that
occurs when certain values of θ have a special theoretical status.
For example, if θ represents the difference between two conditions
in an experiment, then the case θ = 0 will often be of special
interest (see also (51)). Dividing each side of Equation 18 by
p(θ|M1) allows one to quantify the change in the density at this
point:

p(θ = 0|X,M1)
p(θ = 0|M1) = P (X|θ = 0,M1)∫

Θ p(θ|M1)p(X|θ,M1)dθ
= BF01.

This change in density is known as the Savage–Dickey density
ratio or the Savage–Dickey representation of the Bayes factor ((6);
see also (62), and (65); and see also (37), for some cautionary
notes). When it applies, the Savage–Dickey ratio allows for an
especially intuitive interpretation of the Bayes factor: If the point
null value is lower on the alternative model’s conditional posterior
density than its prior density, the Bayes factor supportsM1 over
M0 by the ratio of their respective heights, and vice-versa.

The conditions under which the Savage–Dickey ratio applies
are typically met in practice, since they correspond to the nat-
ural way one would build nested models for comparison (for a

14 of 24 Etz et al.



DRAFT

DO
NOT

DIS
TRIB

UTE

DO
NOT

CIT
E

good discussion on the different types of nested models see (3),
Section 2). Namely, that all facets of the models are the same
except that the smaller model fixes θ to be θ0. In our devel-
opment above there is only one parameter so this condition is
automatically satisfied. If, however, we have additional param-
eters common to both models, say φ, then the Savage-Dickey
ratio is obtained using the marginal prior and posterior densities,
p(θ = θ0|X,M1)/p(θ = θ0|M1), where the marginal distribution
is found using the sum rule, p(θ|X,M1) =

∫
Φ p(φ, θ|X,M1)dφ.

For this to be a proper representation of the Bayes factor, we must
ensure that the conditional prior for φ underM1, when θ = θ0,
equals the prior density for φ under M0. In other terms, the
Savage-Dickey representation holds only if the parameters are
statistically independent a priori: p(φ|θ = θ0,M1) = p(φ|M0).

Above, our motivation for model comparison was that we
wanted to test the hypothesis that a parameter took a single spec-
ified value. However, model comparison is not limited to cases
where point nulls are tested. The above formulation allows us
to compare any number of different types of models by finding
the appropriate P (X|M). Models do not need to be nested or
even have similar functional forms; in fact, the models need not
be related in any other way than that they make quantitative pre-
dictions about the data that have been observed. For example, a
non-nested comparison might pit a model with a mostly positive
prior distribution for θ against a model where the support of the
prior distribution for θ is restricted to negative values only. Or rather
than a precise point null we can easily adapt the null model such
that we instead compareM1 against modelMS , which says θ is
“small.” Extending model comparison to the scenario where there
are more than two (but finitely many) competing models Mk is
similar to before, in that

P (Mi|X) = P (Mi)p(X|Mi)∑
k
P (Mk)p(X|Mk)

. [19]

In practice, Bayes factors can be difficult to compute for more
complicated models because one must integrate over possibly
very many parameters to obtain the marginal likelihood (27, 67).
Recent computational developments have made the computation
of Bayes factors more tractable, especially for common scenarios
(64, 65). For uncommon or complex scenarios, one might resort
to reporting a different model comparison metric that does not
rely on the marginal likelihood, such as the various information
criteria (AIC, BIC, DIC, WAIC) or leave-one-out cross validation
(LOOCV; see 56, 59, 60). However, it should be emphasized that
for the purposes of inference these alternative methods can be
suboptimal.

Example 5: “The French correction”. Proud of his work on Murt-
lap bite sensitivity, Newt Scamander (from Example 4) decides
to present his results at a conference on magical zoology held
in Carcassonne, France. As required by the 1694 International
Decree on the Right of Access to Magical Research Results, he
has made all his data and methods publicly available ahead of
time and he is confident that his findings will withstand the review
of the audience at this annual meeting. He delivers a flawless
presentation that culminates in his conclusion that Muggles are,
indeed, slightly more sensitive to Murtlap bites than magical folk
are. The evidence, he claims, is right there in the data.

After his presentation, Scamander is approached by a member
of the audience—the famously critical high-born wizard Jean-Marie
le Cornichonesque—with a simple comment on the work: “Mon-
sieur, you have not told us the evidence for your claim.”

“In fact,” continues le Cornichonesque, “given your prior distri-
butions for the difference between Muggles and magical folk, you
have not even considered the possibility that the true difference
might be exactly zero, and your results merely noise. In other
words, you are putting the cart before the horse because you esti-
mate a population difference before establishing that evidence for
one exists. If I have reservations about whether a basilisk even
exists, it does not help for you to give me an estimate for the length
of the creature’s tail! Instead, if you please, let us ascertain how
much more stock we should put in your claim over the more parsi-
monious claim of no difference between the respective population
means.”

Scamander is unfazed by the nobleman’s challenge, and, with
a flourish of his wand makes the following equations appear in the
air between them:

Ms : µ ∼ N(42, 6)
Mc : µ = 42

“These,” Scamander says, “are our respective hypotheses. I claim
that Muggles have different symptom durations on average than
wizards and witches. I have prior information that completes my
model. Your claim is that the population means may be exactly
equal. In order to quantify the relative support for each of these
hypotheses, we need a Bayes factor. Luckily, in this case the Bayes
factor is quite easy to calculate with the Savage-Dickey density
ratio, like so. . .

p(µ|X,Ms)
p(µ|Ms)

= p(µ|X,Ms)
p(µ|Ms)

= N(µ|â, b̂2)
N(µ|a, b2)

“Now that we have derived the ratio of posterior to prior density,
all that remains is to plug in the values of the parameters and to
compute the ratio of Gaussian densities at the specified points. . . ”

BFcs = N(42 | 42.9963, 0.36452)
N(42 | 42, 62)

= 0.0261
0.0665 = 0.3925 = 1

2.5475
“Tant pis. A Bayes factor of not even three favors your hypoth-

esis. You have essentially no evidence for your claim,” snorts le
Cornichonesque, before turning his back and leaving Scamander
alone in the conference room.

Discussion What has happened here? At first glance, it appears
that at first Scamander had strong evidence that Muggles are more
sensitive than magical folk to Murtlap bites, and now through some
sleight of hand his evidence appears to have vanished. To resolve
the paradox of le Cornichonesque, it is important to appreciate a
few facts. First, in Example 4, Scamander indeed did not consider
the hypothesisMc that µ = 42. In fact, because a continuous
prior density was assigned to µ, the prior probability of it taking on
any particular value is zero.

The paradox of le Cornichonesque occurs in part because of
a confusion between the hypotheses being considered. While
in our example, le Cornichonesque wishes to compare an “exis-
tence” and a “nonexistence” hypothesis, Scamander started out
from an existence assumption and arrives at conclusions about
directionality (see also 38).

Implicitly, there are four different models being considered in all.
There isMc, which specifies no effect, andMs, which specifies
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Fig. 5. A closer look at the prior (dashed) and posterior (solid) densities involved in
Newt Scamander’s study on the relative sensitivity of magical folk and Muggles to
Murtlap bites. The left panel shows the location of the fixed value (42) in the body of
the prior and posterior distributions. The right panel is zoomed in on the density in
the area around the fixed value. Comparing the prior density to the posterior density
at the fixed value reveals that very little was learned about this specific value: the
density under the posterior is close to the density under the prior and amounts to a
Bayes factor of approximately 3 supporting a deviation from the fixed value.

some effect, but alsoM−, which specifies an effect in the negative
direction, andM+, which specifies an effect in the positive direc-
tion. These last two models are concealed by Scamander’s original
analysis, but his model specification implies a certain probability
for the events (µ < 42) and (µ > 42). Indeed, because we know
that the probability that Muggles are more (vs. less) sensitive than
their magical counterparts increased from P (µ > 42) = 50% to
P (µ > 42|X) = 99.70%, we can compute Bayes factors for this
case as well. In odds notation, the prior odds were increased from
1 to 333; the Bayes factor, found by taking the ratio of posterior
to prior odds, is in this case equal to the posterior odds. Sca-
mander’s test for direction returns a much stronger result than le
Cornichoneque’s test of existence.

As a rule, inference must be limited to the hypotheses under
consideration: No method of inference can make claims about
theories not considered or ruled out a priori. Moreover, the answer
we get naturally depends on the question we ask. The example
that follows involves a very similar situation, but the risk of the
paradox of le Cornichonesque is avoided by making explicit all
hypotheses under consideration.

Example 6: “The measure of an elf”. In the wizarding world, the Min-
istry of Magic distinguishes between two types of living creatures.
Beings, such as witches, wizards, and vampires, are creatures
who have the intelligence needed to understand laws and function
in a peaceful society. By contrast, Beasts are creatures such as
trolls, dragons, and grindylows, which do not have that capacity.
Recently, the classification of house-elves has become a matter of
contention. On one side of the debate is the populist wizard and
radio personality Edward Runcorn, who claims that house-elves
are so far beneath wizard intelligence that they should be classified
as Beasts; on the other side is the famed elfish philosopher and
acclaimed author Doc, who argues that elves are as intelligent
as wizards and should be classified as Beings, with all the rights
and responsibilities thereof. The Ministry of Magic decides to in-
vestigate and convene the Wizengamot’s Internal Subcommittee
on House Elf Status (W.I.S.H.E.S.), an ad-hoc expert committee.
W.I.S.H.E.S. in turn calls on psychometrician Dr. Karin Bones of
the Magical Testing Service to decide whether house-elves are
indeed as intelligent as wizards.

Bones knows she will be asked to testify before W.I.S.H.E.S.
and takes note of the composition of the three-member committee.

The committee’s chairperson is Griselda Marchbanks, a venerable
and wise witch who is known for her impartiality and for being of
open mind to all eventualities. However, the junior members of
W.I.S.H.E.S. are not so impartial: one member is Edward Runcorn,
the magical supremacist who believes that wizards and witches are
more intelligent than house elves; the other is Hermione Granger,
a strong egalitarian who believes that house elves are equal in
intelligence to wizards and witches.

Bones begins her task by formalizing three basic hypotheses.
She will call the population’s average wizarding intelligence quo-
tient (WIQ) µw for wizards and witches and µe for elves. She can
now call the difference between the population means δ = µw−µe
so that δ captures how much more intelligent magical folk are. If
wizards and elves are equally intelligent, δ = 0. If they are not, δ
can take on nonzero values. We can restate this as an hypothesis
of approximately no difference (M0), an hypothesis of substantial
positive difference (M+; magical folk much more intelligent than
elves), and an hypothesis of substantial negative difference (M−;
elves much more intelligent than magical folk):

M0 : δ ≈ 0
M+ : δ > 0
M− : δ < 0.

However, it is not enough to state simply that δ < 0 because as a
model for data, it is underspecified: no quantitative predictions fol-
low (i.e., the likelihood for a specific data set cannot be calculated).
In order to be more specific, Bones consults with W.I.S.H.E.S. and
together they decide on three concrete models:‡‡‡

p(δ|M0) = I(−5 < δ < 5)/10 if −5 < δ < 5
p(δ|M+) = 2N(δ|5, 15)I(δ > 5) if δ > 5
p(δ|M−) = 2N(δ| − 5, 15)I(δ < −5) if δ < −5.

M0 is the assumption that the true difference δ is somewhere
between −5 and 5 with all values equally likely – a uniform dis-
tribution. This is based on a consensus among W.I.S.H.E.S. that
differences of only five WIQ points are negligible for the Ministry’s
classification purposes: differences in this range are practically
equivalent to zero. UnderM+, it is assumed that wizards score at
least 5 points higher than elves on average (δ > 5) but differences
of 20 are not unexpected and differences of 40 possible, if unlikely.
UnderM−, it is assumed that wizards score at least 5 points lower
than elves (δ < −5).

After having determined the three hypotheses that W.I.S.H.E.S.
wishes to consider, Bones decides to collect one more piece of
information: how strongly each member of the committee believes
in each of the three options. She provides each member with 100
tokens and three cups, and gives them the following instructions:

I would like you to distribute these 100 tokens over these
three cups. The first cup representsM−, the second
M0, and the third M+. You should distribute them
proportionally to how strongly you believe in each hy-
pothesis.

Marchbanks’ inferred prior probabilities of each of the three hy-
potheses are (25, 50, 25), Granger’s are (15, 70, 15), and Run-
corn’s are (5, 15, 80). This type of procedure is known as prior
elicitation; for more in-depth discussion on prior elicitation, see
Garthwaite et al. (13) and Lee and Vanpaemel (30).

‡‡‡
I(·) is the indicator function, which takes the value 1 if its argument is true and 0 otherwise; here it
takes the role of a truncation. Since these distributions are truncated, they must be multiplied by a
suitable constant such that they integrate to 1 (i.e., we renormalize them to be proper distributions).
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Fig. 6. Left: Each of the three panel members has their own prior probability on each of the three possible models M−, M0, and M+. In this scenario, the three models
do not overlap in the parameter space: no parameter value is supported by more than one model. However, this is merely a convenient feature of this example and not a
requirement of Bayesian model selection – it is entirely possible (and common) for two different models to support the same parameter value. Right: The predicted observed
difference in a sample with a standard error of estimation of 1.5. Here, the predictive distribution for each model has been multiplied by the prior probability for that model. This
representation has the interesting property that the posterior ratio between two models, given some observed difference, can be read from the figure as the ratio between the
heights of the two corresponding densities. Note, for example, that at the dashed vertical line (where d = 2), the posterior probability for M0 is higher than that for M− or
M+ for every judge. If the distributions had not been scaled by the prior probability, these height ratios would give the Bayes factor.
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To summarize the different prior expectations, Bones constructs
a figure to display the marginal distribution of the effect size δ for
each committee member. This marginal prior density is easily
obtained with the sum rule:

p(δ) =
∑

h∈(M−,M0,M+)
p(h)p(δ|h)

= p(M−)p(δ|M−) + p(M0)p(δ|M0) + p(M+)p(δ|M+).

Figure 6 shows the resulting distribution for each of the committee
members. These graphs serve to illustrate the relative support
each committee member’s prior gives to each possible population
difference.

Using a well-calibrated test, Bones sets out to gather a sample
of n1 = 100 magical folk and n2 = 100 house-elves, and obtains
WIQ scores of Mw = 99.00 for wizards and witches and Me =
101.00 for elves, giving a sample difference of d = −2.00. The test
is calibrated such that the standard deviation for magical folk and
elves are both equal to 15: σw = σe = 15.00, which in turn gives
a standard deviation for their difference δ of σδ =

√
152 + 152 =

21.21. Therefore, the standard error of measurement is se =
21.21/

√
n1 + n2 = 1.50 and the likelihood function to use is now

N
(
d|δ, s2

e

)
= N

(
−2|δ, 1.52).

To address the committee’s question, Bones can now use Equa-
tion 19 to obtain the posterior probability of each model:

P (Mi|d) = p(Mi)p(d|Mi)
P (M0)p(d|M0) + P (M−)p(d|M−) + P (M+)p(d|M+) .

For this, she needs to compute the three marginal likelihoods
p(d|M0), p(d|M−), and p(d|M+), which are obtained with the
continuous sum rule. For the case ofM0, the marginal likelihood
can be worked out by hand in a few steps:§§§

p(d|M0) =
∫

∆
p(δ|M0)× p(d|δ,M0)dδ

=
∫

∆

1
10I(−5 < δ < 5)×N(d|δ, s2

e)dδ

= 1
10

∫ 5

−5
N(d|δ, s2

e)dδ

= 1
10
[
Φ(2| − 5, 1.52)− Φ(2|5, 1.52)

]
= 9.772× 10−2

For the cases ofM+ andM−, the derivation is much more te-
dious. It can be done by hand by making use of the fact that
the product of two normal distributions has a closed-form solution.
However, a numerical approximation can be very conveniently per-
formed with standard computational software or—at the Ministry
of Magic—a simple numerical integration spell.¶¶¶ For this par-
ticular task, Dr. Bones arrives at p(d|M+) = 8.139 × 10−8 and
p(d|M−) = 1.209× 10−3.

Bones now has all that she needs to compute the posterior
probabilities of each hypothesis and for each committee member.
The prior and posterior probabilities are given in Table 3. As it turns
out, the data that Bones has available should effectively overwhelm

§§§Bones’ derivation makes use of the fact that the identity function I(·) can be factored out of the
integrand if the integration bounds are accordingly limited to the region where the argument is true.
This fact is used in moving from the second step to the third.

¶¶¶Some popular non-magical options include MATLAB (57) and R (44), or readers can use www.
wolframalpha.com. MATLAB and R code for this example is available on the OSF repository (https:
//osf.io/wskex/) and in the Appendix.

Table 3. Prior and posterior probabilities for each hypothesis and
each committee member. Probabilities are updated with Equation 19.
The fourth row in each half of the table serves to emphasize that,
for the purposes of the committee, P (M−) and P (M0) constitute a
single category since they both lead to the classification of “Being”
rather than “Beast.” Thus, we consider P (“Being”) = P (M−) +
P (M0).

Marchbanks Granger Runcorn
P (M−) .250 .150 .050
P (M0) .500 .700 .150
P (M+) .250 .150 .850
P (“Being”) .750 .850 .200
P (M−|d) .006 .003 .012
P (M0|d) .994 .997 .988
P (M+|d) .000 .000 .000
P (“Being” | d) 1.000 1.000 1.000

each of the three members’ prior probabilities and put the bulk of
the posterior probability onM0 for each member. Counting on
the ability of each committee member to rationally update their
beliefs, she prepares a concise presentation in which she lays out
a confident case for elf equality and “Being” status.

Discussion Probability theory allows model comparison in a wide
variety of scenarios. In this example the psychometrician deals
with a set of three distinct models, each of which was constructed
ad hoc – custom-built to capture the psychological intuition of the
researcher (and a review panel). Once the models were built, the
researcher had only to “turn the crank” of probabilistic inference
and posterior probabilities are obtained through standard mech-
anisms that rely on little other than the sum and product rules of
probability. As this example illustrates, the practical computation
of posterior probabilities will often rely on calculus or numerical
integration methods; several papers in this special issue deal with
computational software that is available (39, 58, 64, 65).

An interesting aspect to this example is the fact that the analyst
is asked to communicate to a diverse audience: three judges who
hold different prior notions about the crucial hypotheses. That is,
they hold different notions on the prior probability that each hypoth-
esis is true. They happen to agree on the prior distribution of the δ
parameter under each hypothesis (but we made that simplification
only for ease of exposition; it is not a requirement of the method).
This is comparable to the situation in which most researchers
find themselves: there is one data set that brings evidence, but
there are many—possibly diverse—prior notions. Given that prior
probabilities must be subjective, how can researchers hope to
reasonably communicate their results if they can only report their
own subjective knowledge?

One potential strategy is the one employed by the psychometri-
cian in the example. The strategy relies on the realization that we
can compute posterior probabilities for any rational person as soon
as we know their prior probabilities. Because the psychometrician
had access to the prior probabilities held by each judge, she was
able to determine whether her evidence would be compelling to
this particular audience.

Social scientists who present evidence to a broad audience can
take a similar approach by formulating multiple prior distributions
– for example, some informative priors motivated by theory, some
priors that are uninformative or indifferent in some ways, and some
priors that might be held by a skeptic. Such a practice would be
a form of sensitivity analysis or robustness analysis. If the data
available are sufficiently strong that skeptics of all camps must
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rationally come to the same conclusion, then concerns regarding
the choice of priors are largely alleviated. This was the case above,
where Marchbanks, Granger, and Runcorn all were left with a
greater than 98% posterior probability for the model specifying elf
equality despite their wide-ranging prior probabilities.

Of course, data is often noisy and the evidence may in many
cases not be sufficient to convince the strongest skeptics. In
such cases, collecting further data may be useful. Otherwise, the
researcher can transparently acknowledge that reasonable people
could reasonably come to different conclusions.

An alternative option is to report the evidence in isolation. Espe-
cially when the ultimate claim is binary—a discrimination between
two models—one might report only the amount of discriminating
evidence for or against a model. By reporting only the amount of
evidence, in the form of a Bayes factor, every individual reader can
combine that evidence with their own prior and form their own con-
clusions. This is now a widely-recommended approach (e.g., (65);
but see (47), for words of caution; and see (28), for a discussion of
scenarios in which the Bayes factor should not be the final step of
an analysis) that is taken in the final example.

Example 7: “Luck of the Irish”. Every four years, the wizarding world
organizes the most exhilarating sporting event on earth: the Quid-
ditch World Cup. However, the Cup is often a source of controversy.
In a recent edition, aspersions were cast on the uncommonly strong
showing by the Irish team: An accusation was brought that the
Irish players were dosed with a curious potion called felix felicis,
which gives an individual an extraordinary amount of “dumb luck.”

At the Ministry of Magic’s Department for International Mag-
ical Cooperation—who oversee the event and have decided to
investigate the doping claims—junior statistician Angelina Johnson
noticed that the Irish team had another striking piece of good luck:
in each of the four games, the Irish team captain won the coin toss
that allows them to choose in which direction to play. From these
data, Johnson reasons as follows.

If the coin is fair, and there is no cheating, then the Irish team
captain should win the toss with 50% probability on each occasion
(M0 : θ = θ0 = 0.5). However, if the captain has taken felix
felicis, they should win with a higher, but unknown probability
(MJ : θ > 0.5). Johnson then sets out to determine whether
this small amount of data (k = 4 wins in N = 4 games) contains
enough evidence to warrant strong suspicions.

The discriminating evidence is given by the Bayes factor,
BFJ0 = P (k|MJ)/P (k|M0), where the marginal likelihoods
(with capital P (·) since number of wins are discrete) can be cal-
culated one model at a time. Since the outcomes of the four
coin tosses are assumed independent given θ, the probability of k
successes in any sequence of length N is given by the binomial
distribution:

(
N
k

)
θk(1−θ)N−k, where the binomial coefficient

(
N
k

)
is the number of ways N items can arrange themselves in groups
of size k (e.g., 4 items can be arranged into a group of 4 exactly 1
way). Thus, forM0,

P (k|M0) =
(

4
4

)
0.54 × 0.50

= 1
24 = 1

16 .

ForMJ , Johnson needs to express her prior knowledge of the
parameter θ. Since she knows very little about the potion felix
felicis, she takes all values between 0.5 and 1.0 to be equally
plausible, so that P (θ|MJ) = 2I(0.5 < θ < 1.0). The shape of

this prior density is depicted in the left half of Figure 7. Hence,

P (k|MJ) =
∫

Θ
p(θ|MJ)× P (k|θ,MJ)dθ

=
∫

Θ
2I(0.5 < θ < 1.0)×

(
4
4

)
θ4 (1− θ)0 dθ

= 2
∫ 1.0

0.5
θ4dθ

= 2
[
θ5

5

]1.0

0.5
= 2

5
(
15 − 0.55) = 31

80 .

Thus, the data are implied (31/80) / (1/16) = 6.2 times more
strongly by MJ than by M0 (i.e., BFJ0 = 6.2). Johnson con-
cludes that these data afford only a modest amount of evidence—
certainly not enough evidence to support a controversial and
consequential recommendation—and decides to return to tally-
ing quidditch-related nose fractures instead.

Example 7b: “Luck of the Irish — Part 2”. As might be expected, the
Irish quidditch controversy did not fail to pique interest throughout
the wizarding world. Independently of the Ministry statistician,
Barnabas Cuffe, Editor-in-Chief of the Daily Prophet—England’s
premier magical newspaper—had noticed the same peculiar luck in
the Irish team’s pregame coin tosses. In the editor’s case, however,
attention to the coin tosses was not a coincidence – in fact, “liquid
luck” had helped him win a few career-saving coin tosses in a
mildly embarrassing part of his journalistic past.

Cuffe’s experience with felix felicis is straightforward: on eleven
different occasions did he sip the potion just before a coin toss
would decide which of two journalistic leads he would pursue that
day – his colleague would pursue the other. He recalls clearly that
on each of the eleven occasions, his leads carried him in the thick
of dramatic, newsworthy events while his colleague’s leads turned
out dead ends. Cuffe was promoted; his colleague dismissed.

As it happens, Cuffe is an accomplished statistician, and he
reasons in much the same way as Angelina Johnson (the junior
statistician at the Ministry). If there is no cheating the winning
probability should be 50% each time (M0 : θ = 0.5). If there is
cheating, the winning probability should be higher. In contrast to
Johnson, however, Cuffe has a good idea how much higher the
winning probability θ will be with felix felicis: before evaluating the
Irish captain’s luck he can estimate θ from additional information y
that only he possesses.

Cuffe starts by writing down Equation 10 and filling in the quan-
tities on the right hand side. Among these is the prior density p(θ),
which gives the density at each possible value of θ before consid-
ering his own eleven winning coin tosses y. A reasonable place to
start (as before) is that all values between 0.5 and 1.0 are equally
plausible: p(θ) = 2I(0.5 < θ < 1.0) = 2Iθ (where we introduce
Iθ as a shorthand for I(0.5 < θ < 1.0), the appropriate indicator
function). He also uses the same binomial likelihood function as
Johnson, hence,

p(θ|y) = p(θ)× p(y|θ)∫
Θ p(θ)× p(y|θ)dθ

=
2Iθ ×

(11
11

)
θ11(1− θ)0∫

Θ 2Iθ ×
(11

11

)
θ11(1− θ)0dθ

= 2Iθ × θ11

2
∫ 1.0

0.5 θ
11dθ

= Iθ × θ11[
θ12
12

]1.0
0.5

= Iθ × θ11

1
12 (1.012 − 0.512)

≈ 12θ11Iθ.
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Fig. 7. The structure of Johnson and Cuffe’s models, which can be viewed as more complex (rotated) versions of earlier path diagrams. Top: The model space shows the
contending models. In this case, both Johnson and Cuffe are comparing two models. The prior probabilities for the models are left unspecified. Middle: The parameter space
shows what each model predicts about the true value of θ (i.e., each model’s conditional prior distribution). Johnson and Cuffe both use a point null model, which packs all of its
mass into a single point (shown as the arrow spiking at θ = .5). However, they have different background knowledge about felix felicis, so their prior distributions for θ under
their respective alternative model differ. Note that p(θ|MC ) is obtained from updating p(θ|MJ ) with 11 additional felix felicis successes. Bottom: The sample space shows
what each model predicts about the data to be observed (i.e., each model’s prior predictive distribution). The Bayes factor is formed by taking the ratio of the probability each
model attached to the observed data, which was four wins in four coin tosses. Since the predictions from the null model are identical for Cuffe and Johnson, the difference in
their Bayes factors is due to the higher marginal likelihood Cuffe’s alternative model placed on the Irish captain winning all four coin tosses.
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This calculation17 yields Cuffe’s posterior density of the winning
probability θ, which captures his knowledge and uncertainty of the
value of θ under luck doping. The shape of this density function is
depicted in the right half of Figure 7. Crucially, Cuffe can use this
knowledge to perform the same analysis as the Ministry statistician
with only one difference: yesterday’s posterior p(θ|y) is today’s
prior p(θ|MC). The fact that the latter notation of the prior does
not include mention of y serves to illustrate that densities and
probabilities are often implicitly conditional on (sometimes infor-
mal) background knowledge. Note, for instance, that the entire
calculation above assumes that felix felicis was taken, but this is
not made explicit in the mathematical notation.

Unknowingly repeating Johnson’s calculation, Cuffe finds that
the probability of the Irish team captain’s k = 4 winning coin
tosses assuming no luck doping is again p(k|M0) = 1/16. His
calculation for the probability of the k = 4 wins assuming luck
doping is

P (k|MC) =
∫

Θ
p(θ|MC)× p(k|θ,MC)dθ

≈
∫ 1.0

0.5
12θ11Iθ ×

(
4
4

)
θ4 (1− θ)0 dθ

= 12
[
θ16

16

]1.0

0.5
= 12

16
(
116 − 0.516) ≈ 12

16 .

To complete his analysis, Cuffe takes the ratio of marginal likeli-
hoods, BFC0 = P (k|MC)/P (k|M0) ≈ 12, which is strong—but
not very strong—evidence in favor of Cuffe’s luck doping model.

Inspired partly by the evidence and partly by the recklessness
that follows from years of felix felicis abuse, editor Cuffe decides to
publish an elaborate exposé condemning both the Irish quidditch
team for cheating and the Ministry of Magic for failing to act on
strong evidence of misconduct.

Discussion This final, two-part example served mostly to illus-
trate the effects of prior knowledge on inference. This is somewhat
in contrast to Example 6, where the prior information was over-
whelmed by the data. In the two scenarios here, the Ministry
junior statistician and the Prophet editor are both evaluating evi-
dence that discriminates between two models. Both consider a “nil
model” in which all parameters are known (the fairness of a coin
implies that the parameter θ must be 0.5), but they critically differ
in their definition of the alternative model. The Ministry statistician,
having no particular knowledge of the luck doping potion, consid-
ers all better-than-chance values equally plausible, whereas the
Prophet editor can quantify and insert relevant prior information
that specifies the expected effects of the drug in question to greater
precision.

As illustrated in the bottom row of Figure 7, these three models
(the chance modelM0, the Ministry modelMJ , and the Prophet
model MC ) make distinct predictions: M0 predicts a distribu-
tion of Irish coin toss wins that is symmetric about k = 2; MJ

predicts a right-leaning distribution with a greater probability of
four Irish wins; andMC predicts an even greater such probability.
More specifically, the marginal likelihoods are P (k|M0) = 5/80,
P (k|MJ) = 31/80, and P (k|MC) ≈ 60/80, and the Bayes
factor between any two of these models is given by forming the
appropriate ratio.

17Note that here and below, we make use of a convenient approximation: 0.5k ≈ 0 for large values
of k. Making the calculation exact is not difficult but requires a rather unpleasant amount of space.
Also note that the indicator function from the prior density carries over to the posterior density.

This example illustrates a general property in Bayesian model
comparison: A model that makes precise predictions can be con-
firmed to a much stronger extent than a model that makes vague
predictions, while at the same time the precision of its predictions
makes it easier to disconfirm. The reason Cuffe was able to ob-
tain a higher Bayes factor than Johnson is because his alternative
model made much more precise predictions;MC packed three-
quarters of its prior predictive distribution into k = 4, whereasMJ

spread its probability more broadly among the potential outcomes.
Since Cuffe’s precise prediction was correct, he was rewarded
with a larger Bayes factor. However, Cuffe’s prediction was risky:
if the Irish captain had won any fewer than all four coin tosses,
M0 would have been supported overMC . In contrast, the Bayes
factor would still favorMJ when k = 3 because Johnson’s model
is more conservative in its predictions. In sum, the ability to in-
corporate meaningful theoretical information in the form of a prior
distribution allows for more informed predictions and hence more
efficient inferences (30).

5. Broader appeal and advantages of Bayesian infer-
ence

The Bayesian approach is a common sense approach. It is
simply a set of techniques for orderly expression and revision
of your opinions with due regard for internal consistency
among their various aspects and for the data.

W. Edwards et al. (8)

In our opinion, the greatest theoretical advantage of Bayesian
inference is that it unifies all statistical practices within the con-
sistent formal system of probability theory. Indeed, the unifying
framework of Bayesian inference is so uniquely well-suited for sci-
entific inference that these authors see the two as synonymous.
Inference is the process of combining multiple sources of infor-
mation into one, and the rules for formally combining information
derive from two simple rules of probability. Inference can be as
straightforward as determining the event of interest (in our notation,
usuallyM or θ) and the relevant data and then exploring what the
sum and product rules tell us about their relationship.

As we have illustrated, common statistical applications such
as parameter estimation and hypothesis testing naturally emerge
from the sum and product rules. However, these rules allow us
to do much more, such as make precise quantitative predictions
about future data. This intuitive way of making predictions can be
particularly informative in discussions about what one should ex-
pect in future studies – it is perhaps especially useful for predicting
and evaluating the outcome of a replication attempt, since we can
derive a set of new predictions after accounting for the results of
the original study (e.g., 61, 63).

The practical advantages of using probability theory as the
basis of scientific and statistical inference are legion. One of the
most appealing in our opinion is it allows us to make probabilistic
statements about the quantities of actual interest, such as “There is
a 90% probability the participants are guessing,” or “The probability
is .5 that the population mean is negative.” It also allows us to
construct hierarchical models that more accurately capture the
structure of our data, which often includes modeling theoretically-
meaningful variability at the participant, task, item, or stimulus level
(14, 31, 53).

Bayesian inference also gracefully handles so-called nuisance
parameters. In most of our present examples there has been only
a single quantity of interest – in order to help keep the examples
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simple and easy to follow. In real applications, however, there are
typically many parameters in a statistical model, some of which
we care about and some of which we do not. The latter are called
nuisance parameters because we have little interest in them: we
only estimate them out of necessity. For example, if we were
estimating the mean of a normal distribution (as in Example 4) and
did not know the population standard deviation, then we would
have to assign it a prior density, such that the overall prior density
would be of the form p(µ, σ); after collecting data X, the posterior
density would be of the form p(µ, σ|X). Since we are generally
only interested in the parameter µ, estimating σ out of necessity, σ
is considered a nuisance parameter. To make inferences about µ
we merely integrate out σ from the posterior density using the sum
rule: p(µ|X) =

∫
Σ p(µ, σ|X)dσ, from which we can do inference

about µ. Similarly, in Examples 7 and 7b, the exact win rate from
a luck-doped coin toss is not of primary interest, only whether the
coin tossed in the four games was plausibly fair or not. Here, the
bias parameter of the coin can be seen as a nuisance parameter.
Dealing with nuisance parameters in a principled way is a unique
advantage of the Bayesian framework: except for certain special
cases, frequentist inference can become paralyzed by nuisance
parameters.

The ability of Bayesian inference to deal with nuisance param-
eters also allows it to flexibly handle one of the biggest statistical
challenges for data analysts: situations in which the assumptions
of the statistical model regarding the data are badly violated. For
example, one of the most common assumptions violated is that of
normality (e.g., due to the presence of many outliers). In technical
terms, this means that we may not think the normal likelihood func-
tion adequately characterizes the data-generating mechanism for
the inference problem at hand. In Bayesian inference the choice of
likelihood is important because, as we have seen in the estimation
examples above, with even moderate samples sizes the likelihood
quickly begins to dominate the prior densities. To resolve this issue
a Bayesian can construct two models: one that uses a normal
likelihood function (modelMN ), and one that uses a likelihood
function with wider tails (model MW ), such as a t distribution
with few degrees of freedom. After collecting data we then have a
posterior distribution for the parameters of interest for each model,
p(θ|X,MN ) and p(θ|X,MW ). If we assign prior probabilities to
these two models (we emphasize that a “model” consists of both
a prior distribution for the parameters and a likelihood function for
the data), P (MN ) and P (MW ), we can calculate their posterior
probabilities P (MN |X) and P (MW |X). We are then in a posi-
tion to use the sum rule to marginalize over the different models
(as Dr. Bones did with the various prior densities in Example 6),
allowing us to find the model-averaged posterior density for θ,

p(θ|X) = P (MN |X)p(θ|X,MN ) + P (MW |X)p(θ|X,MW ).

Note that model averaging is in a sense the flip-side of model
selection: In model selection, the identity of the model is central
while the model parameters are sometimes seen as nuisance vari-
ables to be integrated away. By contrast, in the previous equation
the model identities are treated as nuisance variables while the
shared model parameters remain central (see 11, 48). The flexi-
bility to perform model averaging across any variable we care to
name (e.g. 19, 35) is a unique advantage of Bayesian inference.

Finally, Bayesian analysis allows for immense freedom in data
collection because it respects the likelihood principle (2). The
likelihood principle states that the likelihood function of the data
contains all of the information relevant to the evaluation of statistical

evidence. What this implies is that other properties of the data
or experiment that do not factor into the likelihood function are
irrelevant to the statistical inference based on the data (33, 54).
Adherence to the likelihood principle means that one is free to
do analyses without needing to adhere to rigid sampling plans,
or even have any plan at all (49). Note that we did not consider
the sampling plan in any of our examples above, and none of
the inferences we made would have changed if we had. Within a
Bayesian analysis, “It is entirely appropriate to collect data until a
point has been proven or disproven, or until the data collector runs
out of time, money, or patience” (8, p. 193).

6. Conclusion

[W]e believe that Bayes’ theorem is not only useful, but in fact
leads to the only correct formulas for solving a large number of
our cryptanalytic problems.

F. T. Leahy (29) [emphasis original]

The goal of this introduction has been to familiarize the reader
with the fundamental principles of Bayesian inference. Other contri-
butions in this special issue (7, 28) focus on why and how Bayesian
methods are preferable to the methods proposed in the New Statis-
tics (4). The Bayesian approach to all inferential problems follows
from two simple formal laws: the sum and product rules of prob-
ability. Taken together and in their various forms, these two rules
make up the entirety of Bayesian inference – from testing simple
hypotheses and estimating parameters, to comparing complex
models and producing quantitative predictions.

The Bayesian method is unmatched in its flexibility, is rooted in
relatively straightforward calculus, and uniquely allows researchers
to make statements about the relative probability of theories and
parameters – and to update those statements with more data. That
is, the laws of probability show us how our scientific opinions can
evolve to cohere with the results of our empirical investigations.
For these reasons, we recommend that social scientists adopt
Bayesian methods rather than the New Statistics, and we hope
that the present introduction will contribute to deterring the field
from taking an evolutionary step in the wrong direction.
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A. Computer code for “The measure of an elf”

1 % MATLAB/Octave code for Example 6
2
3 % Define the three models
4 e = 5;
5 s = 15;
6
7 h0 = @(x) (x < e & x > -e) / (2 * e);
8 hn = @(x) normpdf(x, -e, s) * 2 .* (x < -e);
9 hp = @(x) normpdf(x, e, s) * 2 .* (x > e);

10
11 % Define the data and likelihood
12 d = -2;
13 n = 100;
14 sem = sqrt((s^2 + s^2) / (2 * n));
15
16 likelihood = @(x) normpdf(d, x, sem);
17
18 % Define the integrands and integrate
19 fn = @(x)likelihood(x) .* hn(x);
20 mn = quadgk(fn , -inf , -e, ’waypoints ’, [-e, e]);
21
22 f0 = @(x)likelihood(x) .* h0(x);
23 m0 = quadgk(f0 , -e, e, ’waypoints ’, [-e, e]);
24
25 fp = @(x)likelihood(x) .* hp(x);
26 mp = quadgk(fp , e, inf , ’waypoints ’, [-e, e]);
27
28 ev = [mn, m0, mp];
29
30 % Apply Bayes ’ rule
31 eq19 = @(p,m) p .* m ./ sum(p .* m);
32
33 marchbanks = [.25, .50, .25];
34 granger = [.15, .70, .15];
35 runcorn = [.45, .10, .45];
36
37 eq19(marchbanks , ev)
38 % ans = 0.0061 0.9939 0.0000
39 eq19(granger , ev)
40 % ans = 0.0026 0.9974 0.0000
41 eq19(runcorn , ev)
42 % ans = 0.0122 0.9878 0.0000

1 # R code for Example 6
2
3 # Define the three models
4 e <- 5
5 s <- 15
6
7 h0 <- function(x) (x < e & x > -e) / (2 * e)
8 hn <- function(x) dnorm(x, -e, s) * 2 * (x < -e)
9 hp <- function(x) dnorm(x, e, s) * 2 * (x > e)

10
11 # Define the data and likelihood
12 d <- -2
13 n <- 100
14 sem <- sqrt((s^2 + s^2) / (2 * n))
15
16 like <- function(x) dnorm(d, x, sem)
17
18 # Define the integrands and integrate
19 fn <- function(x) like(x) * hn(x)
20 mn <- integrate(fn, -Inf , -e)$value
21
22 f0 <- function(x) like(x) * h0(x)
23 m0 <- integrate(f0, -e, e)$value
24
25 fp <- function(x) like(x) * hp(x)
26 mp <- integrate(fp, e, Inf)$value
27
28 ev <- c(mn , m0, mp)
29
30 # Apply Bayes ’ rule
31 eq19 <- function(p,m) p*m / sum(p*m)
32
33 marchbanks <- c(.25, .50, .25)
34 granger <- c(.15, .70, .15)
35 runcorn <- c(.10, .10, .80)
36
37 eq19(marchbanks , ev)
38 # [1] 6.145693e-03 9.938539e-01 4.138483e-07
39 eq19(granger , ev)
40 # [1] 2.643151e-03 9.973567e-01 1.779886e-07
41 eq19(runcorn , ev)
42 # [1] 1.221623e-02 9.877772e-01 6.581086e-06

MATLAB/Octave users who do not have access to the Statistics Toolbox can add on line 6:
normpdf = @(x,m,s) exp(-((x-m)./s).ˆ2/2)./sqrt(2.*s.ˆ2.*pi);
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