[original idea]
Diamond Open Access

Axioms of space?

Open Mathematics Collaboration*†

July 18, 2019

Abstract

Here, we propose the discussion of which axioms nature really follow in the very quantum realm of spacetime.

keywords: axioms, geometry, spacetime, quantum gravity

Is space discretized?

- 1. The mathematical point has no extension whatsoever.
- 2. According to some theories of physics, such as the Standard Model, the elementary particle is a point, with zero volume [1].
- 3. Loop quantum gravity, however, states that space is discretized [2].
- 4. One main argument found in [3], attributed to Democritus, is that one cannot construct something with extension from something with no size.
- 5. The conclusion is that space has a granular structure [3].

^{*}All authors with their affiliations appear at the end of this paper.

[†]Corresponding author: mplobo@uft.edu.br | Join the Open Mathematics Collaboration

- 6. Let's analyze two axioms from pure mathematics, more specifically, from Euclidean geometry.
- 7. "An axiom or postulate is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments." [4]
- 8. "Euclid originally defined the point as 'that which has no part". [4]
- 9. "The geometric points do not have any length, area, volume or any other dimensional attribute" [4].
- 10. A line is an infinite set of points of a specific form.
- 11. From (9) and (10), we conclude that it is possible to construct objects with sizes (lines) from points (zero volume).
- 12. The mathematical theory of measures [5] can help us clarify what might be going on in the more fundamental scales of spacetime, namely, the Planck scale.
- 13. The main point here is that, although points have no sizes, lines are made up of infinite points and do have a size.
- 14. How can we reconcile (4) and (13)?
- 15. There are two ways I can foresee.
- 16. One is that the nature of spacetime do not follow the axiomatic notion of a point.
- 17. Alternatively, one can say that space is not discretized.
- 18. If I had to bet, I would definitely choose (16).
- 19. A more profound study can be accomplished within the mathematical theories of measures [5].

Unity of spacetime

- 20. According to the special theory of relativity, spacetime is unified by the equation $\tau^2 = t^2 x^2$ [6].
- 21. How can we extract the axioms of space from (20)?

Birth of time

- 22. Conjecture: Space is a quantum field, and time emerges from the processes of the field.
- 23. (22) needs to be proved mathematically.
- 24. Define the mathematical relations of (22).
- 25. Search for pure mathematical theorems that might connect (22) with (24).

Final Remarks

The mathematical **theories of measures** may shed some light on which are the true **axioms of space**.

Open Invitation

Please review this article, add content, and join the **Open Mathematics Collaboration**.

Ethical conduct of research

This original work was pre-registered under the OSF Preprints [7], please cite it accordingly [8]. This will ensure that researches are conducted with integrity and intellectual honesty at all times and by all means.

References

- [1] Veltman, Martinus J.G. Facts and mysteries in elementary particle physics. World Scientific, 2003.
- [2] Gambini, Rodolfo, and Jorge Pullin. A first course in loop quantum gravity. OUP Oxford, 2011.
- [3] Rovelli, Carlo. The order of time. Penguin, 2018.
- [4] Wikipedia. Point (geometry). 2019. https://en.wikipedia.org/wiki/Point_(geometry)
- [5] Halmos, Paul R. Measure theory. Springer, 2013.
- [6] Taylor, Edwin F., and John Archibald Wheeler. Spacetime physics. Macmillan, 1992.
- [7] OSF. Open Science Framework. https://osf.io
- [8] Lobo, Matheus P. "Axioms of Space?." OSF Preprints, 19 May 2019. https://doi.org/10.31219/osf.io/kx35m

The Open Mathematics Collaboration

Matheus Pereira Lobo (lead author, mplobo@uft.edu.br),¹ Ana Cláudia Carvalho Sousa^{1,2}

¹Federal University of Tocantins, Brazil; ²Colégio de Aplicação, Araguaína, TO, Brasil