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Abstract (250 words) 
Light exposure fundamentally influences human physiology and behavior, with light being 

the most important zeitgeber of the circadian system. Throughout the day, people are 

exposed to various scenes differing in light level, spectral composition and spatio-

temporal properties. Personalized light exposure can be measured through wearable light 

loggers and dosimeters, including wrist-worn actimeters containing light sensors, yielding 

time series of an individual’s light exposure. There is growing interest in relating light 

exposure patterns to health outcomes, requiring analytic techniques to summarize light 

exposure properties. Building on the previously published Python-based 

pyActigraphy module, here we introduce the module pyLight. This module allows users 

to extract light exposure data recordings from a wide range of devices. It also includes 

software tools to clean and filter the data, and to compute common metrics for quantifying 

and visualizing light exposure data. For this tutorial, we demonstrate the use of pyLight in 

three examples: (1) loading, accessing and visual inspection of a publicly available 

dataset, (2) truncation, masking, filtering and binarization of the dataset, (3) calculation of 

summary metrics, including time above threshold (TAT) and mean light timing above 

threshold (MLiT). The pyLight module paves the way for open-source, large-scale 

automated analyses of light-exposure data.  
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Introduction 
Light exposure profoundly affects human physiology and behaviour, including entrainment of the 

circadian clock, the production of the hormone melatonin, alertness and mood. These effects are 

mediated primarily by the intrinsically photosensitive retinal ganglion cells (ipRGCs) in the retina 

expressing the short-wavelength sensitive photopigment melanopsin (1–10). The ipRGCs project 

to a wide range of different brain areas, including the master biological clock in the hypothalamus, 

the suprachiasmatic nuclei (SCN) signalling timekeeping information (11–14). 

The so-called ‘non-visual  ’effects of light are receiving attention from a variety of professionals, 

including neuroscientists, psychologists, lighting designers, architects, interdisciplinary scientists, 

regulators, and the general public (15–17). Moreover, negative consequences from potentially 

insufficient indoor illumination during daytime and excessive light exposure in the evening from 

light-emitting devices, namely light in the short-wavelength range, are increasingly recognized. 

Recently, recommendations for optimal ambient light exposure levels have been developed, 

proposing optimal light levels for daytime, evening and night-time light exposure (18) and 

exemplifying the translation of recent scientific findings in this field into practice. 

In parallel to research uncovering the impact of light on human physiology and behaviour, small, 

light loggers, which are wearable devices measuring personalized light exposure over extended 

periods, have been developed (19). Light loggers include commercial wrist-worn light sensors 

built into actimetry devices (e.g., Actigraph wGT3X-BT, Actigraph Headquarters; Pensacola, FL, 

USA; CamNTech Actiwatch 4 / Motionwatch-8 CamNTech, Fenstanton, UK; Condor ActTrust1/2, 

Condor, Sao Pãolo, Brazil), brooches and pendants (e.g., Lys, Lys Technologies, Copenhagen, 

Denmark) and research-grade near-corneal-plane light loggers (e.g. LuxBlick (20,21), lido (22)). 

There is a large and growing set of studies using light loggers (20,21,23–37), differing in 

calibration properties, position, data pre-processing and recording intervals (19). 

A dominant factor in light exposure is exposure to daylight (38), which is given by illumination due 

to the Earth’s rotation. However, an individual’s personal light exposure shows great variability 

over time (39), depending on light availability in the environment (indoors vs. outdoors; different 

lighting and window designs, types of light sources used), activities (outdoor and indoor activities 

at work, school, at home) and individual behaviour (eye movements). Due to this variability, light 

exposure data must be measured individually in a personalized fashion, and cannot be predicted 

simply from environmental measurements. 

The availability of personalized light exposure data requires the development of analytical and 

statistical tools, for which a series of metrics have been proposed (19). While various open-source 

tools have been developed to perform analysis of light data in general, including the web-based 
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luox platform (https://luox.app/, (40)), LuxPy (41), and colour (42) for the calculation of quantities 

from spectral and colorimetric data, none of these calculate exposure metrics from time-series 

light exposure data. 

To facilitate the analysis of light exposure data, we introduce an open-source Python module for 

the analysis of time-series data. This module, termed pyLight, is part of and extends the previously 

published open-source pyActigraphy Python package (43), which implements functions for the 

loading, processing and analysis of actigraphy data. In this article, we will introduce the module, 

describe the contained functions and demonstrate the use of the module, with a specific focus on 

importing data, manipulating data, and calculating exposure metrics from the data. To our 

knowledge, pyLight is the only software package allowing for the convenient calculation of light 

metrics within a common API. 

•  

•  

•  

•  

•  

 

Overview of pyLight  
Overall architecture 
The pyLight module has been designed to be used independently within the pyActigraphy 

package. The module interfaces with the existing infrastructure of pyActigraphy. The basis of 

pyLight is a generic class holding the light exposure data. Via multiple inheritance, this class 

provides access to a list of analysis metrics dedicated to light exposure data analysis. Derived 

classes can then easily be implemented to support and read various native file formats from 

different light exposure devices. An example of such a class is provided by the ‘GenLightDevice ’

class of pyLight. 

 

Accessing data from different devices 
In addition, for each device supported by pyActigraphy (e.g., Actigraph wGT3X-BT, Actigraph 

Headquarters; Pensacola, FL, USA; CamNTech Actiwatch 4 / Motionwatch-8 CamNTech, 

Fenstanton, UK; Condor ActTrust1/2, Condor, São Paolo, Brazil), the pyLight base class is able 

to handle the light exposure data recorded by these specific devices through a common API. 
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Calculation of light exposure metrics 
pyLight implements a series of light exposure metrics. These exposure metrics can be applied to 

a range of different light logger-measured quantities, including photopic illuminance or melanopic 

equivalent daylight illuminance (mEDI), and other quantities derived from spectral or multi-

channel light logger measurements. As the metrics are generally agnostic to the exact quantity, 

in the below, we use the placeholder term “light exposure”. 

Aggregated statistics:  Means, medians and other summary statistics can be calculated over the 

entire recording or over user-defined periods. 

Threshold-based metrics: pyLight allows for the calculation of the time spent above a user-defined 

threshold (time above threshold; TAT) as well as the mean light timing above threshold (MLiT) 

developed by Reid and colleagues (44). The MLiT metric is defined as: 

𝑀𝐿𝑖𝑇(𝐶) =
∑!"∑#$𝑗 × 𝐼!#(𝐶)
∑!"∑#$𝐼!#(𝐶)

 

Where 𝐼𝑗𝑘 is 1 if the light exposure intensity is above the threshold 𝐶⬚ in 𝑗-th daily period on the 

𝑘-th day and 0 otherwise, 𝑗 is the index of the 𝑗-th daily period, n is the number of daily period 

(e.g., 1440 for light exposure data measured every minute) and 𝑘 is the number of days in the 

recording. This variable computes the time of day around which the mean light exposure above 

the threshold 𝐶⬚  is centred. The TAT is simply the number of minutes above the defined 

threshold 𝐶⬚. 𝐶⬚ is user-defined, thereby allowing for the probing of several different thresholds.  

L5 and M10 metrics. Calculation of time of day and mean value of light exposure during the 5 

hours window of least exposure or the 10 hours of maximal exposure (45). L5 and M10 metrics 

are extreme values within these periods, without regard to the average light exposure. 

Inter-daily stability (IS) and intradaily variability (IV). These metrics have primarily been used to 

quantify rest-activity rhythms obtained from actigraphy studies (46). IS quantifies the stability of 

the daily pattern across days, while IV represents its fragmentation across the day. IS and IV have 

recently been applied to light exposure patterns and related to rest-rhythms (47). 

Mathematically, IS and IV are are defined as: 

 

𝐼𝑆 = $∑!
"()!*))#

,∑$
%()$*))#

 and for interdaily stability (IS) and 

 

𝐼𝑉 = $∑$
%&'()$('*)$)#

($*-)∑$
%()$*))#

 for intradaily variability (IV), 
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where 𝑥ℎ is the average light exposure over all the h-th periods across all days, 𝑥𝑗 is the light 

exposure during the j-th periods, 𝑥⬚ is the overall mean light exposure, n is the number of periods 

contained in the recording and p is the number of daily periods. IS is simply the 24-h value of the 

chi-square periodogram, normalised by the number of periods, n (48). 

Transformations: Data can be transformed conveniently into logarithmic scales.  

 

Masking and data selection 
A crucial step prior to the analysis of the light exposure data is the processing of raw data, i.e., 

removing light data where the device was not worn, or covered by sleeves (for wrist worn devices). 

To implement these preprocessing steps, the pyLight module offers various methods to mask 

periods of data acquisitions, either by only reading a specific continuous period of data defined 

by a user-defined start and stop time, or by adding periods where the unwanted data are masked, 

thereby not contributing to any subsequent analysis. Such periods can either be defined manually 

or specified in a separate file for easier editing and storage (see online tutorial at 

https://ghammad.github.io/pyActigraphy/pyLight-DataManip.html#Masking). In addition summary 

statistics, such as mean, median, percentiles or standard deviations, as well as MLiT or TAT, can 

be obtained for consecutive or arbitrary time windows. 

At present, there is no consensus on how light exposure data should be processed. Users of 

pyLight must understand that inclusion and exclusion of specific periods based on criteria may 

lead to biases of data, and we recommend an in-depth analysis of selection criteria. 

 

 

Resampling and filtering 
Another critical aspect of data processing covered by pyLight is resampling and filtering data 

before analysis. Often, fluctuations occurring at the acquisition frequency (e.g. tenths of a second) 

are considered irrelevant for the analysis of light exposure levels. To deal with these fluctuations, 

the pyLight module offers the possibility to resample the data to a specified frequency and 

aggregate periods with a custom function (sum, mean, median, etc). The module also allows 

users to digitally filter specific frequencies using a Butterworth filter. 

 

 

Thresholding and binarization 
Sometimes it is useful to only consider data above a specific threshold. Thresholded data can 

either be used a such, data below the threshold are simply discarded, or transformed into binary 



 

7 

data, where data above the threshold are replace with 1 and 0 otherwise. The pyLight module 

provides various methods to directly access raw, thresholded or binarized data. 

For some metrics, (e.g. TAT and MLiT), it is possible to directly specify the threshold used for the 

computation of such metrics. 

 
Documentation 
The documentation of the pyLight module is integrated into the documentation of the pyActigraphy 

package, which contains installation and “Quick Start” instructions for users, information about 

the authors, a code of conduct and the code license. The documentation is generated 

automatically from source code annotations and published. The list of online tutorials for 

pyActigraphy has been extended with specific tutorials for the pyLight module. Such tutorials are 

particularly useful for teaching users with various levels of programming expertise how to use all 

the functionalities available in the module. They start with basic instructions about how to read 

and visualize light exposure data, progress with examples on how to manipulate light exposure 

data (masking, resampling, thresholding, etc) and finish with more advanced code lines to 

compute specific light exposure metrics. 

 

Code availability 
The code, documentation and two additional tutorials are open-source and available on GitHub 

(https://github.com/ghammad/pyActigraphy). The code base repository is licensed under the GNU 

General Public License v3.0. When the module is used for calculations, please cite this paper 

along with the original pyActigraphy publication (43). 

 

Contributing 
Researchers wishing to contribute to the pyLight module are welcome to do so by issuing pull 

requests on the pyActigraphy GitHub repository (https://github.com/ghammad/pyActigraphy). 

 
A worked example 

 
Basics 
The following worked example will guide the reader on how to use the pyLight module by 

performing the analysis of a publicly available data set of actigraphy data licensed under the CC0 

1.0 Universal (CC0 1.0) Public Domain Dedication license (49). The data, collected with the 
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Respironics Actiwatch Spectrum Pro (Respironics, Bend, OR, USA), were analysed in two other 

publications (50,51). 

 

Requirements 
1. To follow this example, basic knowledge and a working installation of Python is a 

prerequisite. Many operating systems (including macOS and Linux) already come with a 

Python installation, but for others, it needs to be installed. The reader is pointed to the 

official Python website (https://wiki.python.org/moin/BeginnersGuide/Download) for 

instructions, but this information can be conveniently obtained through any web search 

engine. In addition, the pyActigraphy package must be installed (see 

https://ghammad.github.io/pyActigraphy/index.html#installation for instructions). This can 

be done using pip, the Python package management system. 

2.  

3.  

4.  

5.  

 
Example 
As in any Python script, the first step consists in importing the necessary modules. As already 

mentioned, pyLight is actually an independent module of the pyActigraphy package. Therefore, 

we simply start by importing it. Other packages are used for convenience: 

 

import pyActigraphy 

# Import the logarithm base 10 function from the default python math package 

from math import log10 

# Package for tabular data manipulation 

import pandas as pd 

# Package for statistical analysis 

import pingouin as pg 

# Package for interactive plotting 

import plotly.graph_objects as go 
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Now, we define the path to the data to analyse: 

# Adapt the path to the actual path 

fpath = ‘/path/to/data’ 

 

The data files are stored in two different directories. One, CLIENT, is for data from chronic 

insomnia participants and the other, PARTNERS, is for data from their respective partners. 

 

Individual data analysis 

Since these data were acquired with Respironics devices, we use the dedicated reader function, 

read_raw_rpx, from the IO module of pyActigraphy to read the input data file:  

 

raw = pyActigraphy.io.read_raw_rpx( 

    fpath+'CLIENT/C1025_Acti1_Treatment_6_09_2016_2_52_00_PM_New_Analysis.csv', 

    language='ENG_UK', 

    period=‘6D', # Restrict data to the first 6 days. 

) 

 

As usual in python, more information about this function can be obtained with: 

help(pyActigraphy.io.read_raw_rpx) 

 

The input file contains both locomotor activity and light data. The latter can easily be accessed 

through the attribute ‘light’ which holds an object of class ‘LightRecording’: 

raw.light 

 

To inspect which light channels were found in this recording: 

raw.light.get_channel_list() 
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returns a list with the names of the light channels. 

 

To visualize the data, we can plot all the light channels contained in the recording (Fig.1): 

 

layout = go.Layout( 

    title="Light exposure data", 

    xaxis=dict(title="Date time"), 

    yaxis=dict(title="$\log_{10}(\mathrm{Light~intensity}+1)$"), 

    showlegend=True 

) 

fig = go.Figure( 

    data=[ 

        go.Scatter( 

            x=raw.light.get_channel(channel).index.astype(str), 

            y=raw.light.get_channel(channel), 

            name=channel, 

       ) 

        for channel in raw.light.get_channel_list() 

    ], 

    layout=layout 

) 

fig.show() # Interactive figure display 

To save the figure to a file for later use, the function write_image can be used: 

fig.write_image('fig_ind_light.png', scale=6) 
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Now that we have visually inspected our data, we can compute various light exposure metrics as 
follows: 

# Exposure Levels with data thresholded at 𝑙𝑜𝑔10(100+ 1). 

light_expo_lvl = raw.light.light_exposure_level(threshold=log10(100+1)) 

light_expo_lvl.name = ‘Level_100' # Set the name for latter re-use 

# Time above threshold (TAT), setting the threshold at 𝑙𝑜𝑔10(100+ 1) and time in minutes 

light_tat = raw.light.TAT(threshold=log10(100+1), oformat='minute')  

light_tat.name = ‘TAT_100' 

# Mean light timing (MLiT), setting the threshold at 𝑙𝑜𝑔10(500+ 1) 

light_mlit = raw.light.MLiT(threshold=log10(500+1)) 

light_mlit.name = 'MLit_500' 

 

Fig. 1. Time series of light exposure levels 
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These function outputs are stored in pandas.Series objects that can easily be manipulated and 

concatenated into a summary table (pandas.DataFrame) that can be used for further statistical 

analysis or saved to a file: 

results = pd.concat([light_expo_lvl, light_tat, light_mlit],axis=1) 

results.to_csv(‘tab1.csv') 

 

Group-level analysis 

 

Visualisation and inspection of individual data are an import step in any analysis. However, this 

step is performed and the data are deemed suitable to analysis, it might be useful to read 

individual files by batch and compute metrics at the group level. 

Here, we will show how to read all data files from bother clients and partners, compute various 

metrics and compare both groups. 

To read multiple files at once, we can use the read_raw function from the IO module of 

pyActigraphy: 

 

clients = pyActigraphy.io.read_raw( 

    fpath+'CLIENT/C*.csv', reader_type='RPX', period='6D', language='ENG_UK', n_jobs=5 

) 

partners = pyActigraphy.io.read_raw( 

    fpath+'PARTNER/P*.csv', reader_type='RPX', period='6D', language='ENG_UK', n_jobs=5 

) 

 

Both the ‘clients’ and ‘partners’ objects store data, extracted from each individual files. Therefore, 

it is possible to loop over this individual data and compute the requested metrics. 

Here, we will save the metric outputs to separate lists and then concatenate them to form a 

summary table: 
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# Declare empty lists 

light_expo_lvls = [] 

light_tats = [] 

light_mlits = [] 

 

# Loop over all the LightRecording objects contained in ‘clients’: 

for iread in clients.readers: 

    # Compute light exposure levels: 

    light_expo_lvl = iread.light.light_exposure_level(threshold=log10(100+1)) 

    light_expo_lvl.name = iread.name # set name to participant’s name  

    light_expo_lvls.append(light_expo_lvl) # store output in its dedicated list 

     

    # Compute time above threshold: 

    light_tat = iread.light.TAT(threshold=log10(100+1), oformat='timedelta') 

    light_tat.name = iread.name # set name to participant’s name  

    light_tats.append(light_tat) # store output in its dedicated list 

     

    # Compute mean light timing: 

    light_mlit = iread.light.MLiT(threshold=log10(500+1)) 

    light_mlit.name = iread.name # set name to participant’s name  

    light_mlits.append(light_mlit) # store output in its dedicated list 

 

Once the loop is completed, individual results are concatenated into group-level summary tables: 

 

clients_light_expo_lvl_results = pd.concat(light_expo_lvls,axis=1).T 

clients_light_tat_results = pd.concat(light_tats,axis=1).T 

clients_light_mlit_results = pd.concat(light_mlits,axis=1).T 
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Again, since the summary tables are pandas.DataFrame, it is possible to save them to .csv files 

for further use: 

clients_light_expo_lvl_results.to_csv('tab_clients_expo_100.csv') 

clients_light_tat_results.to_csv('tab_clients_tat_100.csv') 

clients_light_mlit_results.to_csv('tab_clients_mlit_500.csv') 

 

To analyse the partner’s data, it simply requires to substitute the ‘clients’ object by the ‘partners’ 

object and then re-use the same code for iterating over individual files: 

 

# Reset lists before storing individual results: 

light_expo_lvls = [] 

light_tats = [] 

light_mlits = [] 

for iread in partners.readers: # here, clients has been changed to partners. 

    light_expo_lvl = iread.light.light_exposure_level(threshold=log10(100+1)) 

    light_expo_lvl.name = iread.name 

    light_expo_lvls.append(light_expo_lvl) 

     

    light_tat = iread.light.TAT(threshold=log10(100+1), oformat='minute') 

    light_tat.name = iread.name 

    light_tats.append(light_tat) 

     

    light_mlit = iread.light.MLiT(threshold=log10(500+1)) 

    light_mlit.name = iread.name 

    light_mlits.append(light_mlit) 

 

# Concatenate individual results for the partners 

partners_light_expo_lvl_results = pd.concat(light_expo_lvls,axis=1).T 
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partners_light_tat_results = pd.concat(light_tats,axis=1).T 

partners_light_mlit_results = pd.concat(light_mlits,axis=1).T 

# Save results to .csv files 

partners_light_expo_lvl_results.to_csv('tab_partners_expo_100.csv') 

partners_light_tat_results.to_csv('tab_partners_tat_100.csv') 

partners_light_mlit_results.to_csv(‘tab_partners_mlit_500.csv') 

 

These summary files can now serve as input for statistical analyses, for example, or for visual 

representation of the results (Fig. 2): 

fig = go.Figure() 

fig.add_trace(go.Box( 

    y=clients_light_expo_lvl_results.loc[:,'White Light'], 

    name='Clients', 

    marker_color='darkblue', 

    #boxmean=True 

)) 

fig.add_trace(go.Box( 

    y=partners_light_expo_lvl_results.loc[:,'White Light'], 

    name='Partners', 

    marker_color='royalblue', 

    #boxmean=True 

)) 

fig.update_layout(yaxis_title=r'Mean light exposure level', height=500,width=500); 

# Display box plot 
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fig.show() 

# Save  

fig.write_image('fig_grp_explevel.png', scale=6) 

 

 
Future directions 
As more light loggers and dosimeters are being developed, the pyLight module will serve as a 
useful software entry point for the analysis of data produced by these devices. pyLight is future-
proof in that it can perform its calculations in a device-agnostic manner, as long as the data stored 
on the device are accessible and use an open format. Using a programmatic approach to light 
exposure facilitates sensitivity analyses in which thresholds in threshold-based metrics (such as 
TAT and MLiT) are varied systematically and the effect on a response variable is observed (52). 
As the field of light logging and dosimetry matures, pyLight can be expanded to account for newly 
developed metrics, and can serve as a benchmark for alternative software solutions.  

 

Fig. 2. Boxplot of the mean light exposure level for clients and partners. 
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Conclusion 
In conclusion, we presented pyLight, an extension to pyActigraphy, designed for the analysis of 
light exposure data. The module reports a series of light exposure metrics, which can be applied 
on a range of different existing file formats. We have presented a worked example demonstrating 
the use of the pyLight module on a previously published actigraphy data set containing light 
exposure.  
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