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Abstract 

The prediction of everyday human behavior is a central goal in the behavioral sciences. 

However, efforts in this direction have been limited, as (1) the behaviors studied in most surveys 

and experiments represent only a small fraction of all possible behaviors, and (2) it has been 

difficult to generalize data from existing studies to predict arbitrary behaviors, owing to the 

difficulty in adequately representing such behaviors. Our paper addresses each of these 

problems. First, by sampling frequent verb phrases in natural language and refining these 

through human coding, we compile a dataset of nearly 4,000 common human behaviors. Second, 

we use distributed semantic models to obtain vector representations for our behaviors, and 

combine these with demographic and psychographic data, to build supervised, deep neural 

network models of behavioral propensities for a representative sample of the US population. Our 

best models achieve high accuracy rates when predicting propensities for novel (out-of-sample) 

participants as well as novel behaviors. This work lays the foundation for new predictive theories 

of everyday behavior, improving the generality and naturalism of research in the behavioral 

sciences. 

 

Keywords: transformer models; machine learning; distributed semantics; decision making 
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Introduction 

People engage in thousands of complex actions and behaviors over the course of the day. 

They may read the news in the morning, send emails in the afternoon, play with their children in 

the evening, and worry about the future at night. These behaviors are the causes and the 

consequences of mental activity, of social, economic, and political reality, and of human well-

being and flourishing. For this reason, the study of everyday behavior is of special interest to 

cognitive, behavioral, and social scientists, and a central focus of academic disciplines such as 

psychology. 

However, established theories and methodologies in psychology and other fields have 

difficulty predicting the occurrence of everyday behaviors, and are unable to formally relate 

these behaviors to the abstracted variables observed in artificial laboratory environments (see 

Bhatia & Stewart, 2018; Bhatia, Richie, & Zou, 2019 for a discussion). Of course, many survey-

based methods and theories do use common behavioral patterns as stimuli, for example, items in 

personality (Goldberg, 1990) and risk (Blais & Weber, 2006) questionnaires. However, these 

stimuli are hand-picked by experimenters and restricted to narrow domains of human 

psychology. Thus, results from questionnaire-based studies cannot easily be generalized to the 

thousands of everyday behaviors that could be of interest to researchers. 

Ultimately, the complexity and wide scope of naturalistic behavior makes it especially 

difficult to study. We do not currently have a way of formally representing the nearly infinite set 

of everyday behaviors, and are thus unable to formulate scientific theories capable of predicting 

and explaining these behaviors. 
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In this paper, we propose and test a new approach to quantifying naturalistic behavior. 

Specifically, we suggest that common behaviors can be represented as verb phrases (e.g. read the 

news, send email, play with children, or worry about the future), and that recent advances in 

natural language processing, such as transformer-based language models (Cer et al., 2018; 

Devlin, Chang, Lee, & Toutanova, 2018), can be used to give these phrases high-dimensional 

vector representations that preserve their meanings. Such representations can be obtained for 

nearly any natural language phrase, which implies that it is possible to develop formal models 

that can take arbitrary human behaviors (in the form of vector representations) as inputs or 

alternatively produce these behaviors as outputs, facilitating more naturalistic behavioral 

theorizing. 

Although we consider a number of ways in which researchers can use vector 

representations of behaviors, our focus in this paper is on the predictive modeling of behavioral 

propensities, that is, on building machine learning models capable of predicting how likely 

different people are to perform thousands of everyday behaviors. To facilitate such an analysis, 

we first compile a very large dataset of common behaviors based on the natural language 

occurrence frequencies of hundreds of thousands of verb phrases. We then offer a subset of these 

phrases to human participants to measure self-reported behavioral propensities. Finally, we use 

the vector representations of the verb phrases (in combination with demographic and 

psychographic data) as inputs in machine learning models, to predict the behavioral propensities 

of our participants. Our aim is to make such predictions for out-of-sample behaviors as well as 

for out-of-sample participants (i.e. participants, behaviors, and participant-behavior 

combinations, that our model is not trained on), in order to test the generalizability of our 
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approach. Figure 1 outlines the key computational and empirical steps performed in the current 

paper. 

 

Figure 1. Core components of our study. Blue boxes refer to the analysis performed in the 

section titled “Corpus Analysis to Obtain Common Behaviors”, the yellow box refers to data 

collection described in the section titled “Survey of Behavioral Propensities”, and the green box 

refers to the analysis in the section “Predictive Modeling of Behavioral Propensities”. P&D 

refers to participant psychographic and demographic data. 

 

The study of behavioral propensity and attitude is a key focus of research in psychology, 

especially in subfields like judgment and decision making, moral psychology, personality 

research, and clinical psychology (e.g. Bruine de Bruin, Parker, & Fischoff, 2007; Cacioppo & 

Petty, 1982; Blais & Weber, 2006; Goldberg, 1990; Lovibond & Lovibund, 1995; Patton, 

Stanford, & Barratt, 1995; Rushton, Chrisjohn, & Fekken, 1981; Schwartz, Ward, Monterosso, 

Lyubomirsky, White, & Lehman, 2002). For these reasons, scholars in other fields, such as 

marketing, management, policy, and economics are also interested in describing and 

understanding how likely people are to engage in different behaviors. The success of our model 

will provide strong evidence for the applicability of transformer models to the study of 
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naturalistic behavior in these diverse domains, and form the basis of future research that uses 

transformer models in order to better understand behavior and its psychological correlates.  

 

Transformer Models of Language 

The past few years have seen impressive technological breakthroughs in computational 

linguistics: Computer models are now able to achieve unprecedented levels of performance in 

question answering, semantic entailment, machine translation, sentiment analysis, and other 

natural language understanding tasks. Perhaps the most impressive advances have come from a 

new type of deep, feed forward neural network known as the transformer (Cer et al., 2018; 

Devlin et al., 2018; Radford, Narasimhan, Salimans, & Sutskever, 2018; Vasvani et al., 2017; 

Brown et al., 2020). The details of transformer models are complex (see Alammar, 2018 for an 

accessible, illustrated introduction to the transformer), but in brief, a transformer is a stack of 

encoders followed by a stack of decoders, where inside each encoder/decoder is a feedforward 

neural network and a self-attention mechanism, with decoder modules having one additional 

self-attention mechanism (Figure 2). The self-attention mechanism itself is also sophisticated, 

but essentially, as a transformer processes each word in a phrase or sentence, self-attention 

enables the transformer to look at other positions in the input phrase/sentence for information 

about how to best encode the current word. When trained on appropriately large amounts of text 

data, transformers can produce vector representations that approximate key elements of sentence 

meaning, and can subsequently be used as inputs in secondary machine learning models that 

fine-tune the vector representations for down-stream tasks. 
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 Transformer models that encode phrases and sentences as vectors are, in a sense, an 

evolution of older models that produce vectors for words, like LSA (Landauer & Dumais, 1997), 

BEAGLE (Jones & Mewhort, 2007), Word2Vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 

2013), or GloVe (Pennington, Socher, & Manning, 2014), based on the distributional statistics of 

words in large collections of texts. In both word vector models and phrase and sentence 

encoders, vectors for linguistic units are obtained such that similar words, phrases, or sentences 

occupy nearby positions in semantic space. In addition, our application of transformer-derived 

sentence vector representations to predicting complex, real-world behaviors is largely inspired by 

various applications of word vector models in psychology. These applications include list and 

category recall, similarity and relatedness judgments, and free association (for review see Bhatia 

et al., 2019; Jones, Willits, & Dennis, 2015; Lenci, 2018; Mandera, Keuleers, & Brysbaert, 

2017), but perhaps most relevant for the present work are applications of word vector models to  

judgments about the psychological properties of words and phrases, e.g., the ‘riskiness’ of 

potential risk sources like smoking or skydiving (Hollis, Westbury, & Lefsrud, 2016; Bhatia, 

2019; Richie, Zou, & Bhatia, 2019; Utsumi, 2020). In this work, ratings for a particular kind of 

judgment (e.g., riskiness) are directly linearly regressed onto the vectors for words (e.g. potential 

risk sources). This approach can explain about half of the variation in out-of-sample subject-

averaged judgment ratings, and strongly outperforms an association/similarity baseline that 

merely measures the similarity between a target word (e.g. smoking), and words representing the 

judgment dimension (e.g. risky or unsafe; Richie et al., 2019). We will take a similar approach 

when predicting propensities of behavior phrases. The advantage of using transformer models to 

obtain phrase vectors, over simply, say, averaging GloVe or Word2Vec vectors in a phrase, is 



Running head: PREDICTING BEHAVIOR  8 

that such models will take into account the order and identity of all words within a phrase when 

computing a vector. Obviously, the order of words within a phrase or sentence, and not just their 

identity, is a critical component of meaning (cf dog bites man vs man bites dog). 

 

 

Figure 2. Transformer model architectures. The transformer contains a stack of encoders and a 

stack of decoders. Inside each encoder/decoder is an attention mechanism (or two, for decoders) 

and a feed-forward network. While a typical transformer, with both encoders and decoders, can 

be used for sequence-to-sequence prediction, as in the visualized English-French translation 

example, BERT and USE make use of only the encoder stack (in different ways) to obtain phrase 

representations. Figure adapted from Alammar (2018). 
 

Transformers have grown in popularity and variety since their introduction, but in this 

work, we will focus on two prominent transformers, USE (Universal Sentence Encoder, Cer et 

al., 2018) and BERT (Bidirectional Encoder Representations from Transformers, Devlin et al., 

2018), due to their accessibility via off-the-shelf tools and their high performance on 

semantically nuanced natural language understanding tasks. We describe each briefly. 
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 Whereas a complete transformer model is a sequence-to-sequence model, i.e., maps 

from strings of text to other strings of text, USE utilizes only the encoding subgraph of the 

transformer architecture. Thus, the final output of this subgraph is a real-valued vector 

representation for each word of a phrase or sentence, which are simply summed1, element-wise, 

to obtain a fixed-length vector for the entire phrase or sentence. The model used in the current 

paper has 512-dimensional vectors which can be obtained from the TensorFlow implementation 

of USE (Cer et al., 2018; Abadi et al., 2015). This model was trained using next sentence 

prediction on text from Wikipedia, web news, web question-answer pages and discussion 

forums. This model also received training on the Stanford Natural Language Inference (SNLI) 

corpus (Bowman, Angeli, Potts, & Manning, 2015). Pre-trained on these tasks, USE generalizes 

very well to related tasks, including sentiment analysis, question classification, and sentence 

similarity (Cer et al., 2018). 

 A major shortcoming of USE and similar transformers is that it is ‘unidirectional’, in the 

sense that every token can only attend to the previous tokens in the self-attention layers of the 

transformer. To resolve this problem, Devlin et al. (2018) developed BERT, the Bidirectional 

Encoder Representations from Transformer, which does allow the representation for a token to 

vary by what comes before and after it. As with USE, fixed-length representations of sentences 

can be obtained by aggregating (e.g., summing) over the token representations at various hidden 

layers of the network. The BERT model used in this paper was trained using masked word 

prediction (in which the modeler randomly masks some of the tokens from the input, and the 

objective is to predict the original vocabulary ID of the masked word based only on its context) 

 

1The sum is also divided by the square root of the length of the phrase or sentence, to normalize for sequence length. 
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and next sentence prediction, on text from Wikipedia and Google Books. After being fine-tuned 

on additional task-specific data, this model demonstrated (at the time) state-of-the-art 

performance in many NLP tasks, including question answering, sentiment analysis, and sentence 

acceptability. The primary application in this paper will not be fine-tuning the full BERT model 

but rather use the 768-dimensional out-of-the-box vectors offered by the bert-as-a-service Python 

package (Xiao et al., 2018).  

 We acknowledge that, of course, vector representations obtained from the above models 

are not always able to accurately capture sentence meaning: They sometimes generate errors in 

syntactically complex sentences and fail at common sense reasoning (e.g. McCoy, Pavlic, & 

Linzen, 2019). There is also a philosophical debate about whether semantics can be inferred 

purely from the statistics of natural language. Nonetheless, the success of transformer models in 

tasks involving simpler sentence structure and limited high-level reasoning implies that these 

models may have practical utility for quantifying simple phrases and sentences corresponding to 

common human behaviors. We would expect phrases and sentences that pertain to similar 

behaviors to be given similar vector representations by these models. 

Consider, for example, the verb phrases p1 = paint a house, p2 = decorate a room, and p3 

= rent a room. p1 and p2 are highly similar behaviors despite having different verbs and nouns: 

both would likely be involved in home renovation. p2 and p3 share a word (room) but are 

otherwise quite different, as they concern different events (decorating vs renting; in linguistic 

terminology, the verbs are the ‘head’ of the verb phrases and thus typically contribute more to its 

meaning than the direct object or other dependents of the verb). Transformer models are useful 

for quantifying behaviors as they are able to correctly represent the emergent meanings of the 
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word combinations in such phrases. To illustrate this, we passed these phrases through the 

Universal Sentence Encoder (USE) (Cer et al., 2018), to generate representations that preserve 

the semantic similarity of sentences. The USE model gave us 512-dimensional vector 

representations x1, x2, and x3, for the three phrases. We found that there is a cosine similarity of 

0.77 between x1 and x2, but only 0.64 between x2 and x3, indicating that the USE model judges p1 

and p2 to be more similar despite these phrases not sharing any words. Note that the previous 

generation of vector representation models, like Word2Vec (Mikolov et al., 2013), are unable to 

capture this pattern, as they cannot represent novel2 multi-word phrases except by averaging, 

which does not respect the centrality of the verb phrase head that we indicated above. Indeed, 

performing the above tests with a Word2Vec bag-of-words model gives a cosine similarity of 

0.71 between x1 and x2, and 0.77 between x2 and x3, suggesting that this model incorrectly judges 

p2 and p3 to be more similar. 

 

Predictive Modeling of Behavior 

If verb phrases that describe naturalistic behaviors can be quantified with vector 

representations, then it is possible to build predictive models that take vector representations of 

behavior as inputs and produce, as outputs, predictions regarding other variables associated with 

these behaviors. 

One such variable could be an individual’s propensity to engage in the behavior. 

Consider, for example, a dataset with a set of behaviors as well as (self-reported or observed) 

 

2It is possible to detect strong collocations like New York City in a collection of texts, and then tokenize such 

collocations as a single unit, and learn vectors for that unit. Of course, this does not help the generation of vectors 

for novel phrases that were not treated as a single unit in the tokenization (like paint a house). 
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measurements of how likely an individual is to engage in the behaviors relative to others. We can 

use a standard linear regression to regress the behavioral propensity variable on the vectors for 

the behaviors obtained from transformer models like BERT or USE. Such a regression will learn 

a relationship between points in the vector space of behaviors and the behavioral propensity 

variable, and thus implicitly characterize how different behaviors vary in terms of behavior 

propensity. Such a model would also be able to make predictions when given a novel out-of-

sample behavior; i.e. a behavior that is not in its training dataset. If such predictions are accurate, 

then the model could, in principle, be applied to thousands of additional behaviors that can be 

expressed as verb phrases and be given vector representations, allowing us to extrapolate 

behavioral propensities from the training data, in order to better understand the individual in 

consideration. 

We could also use a similar approach on a dataset with behavioral propensities of 

multiple individuals. Such an approach may also benefit from individual-level variables (e.g. 

those involving demographics and psychographics), which could be introduced as covariates into 

the above regression. Of course, more sophisticated machine learning techniques may yield 

better predictions. One promising approach is a multilayer perceptron, that projects the input 

variables (in our case, the vector representations for behaviors and possibly demographic and 

psychographic variables for individuals) onto one or more intermediary, hidden layers. Hidden 

layers of this type can be used to learn interactions between behaviors and various individual-

level characteristics, thus describing behavioral propensities on the group level, as well as 

sources of individual-level variability. Thus, a predictive model that accommodates interactions 

between individual-level characteristics and aspects of the behavior would be able to predict that 
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an extraverted individual is more likely to engage in sociable behaviors (go to a party) and less 

likely to engage in solitary behaviors (read a book), while an introverted individual is likely to 

display the reverse pattern. Such models may also succeed at making predictions for out-of-

sample individuals (in addition to out-of-sample behaviors). In this paper we use both 

(regularized) linear regression models and neural network models to map behavior vectors and 

individual-level data onto behavioral propensity ratings from large numbers of participants. 

These models are summarized in Figure 3. 

 

 

Figure 3. Behavioral propensity predictive models. To predict behavioral propensity scores, we 

used phrase representations – from BERT, USE, or Word2Vec – and participant demographic 

and psychographic variables. We tried L2-regularized linear regression (left), as well as 

multilayer perceptrons, which can capture interactions among our features (right). 
 

 

The approach introduced here is not just limited to behavioral propensities. Any variable 

associated with a behavior could be predicted in a similar manner. For example, a dataset of 

human ratings of the riskiness of different behaviors (e.g. Blais & Weber, 2006) can be used to 
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train the above models, and subsequently predict how (potentially out-of-sample) individuals 

would evaluate the riskiness of (potentially out-of-sample) behaviors. Similar techniques would 

also work for other judgments, e.g. those involving the moral appropriateness of behaviors or the 

gender stereotypicality of behaviors. These, and other extensions of our framework, are 

examined in detail in the discussion section of this paper. 

 

Building a Set of Common Behaviors 

Of course, any predictive modeling analysis that uses large numbers of variables to make 

predictions requires a large amount of training data. In our case, we require not only ratings from 

a large and diverse group of participants (the details of which we will provide in the subsequent 

section), but also ratings of a large and diverse set of common behaviors. In this section, we 

describe the collection of a novel dataset of thousands of phrases describing human behaviors. 

Obtaining Initial Dataset of Verb Phrases 

We began by extracting the 1,000 most frequent verbs in the Corpus of Contemporary 

American Literature (COCA; Davies, 2009). We then used Google Books’ n-gram dataset 

(Michel et al., 2011) to construct verb phrases to populate our dataset of human behaviors. For 

each of the 1,000 COCA verbs, we obtained the 100 most frequent 3-gram, 4-gram, and 5-gram 

phrases from the n-gram dataset beginning with the given verb. This resulted in the creation of a 

list of ~300,000 n-grams. Notably, many of the resulting n-grams in the dataset were not valid 

verb phrases. For example, say that the is the second most common 3-gram beginning with the 

verb say, likely because it is a common prefix of other complete phrases that have the verb say. 
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As an initial attempt to prune these cases from our dataset, we performed part-of-speech 

(POS) tagging with the natural language processing package spaCy (Honnibal & Montani, 2017), 

to produce a POS sequence for each verb phrase. We then examined the 150 most frequent POS 

sequences, and manually selected 16 sequences that consistently produced complete and 

grammatically correct verb phrases (see our OSF repository for a complete list). We selected 

these POS sequences by first randomly sampling 20 verb phrases from the 100 most frequent 

POS sequences, and then randomly sampling 10 verb phrases from the 101st to 150th most 

frequent POS sequences. We reviewed the sampled verb phrases and chose 16 POS sequences 

whose sampled verb phrases were valid at least 50% of the time, and that we did not expect 

would consistently produce invalid behaviors. Using only n-grams with POS sequences matching 

these 16 sequences, we reduced the dataset to 31,942 n-grams. While POS tagging significantly 

helped reduce the number of invalid verb phrases, many n-grams that either did not constitute 

complete verb phrases, or were not valid human behaviors, remained in the dataset. To solve 

these issues, we turned to human coding. 

Human Coding and Validation Study 

To ensure that the dataset of n-grams contained valid behaviors, we needed to remove all 

phrases that were not (1) complete and grammatically correct verb phrases or (2) plausible for an 

individual to perform. We thus designed an annotation study where participants were tasked with 

coding the phrases from our dataset based on these criteria. 

Participants. We recruited 438 participants (51% female, Mage = 36, SDage =12) through 

Prolific Academic to participate in coding our list of phrases. Data collection was limited to 
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participants from the US whose first language was English. Participants were only allowed to 

participate once in this task and were paid approximately $10 per hour. 

Procedure. Participants were given a set of instructions explaining our criteria for 

behavioral plausibility and grammatical correctness. Participants were provided multiple 

examples of complete phrases that are valid human behaviors, as well as strategies that could be 

used to evaluate how well a phrase met these criteria. For example, one strategy for testing 

whether or not a verb phrase is complete is by checking whether or not it can be said in response 

to a question like, “What does the person/animal/thing/etc. do?”. Further details of these 

instructions, examples, strategies, and criteria can be found in our OSF repository. 

Participants then moved to a training section to develop a stronger sense of how phrases 

might or might not meet the validation criteria. Participants were given eight predetermined 

phrases and asked to rate these phrases on a scale from 1 (definitely not a valid human behavior) 

to 5 (definitely a valid human behavior) on the criteria provided. After rating a phrase, an 

explanation would appear on the screen explaining why the participant’s rating was correct or 

incorrect. Following this training section, participants moved to the main portion of the study. 

Further details of the training section can be found in our OSF repository. 

For the main portion of the study, participants were randomly assigned to evaluate a 

subset of approximately 250 phrases from the 31,942 n-grams remaining from the POS-based 

filtering. On average, each phrase received 3.125 ratings (SD = 0.77). We also utilized attention 

checks: randomly placed, researcher-generated phrases that obviously met or did not meet the 

criteria listed in the instructions. For example, kick the ball meets the validation criteria, while 

eat the very does not. 

https://docs.google.com/document/d/1d_HG_p2of0dIty3gnEqhLzm8xmE7Y8xmguNmHvnfkeo
https://docs.google.com/document/d/14BUoWuysrRG5ZS-rgSxgUvc_lTY-Z07KnK04YePHC6M/edit?usp=sharing
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Results. We ignored data from participants that did not correctly evaluate at least 75% of 

the attention checks, leading to 406 of 438 participants being retained. Inter-annotator agreement 

was measured by taking a phrase’s average score, noting the direction (>3 or <3), and then 

dividing the number of annotators that rated the phrase in that direction by the total number of 

annotators for that phrase. If the phrase score did not have a direction (i.e. total number of ratings 

was even between <3 and >3, or all =3) then the score given was a 0. We thus observed an 

average inter-annotator agreement score of 0.71 across all phrases, indicating that participants 

were effectively evaluating phrases. Using the data from these 406 human-coders, we removed 

all phrases from our dataset that received an average score below 4.5. This reduced the total size 

of the dataset to ~6,500 n-grams constituting complete verb phrases that describe valid human 

behaviors. 

Additional Cleaning and Similarity Reduction 

The human validation study was useful in removing the majority of phrases that did not 

meet our criteria for a valid human behavior. However, due to the difficulty of this task, some 

phrases that did not fully meet the criteria remained in the dataset. Human-error along with 

inconsistent structure between the phrases, specifically with determiners and pronouns, prompted 

a need to further clean and code the dataset. 

To address both of these issues, we developed a data coding procedure, the details of 

which can be found in our OSF repository. Phrases were deemed valid if they were complete 

verb phrases, had a clear direct object (if one existed), were plausible for an individual to 

perform, and were able to inform us about a clear and meaningful behavior an individual would 

likely engage in. All pronouns in valid phrases were replaced with the appropriate form of 

https://docs.google.com/document/d/1u_LQukWxQmv2kMDm1YaVLTVncDYmvgCFJjXCh2PqTRY/edit?usp=sharing
https://docs.google.com/document/d/1u_LQukWxQmv2kMDm1YaVLTVncDYmvgCFJjXCh2PqTRY/edit?usp=sharing
https://docs.google.com/document/d/1u_LQukWxQmv2kMDm1YaVLTVncDYmvgCFJjXCh2PqTRY/edit?usp=sharing
https://docs.google.com/document/d/1u_LQukWxQmv2kMDm1YaVLTVncDYmvgCFJjXCh2PqTRY/edit?usp=sharing
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someone or my such that the phrase made sense from the participant’s perspective, (e.g., kiss her 

cheek became kiss someone’s cheek). To fix phrases that were missing a direct object, either 

something or someone was inserted in the appropriate location in the phrase (e.g. push over the 

edge became push someone over the edge). To ensure consistency among determiners, all 

instances of the were replaced by a or an or were removed entirely (e.g. arrange the flowers 

became arrange flowers and drink the soda became drink a soda) unless the the was necessary 

for the phrase’s meaning to remain the same (e.g., live in the wilderness). The phrases in the 

dataset were first coded and cleaned by the researchers, and then reviewed by a research assistant 

to ensure all phrases were coded correctly. 

Further, many phrases were nearly synonymous with each other (e.g. throw the ball vs. 

throw the balls). Therefore, we used the pre-trained BERT model to extract feature vectors for 

our phrases and used these vectors to cluster semantically similar phrases. We clustered phrases 

whose vectors had cosine similarities of over 0.9, looked through each cluster of phrases, and 

kept any phrase within a cluster that had a unique meaning. If multiple phrases were synonymous 

in a cluster, we chose the phrase that had the most general meaning as the one to keep. Two 

researchers performed this task separately and all disagreements were resolved by consensus. 

This procedure led to the removal of 951 phrases yielding a final dataset of 3,938 verb phrases 

describing plausible human behaviors. 

 

Modeling Grammaticality and Behavioral Validity 

While human coding was useful in further refining the set of valid human behavior 

phrases, it also provided valuable annotations of tens of thousands of n-grams on their 
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grammatical correctness and whether or not they described plausible human behaviors for an 

individual to perform. Using these annotations, we can train classifiers on vectors of these n-

grams to predict whether or not an n-gram is a complete verb phrase referring to a plausible 

human behavior. N-grams in the finalized dataset were labeled as valid, and n-grams that 

received an average rating less than or equal to 2.5 from the validation study were labeled as 

invalid. This resulted in a dataset containing 3,938 valid behaviors, and 12,215 invalid behaviors.  

We trained such classifiers with BERT representations of n-grams on this dataset, in two 

different ways. In our first approach, we used logistic regression from Scikit-learn (Pedregosa, et 

al., 2011) with L2 regularization, 5-fold cross-validation, and a grid search over alpha (set to 20 

values evenly spaced on a log scale between e-5 and e5) with the BERT vectors as our input 

features, to predict the assigned labels for the phrases.  

For our second approach, we fine-tuned the full BERT model for performance in our 

task. In related applications, this approach has been particularly effective because it uses the 

current task data (here, the n-grams and their labels) to finely tune the bottom layers of the 

network while using the outputs of this network as features for the classification task. For this 

approach, we used the BertForSequenceClassification class provided by the Hugging Face 

package for fine-tuning (Wolf et al., 2019). This model is a regular BERT model with an added 

softmax layer on top that is used for phrase and sentence classification. As input data is fed to the 

model, the pre-trained BERT and the untrained classification layer are both tuned to our specific 

task. This model was trained over 4 epochs with 299 batches of phrases per epoch. 

As a baseline, we also tested L2-regularized logistic regression with averaged 300-

dimensional Word2Vec vectors (continuous bag-of-words; Mikolov et al., 2013) as the feature 
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vector rather than BERT vectors. We used the same hyperparameter set as in our logistic 

regression with BERT. All three models reserved 10% of the dataset for testing. Results on this 

10% of the dataset, for each of these three approaches, are summarized in Figure 4, and Table 1. 

 

 
Figure 4. Confusion matrices for L2-regularized logistic regression using Word2Vec, L2-

regularized logistic regression using BERT, and the fine-tuned BERT model on the test dataset. 

 

 

Figure 4 and Table 1 show that both models utilizing BERT outperformed the model 

using averaged Word2Vec vectors across all metrics. The fine-tuned BERT model was able to 

predict participant labels with a high degree of accuracy (93%), more so than either of the other 

two models (91% for logistic regression with BERT, and 80% for logistic regression with 

Word2Vec). Because of the predominance of invalid behaviors in the annotated dataset, all 

models had better performance across all metrics when classifying the invalid class than the valid 

class. Finally, we note that Word2Vec’s 80% accuracy rate is not much higher than the 75% base 

rate of the Invalid class, suggesting averaged Word2Vec vectors cannot adequately represent 

behavior phrases. 
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The success of BERT, and particularly the fine-tuned BERT model, suggests that 

accurate predictions can be given for novel behaviors. Thus, these models could be used to 

validate the addition of thousands of potential behavior phrases to our dataset, improving its 

comprehensiveness. We return to this issue of the comprehensiveness of our behavior phrases in 

the discussion. 

 

 Class Precision Recall F1 Accuracy 

Logistic regression Word2vec 
Invalid 0.82 0.93 0.87 

0.80 

Valid 0.66 0.41 0.51 

Logistic regression BERT 
Invalid 0.92 0.95 0.94 

0.91 

Valid 0.84 0.77 0.80 

Fine-tuned BERT 
Invalid 0.97 0.94 0.96 

0.93 

Valid 0.84 0.91 0.87 
 

Table 1. Precision, recall, F1 score, and accuracy for L2-regularized logistic regression using 

Word2Vec, L2-regularized logistic regression using BERT, and the fine-tuned BERT model on 

the test dataset. Each metric, except accuracy, is split by class for each model. 
 

Describing the Content of Behavior Phrases 

As our final set of valid behavior phrases is very large and very rich, it is worthwhile 

exploring the distribution of syntactic structures and semantic content within them, especially 

with an eye toward detecting types of behaviors that are over- or under-represented in our 

dataset. Table 2 contains the ten most frequent POS sequences contained with our final set of 

valid behavior phrases, as well as example phrases of each sequence, and the frequency of the 

POS sequence. It is apparent that our phrases span a rich variety of syntactic structures, ranging 

from relatively simple VERB-DETERMINER-NOUN sequences like avoid a collision to more 

complex structures like VERB-ADPOSITION-DETERMINER-ADJECTIVE-NOUN as in cook 
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in a double boiler. Although we have not performed any automatic semantic parsing or semantic 

role labeling of our phrases to derive a structured semantic representation or label words in our 

phrases for semantic roles like agent, patient, theme, etc., we strongly suspect that, to the extent 

that syntactic structure often follows semantic structure, our behavior phrases also span a great 

range of semantic structures. 

 

Part-of-Speech Sequence Example Phrase Frequency 

VERB-DET-NOUN avoid a collision 1285 

VERB-ADP-DET-NOUN complain to the police 589 

VERB-ADP-NOUN die in battle 337 

VERB-ADJ-NOUN spread my wings 314 

VERB-NOUN assemble equipment 251 

VERB-DET-NOUN-ADP-NOUN restore some semblance of order 206 

VERB-DET-ADJ-NOUN embrace the christian faith 158 

VERB-ADP-DET-ADJ-NOUN cook in a double boiler 113 

VERB-NOUN-PART-NOUN quote someone's words 107 

VERB-PART-DET-NOUN squeeze out a tear 102 

 

Table 2. The ten most frequent part-of-speech sequences contained within our final set of valid 

behavior phrases. Also indicated are randomly selected examples of each sequence, and the 

frequency of the part-of-speech sequence. 

 

To explore semantic content (as opposed to semantic structure) in a more direct way, we 

performed two analyses. First, we conducted a dictionary-based analysis with the well-known 

LIWC dictionary (Pennebaker et al., 2015), which contains lists of words in various categories, 

like work, home, and leisure. For example, LIWC’s list of leisure-related words includes alcohol, 
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mall, and yoga. For each of these categories (excluding syntactic categories like articles or 

conjunctions; see our OSF repository for all LIWC categories), we counted the total number of 

words, across all behavior phrases, falling into a given category.  

 

Figure 5. Frequency of 15 most and 15 least common LIWC categories in the final set of valid 

behavior phrases. (Bars can exceed the total number of phrases because a category can appear 

multiple times in a phrase.) Figure excludes syntactic categories.  
 

Figure 5 displays the 15 most and least frequent categories across all of our phrases. 

Again, our phrases span a variety of categories, but some appear (much) more frequently than 

others. The most common categories include space (with words like above, map, within), 
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cognitive processing (words like think, know, believe), drives (words like accomplish, command, 

motivate), and social (words like help, together, talkative). Other categories that strike us as 

central to human life, like death (words like alive, grieve, war) and sex (words like nude, 

abortion, womb), are vanishingly rare, with only seven phrases containing sexual words 

according to LIWC3. It is also notable that the‘male category appears nearly three times as often 

(43 times) as the female category (15 times), despite LIWC having more words for female than 

male4. This gender bias, and the absence of sexual words, may be a result of our usage of the 

Google Books n-grams dataset in particular, or even generic corpora in general. We return to this 

issue in the discussion. 

 For our second analysis to better understand the semantic content of our phrase set, we 

performed clustering of phrase vectors. First, we extracted 512-dimensional vectors for each 

behavior phrase using the Universal Sentence Encoder. We used this language model instead of, 

e.g., BERT, because USE obtains state-of-the-art performance on sentence similarity without 

fine-tuning, and clustering is similarity-driven (Cer et al., 2018). We then performed k-means 

clustering on all 3,938 behavior phrase vectors, with k=8. To determine a word’s importance to a 

cluster, we performed the following procedure. First, we lower-cased all words and removed stop 

words and non-alphabetic tokens. Then, we counted the frequency of all words, and divided a 

word’s frequency in a cluster by the sum of its frequency in all clusters, to obtain a word’s 

relative importance to a cluster. Figure 6 shows word clouds for each cluster of the foregoing 

 

3We do acknowledge that it is not altogether clear how often we should expect phrases of a certain topic to appear. 

Moreover, it is not clear that the token frequency of a topic in the phrase set has to reflect the centrality or frequency 

of a type of behavior in human life. Still, having only 7 of ~4000 phrases concern sexuality strikes us as severe 

underrepresentation. 

 
4As a particularly striking example of this bias, the phrase admire a man is in our dataset, but admire a woman is 

not. 
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analysis, with words sized according to their relative importance to a cluster. These clusters 

appear to span diverse domains including digital actions, money and career-related behaviors, 

travel and physical activities, household tasks, problem solving, and social activities, suggesting 

that our approach is able to uncover and quantify a wide range of common human behaviors. 

 

 

Figure 6. Word clouds describing k-means clusters in our set of 3,938 behaviors. 

 

Survey of Behavioral Propensities 

 In this section, we describe the methodology for our survey that was used to collect data 

on participants’ propensity to commit certain behaviors, as well as their psychographic and 

demographic data. Our aim was to use this latter data, along with vectors from transformer 

models of the behavior phrases, to predict propensities to perform behaviors, both for out-of-

sample behaviors and out-of-sample participants.  

Participants 

 We recruited 319 participants on Prolific Academic. Our sample was chosen to be 

representative of the age, gender, and race distribution of the US. Participants were only allowed 

to participate once and were paid approximately $10 per hour. 
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Psychographic Measures 

 We collected the following questionnaires to measure psychographic features of our 

participants: Ten Item Personality Inventory (Gosling et al., 2003), Domain-Specific Risk-

Taking Scale (Weber et al., 2002), Barratt Impulsiveness Scale (Patton et al., 1995), Self-Report 

Altruism Scale (Rushton et al., 1981), Grit Scale (Duckworth et al., 2009), Satisfaction With Life 

Scale (Arrindell et al., 1999), and Maximization Scale short (Nenkov et al., 2008). 

Design and Procedure 

In the first section of our study, participants were randomly assigned to a single block 

containing a subset of approximately 247 behaviors from the finalized dataset of human 

behaviors. There were 16 blocks of phrases – 15 contained 247 behaviors and 1 contained 233 

behaviors. Note that while the sample of participants was representative across multiple 

demographic variables, each block was not guaranteed to be evaluated by a representative 

sample. In total there were 78,116 evaluations of individual phrases collected in the study. 

Participants were told that we were interested in understanding how much they agreed 

with the statement “Relative to others, I am likely to X” where X was one of our behavior 

phrases. Participants rated how much they agreed with this given statement on a Likert scale 

from 1 (strongly disagree) to 7 (strongly agree). Participants were told to compare themselves 

against the general population, rather than solely their peers, while evaluating the statements. 

Participants completed this task for all behaviors in their assigned block before moving on to the 

next portion of the study. 

In the second section of the study, participants completed the psychographic 

questionnaires mentioned above. After completing the psychographic questionnaires, participants 
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indicated their education level, race, gender, income level, age, marital status, and employment 

status, in that order. 

Summary of Phrase Ratings 

We briefly report some phrases with high, medium, and low mean ratings, as well as 

phrases with low and high variability, to give an impressionistic sense of the validity of our 

dataset. The mean rating for all evaluations of phrases was 4.202, with a standard deviation of 

1.886. 24 phrases received a median rating of 7, i.e., participants strongly agreed that they were 

likely to engage in these behaviors relative to others. Some of these phrases include access the 

internet, reflect on a subject, consider a question, spell my name, and sleep in a bed. 133 phrases 

received a median rating of 1, i.e., participants strongly disagreed that they were likely to engage 

in these behaviors relative to others. Some of these phrases include kill someone, suck my thumb, 

commit a felony, escape from prison, and condemn someone as a heretic. 772 phrases received a 

median rating of 4, i.e., participants neither agreed nor disagreed that they were likely to engage 

in these behaviors relative to others. Some of these phrases include build a model, catch a bus, 

suppress a sigh, invent a tale, and carry a big stick. Inter-subject variability in phrase ratings also 

struck us as sensible. The phrase with lowest standard deviation was kill my father (SD = 0.218, 

Median = 1), while the phrase with the highest standard deviation was grab a cup of coffee (SD = 

2.56, Median = 6), reflecting the universal (negative) opinions on murder in the former and high 

variability in enjoyment of coffee in the latter. 

 

Predictive Modeling of Behavioral Propensities 

Methods 
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The primary goal of this paper was to evaluate the effectiveness of predicting behavioral 

propensities of individuals from phrase vectors provided by transformer models (BERT and 

USE). By collecting measurements of how likely individuals are to engage in certain behaviors, 

we were able to use different machine learning models to regress the behavioral propensity 

variable onto the vectors for the behaviors obtained from the transformer models. These 

regressions allowed us to learn the relationships between the vector space of the behaviors and 

the behavioral propensity variable. Because this regression was being calculated using the 

behavioral propensities of multiple individuals, we hoped that individual-level psychographic 

and demographic variables might be useful covariates in this regression in order to predict 

behavioral propensity on the individual level. 

We evaluated the success of both BERT and USE vectors for this task by training 

regularized ridge regressions with Scikit-learn (Pedregosa et al., 2011), and multilayer 

perceptions (MLPs) with Keras (Chollet et al., 2015) and TensorFlow (Abadi et al., 2015). As 

mentioned in the introduction, the hidden layers in the MLP may allow us to model interactions 

between participant characteristics and behavior phrase characteristics, e.g., the tendency for 

extraverted individuals to be more likely to perform social behaviors (go to a party) than solitary 

behaviors (read a book), and introverted individuals to do the reverse.  

We used the phrase vectors, alongside psychographic and demographic data, as input 

features for the behavioral propensity prediction task. Individual-level psychographic data were 

given as either aggregated (i.e. each participant received a single scalar score for Grit, 

Agreeableness, Openness to Experiences, Satisfaction with Life, Risk Taking, 

Conscientiousness, Altruism, Impulsiveness, Maximization, Extraversion, and Emotional 
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Stability using the scoring methods described in the sources of the questionnaires) or non-

aggregated (i.e. each participant’s score for each questionnaire item was used individually in the 

feature set). All ridge regressions were run with a grid search over alpha using 20 evenly spaced 

values on a log scale between e5 and e-5. All multilayer perceptrons (MLP) contained 4 layers: 

the first with 1,000 neurons and a ReLU activation function, a hidden layer with 200 neurons and 

a ReLU activation function, another hidden layer with 50 neurons and a ReLU activation 

function, and a final layer with one neuron with a linear activation function to provide a 

propensity score. Additionally, dropout was set to 50% between each layer. Each MLP was 

trained using 10-fold cross validation with 100 epochs per fold, where each epoch trained the 

MLP in batches of 20 items at a time. 10% of the training data was preserved as a validation set 

in order to avoid overfitting. We also introduced an early stopping method where the model in 

the current fold would end training early if validation loss did not improve for 10 consecutive 

epochs to avoid overfitting. As a baseline, we also tested a Word2Vec model with phrase vectors 

obtained from averaged word vectors (continuous bag-of-words; Mikolov et al., 2013) using the 

regularized ridge regression and MLP techniques. 

In the following section we show the results of these models under 3 different methods of 

splitting the dataset. The first is a true random split over all the data, meaning that neither 

behaviors nor participants are guaranteed to be exclusively represented in either the training or 

testing dataset. The second splits the data by participants, guaranteeing that the models make 

behavioral propensity predictions for the test set with out-of-sample participants. The final 

method splits the data by behaviors, guaranteeing that the models make predictions on out-of-

sample behaviors. In order to normalize the data for each participant, each score was z-scored 
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with the given participant’s other scores in the current testing or training set of the data and this 

score was used in the given set instead of the raw score. 

Results 

Figure 7A-7I shows the out-of-sample correlation between actual propensity scores and 

predicted propensity scores for the ridge regression and multilayered perceptron models, using 

aggregated vs. non-aggregated psychographic data, USE vs. BERT vs. averaged Word2Vec 

vectors, and the 3 different types of splits of the dataset. Note that MLP models trained with 

Word2Vec data were unable to predict behavioral propensity scores regardless of the how the 

dataset was split. These models are still included in our results, despite their failures, for the sake 

of consistency. 

In all cases, except when using averaged Word2Vec word vectors as phrase 

representations, MLPs had more accurate predictions of behavioral propensity ratings than ridge 

regressions trained on the same dataset with the same input features. For every MLP model – 

excluding the models utilizing Word2Vec vectors, which the MLPs were unable to predict 

behavioral propensity scores from – non-aggregated psychographic data yielded slightly 

improved performance (average r = 0.48) over aggregated psychographic data (average r = 0.47) 

as an input in the feature space. This effect did not appear for the ridge regression models 

(average r = 0.33 vs r = 0.33). Psychographic and demographic data as a whole did not seem to 

impact model performance (average r = 0.428 vs average r = 0.429 across all models with and 

without psychographic or demographic data, respectively). Our best performing model, an MLP 

trained over a random test/train split of the dataset, performed only slightly worse when trained 

without psychographic data (r = 0.516) than with the psychographic and demographic data (r = 
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0.524). Without demographic or psychographic data, this model achieved a correlation of 0.506. 

It is notable that models trained with the vectors from transformer models alone still achieved 

high correlation values. 

 

 

Figure 7. Out-of-sample performance for every (model type, [non-]aggregate psychographic 

data, vector source) triple for each split of the dataset. Cells in the heatmaps indicate the Pearson 

correlation between individual evaluations of behavioral propensity and model predictions of 

behavioral propensity.   
 

 

Excluding the models trained with averaged Word2Vec vectors, the models trained on a 

random test/train split of the dataset (Figure 7A and B) outperformed models trained on splits 
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over participants or behavior phrases. Of course, it must be noted that in a random test/train split 

of the dataset, the same phrase(s) or participant(s) (but not both) could appear in both the training 

and testing dataset. The models evaluated on ratings from behaviors that were entirely out-of-

sample (Figure 7D and E) performed worse than models evaluated on ratings from participants 

that were entirely out-of-sample (Figure 7G and H) indicating that is harder to extrapolate to new 

behaviors than it is to new participants.  

BERT vectors also yielded equal or improved model performance over USE vectors for all 

models except for the ridge regressions in Figure 7D and Figure 7E. This difference in 

performance is most notable in the MLP models in Figure 7G and Figure 7H where the MLP 

models trained with USE vectors had correlations that were, on average, 0.055 lower than the 

MLP models trained with BERT vectors. 

 

Discussion 

Vector Representations of Behavior 

The space of naturalistic human behavior is vast, and thus nearly impossible to 

comprehensively quantify and analyze. This is why most theories in the cognitive and behavioral 

sciences are parametrized and tested using highly stylized experimental tasks or surveys. 

However, in order to develop formal scientific theories of naturalistic human cognition and 

behavior, researchers need to be able to quantitatively represent the nearly limitless set of 

behaviors that people engage in on a day-to-day basis. 

This project addresses this important conceptual and technical challenge. The core insight 

underlying our approach is as follows: Many naturalistic human behaviors can be described with 

simple natural language verb phrases and sentences. Using transformer models for natural 
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language processing, the meanings of these phrases and sentences can be quantified as vectors in 

high-dimensional semantic spaces. Importantly, semantic vectors can be obtained for nearly any 

phrase or sentence, which implies that quantified representations are feasible for thousands of 

common human behaviors. 

The ability to quantify naturalistic behaviors using high-dimensional vector 

representations opens up many new avenues of research in psychology and related disciplines. 

Specifically, it is possible to use quantified representations of behaviors as inputs into formal 

models that attempt to predict important psychological variables associated with behaviors. To 

facilitate such an analysis, we collected a dataset of naturalistic behaviors by observing the 

frequencies of verb phrases in natural language. We extracted hundreds of thousands of such 

phrases from the Google Books dataset, and then, through part-of-speech tagging, human coding, 

and manual editing, distilled this dataset into a subset of 3,938 verb phrase that describe common 

human behaviors. We also trained a machine learning model that is capable of accurately 

predicting whether a given phrase describes a common behavior, automating this process for 

future research. 

Predicting Behavior 

The main test in this paper involved using our dataset of behavior phrases to predict 

people’s propensities in engaging in these behaviors. For this, we collected a large dataset of 

individual-level behavior propensity ratings, as well as associated psychographic data (e.g. 

responses to personality surveys) and demographic data. We then used both the vector 

representations of behavior as well as psychographic and demographic variables for our 

participants as inputs in machine learning models trained to predict the individual’s propensity 
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rating. We found that our models successfully predicted out-of-sample behavior propensities, 

including propensities for individuals not in the training data, and behaviors not in the training 

data, showing that transformer-based vector representations of behavior can be used to make 

behavioral predictions for truly out-of-sample individuals and behaviors. We considered both 

regularized linear regressions and multilayer perceptrons and found that the best performing 

model turned out to be the multilayer perceptron that used the BERT vectors as inputs. This is 

not surprising given the computational power of deep neural networks and recent successes of 

the BERT model in natural language understanding tasks. 

At the same time, our MLP did not grossly out-perform a purely linear model (by no 

more than approximately r = .05), which is surprising to the extent that we think behavior 

propensity is an interactive and not merely additive function of the behavior and the individual 

(that is, we would expect extraverted individuals to endorse going to a party over reading a book, 

and introverted individuals to do the opposite). Similarly, we were surprised to see that the 

addition or removal of psychographic and demographic information from the inputs to the 

models did not have much impact on predictive accuracy (difference in r < .01). We did find 

participant-level variability in propensity scores – the mean standard deviation in propensity 

scores, which had been z-scored within-participant, across all behavior phrases was .80. Thus, 

there is some participant heterogeneity to explain, and the null effect of participant-level 

information, and lack of strong interaction between phrase representations and participant 

characteristics, strikes us as surprising. There are at least a couple possibilities for this pattern of 

results. First, our MLP may be overly flexible, with too many hidden layers and neurons, relative 

to the amount of data we have (78,116 participant-behavior combinations), and/or our input 
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representations (phrase vectors and psychographic/demographic survey responses) may be too 

high-dimensional. Second, it may be that our number of participants per phrase (~20) was simply 

inadequate for effectively learning how our individual-level characteristics impacted propensity 

ratings, especially given that, as stated above, we expected interactive and not additive effects, 

with the former generally being more difficult to learn and requiring more data. 

Finally, it may also just be inherently difficult to predict variability in behavioral 

tendencies from survey measures. Eisenberg et al. (2019), for example, present evidence that 

surveys predict real-world behavioral outcomes only modestly, and with substantial 

heterogeneity. On the other hand, our behavioral propensity scores and our psychographic and 

demographic measures are all self-reported survey measures, and many of the psychographic 

measures contain items that are very similar to our behavior phrases. For example, one of the 

items on the DOSPERT asks participants to rate their likelihood of performing the behavior 

going camping in the wilderness. Further, to the extent that our psychographic scales generally 

have internal consistency, responses on one item predict responses on other items from the same 

(sub)scale. It is perhaps therefore surprising that responses to the psychographic measures do not 

help predict responses to our behavior phrases. One possible explanation for this may be that the 

behavior phrases simply concern domains of behavior that are generally unrelated to, and 

therefore cannot be predicted from, the domains of behavior, personality, and demography 

reflected in our psychographic and demographic surveys.  

In any case, while we acknowledge there may be inherent limits to the premise of our 

approach, we suspect that the implementation of our approach could be improved. Further 

refining our predictive models, increasing the number of participant ratings per phrase, 
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restricting analyses to phrases with strong (a priori expectations of) individual-level variation, or 

collecting additional or different psychographic and demographic information, may all be 

directions for future research. 

What is abundantly clear, however, is that simply averaging static word vectors, like 

Word2Vec, leads to entirely inadequate behavior phrase representations, as these averaged 

representations were very poor for predicting behavioral propensities (and for classifying 

sequences as valid human behaviors). These results underscore the technical advances that 

transformers present for the representation of language beyond the level of the word. 

New Applications in the Study of Behavior 

Our results show that transformer models of language can provide useful vector 

representations of behavior phrases. These representations may not capture the entirety of the 

meaning of the behavior phrase or all of the richness of the physical instantiation of the behavior, 

but they are accurate enough to predict people’s behavior propensities. Importantly, transformer 

language models can be used to quantitatively represent a wide range of naturalistic human 

behaviors, allowing for novel applications of cognitive and behavioral research that taxonomize, 

predict, and explain naturalistic human behavior, using formal computational models. 

One such application could involve a more detailed analysis of BERT and USE vector 

representations of behavior. Our preliminary tests involving the k-means clustering of behavior 

phrases (shown in Figure 6) reveal that our vector representations capture some intuitive 

distinctions between different behavioral domains. Further work could examine the dimensions 

of the vector space of behaviors in more detail, and thus better understand how vector 

representations of behavior obtained from natural language data represent the content of behavior 
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and the meaning of verb phrases depicting behavior. For example, it might be useful to conduct 

more systematic tests of the influence of different elements of a verb phrase on the BERT or 

USE vector, as we did in a preliminary fashion in the introduction with the phrases paint a 

house, decorate a room, and rent a room.. That is, the verb, as the head of a verb phrase, ought 

to determine the location in vector space more than other parts of the phrase, except possibly in 

the case of light verbs in phrases like do a review, in which case do a review perhaps ought to be 

closer to revise a paper than it is to do the cleaning. 

It may also be possible to use our approach to study sequences of behavior, specifically 

behaviors performed one after another over the course of the day (and perhaps observed using 

diary studies). Such sequences can be used to understand complex behavioral schemas and 

scripts that guide human action (e.g. Abelson, 1981). We can analyze these dynamics using 

transformer models calibrated for “sequence-to-sequence” prediction, as in the French-English 

translation example of Figure 2. Such models use vector representations of sentences to learn 

dependencies between different sentences, and have been shown to be successful at next-

sentence prediction, machine translation, and other tasks in which an input sentence must be 

mapped onto an output sentence (Devlin et al., 2018). In our case, sequence-to-sequence models 

can be used learn how behaviors performed at one point in time determine behaviors in the 

subsequent point in time, providing analytical rigor in the study of behavioral dynamics and 

cognitive schemas. 

Finally, as we have discussed earlier in this paper, the general paradigm introduced in this 

paper can be applied to other variables of interest to psychologists. For example, instead of 

predicting people’s propensities for different behaviors, it may be possible to predict people’s 
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judgments of behaviors. Such judgments are a key topic of study in domains such as risk 

perception and moral psychology, and our paradigm offers the promise of extending theories in 

these fields to the nearly unbounded set of behaviors that could be judged by individuals in the 

world. 

Limitations 

Our approach is of course not without limitations. Perhaps chief among these are the 

biases in our set of verb phrases resulting from their generation from corpora. For one, we used 

the Google Books n-gram corpus to extract phrases, which is known to over-represent certain 

text genres, like scientific publications (Pechenick, Danforth, Dodds, 2015). In turn, this may 

mean that certain scientific behaviors like generate a table are over-represented in our corpus, 

while more informal behaviors like take a selfie or have sex are under-represented. And of 

course, since we have used the English version of the Google Books n-gram corpus, our 

generated behavior phrases may under-represent behaviors important to non-English speaking 

populations (which, of course, is most of the human population). Finally, we found that male 

words appeared in our behaviors almost three times as often as female words, despite the set of 

male words being smaller in our dictionary (LIWC), which may be a bias in not just the Google 

Books corpus, but many generic corpora (Johns & Dye, 2019). Therefore, obtaining more 

general and representative sets of human behavior phrases is a crucial goal for future research. 

Diary studies, in which participants write out the sets of behaviors they engaged in over the 

course of the day, may be one way to manually augment our automatically constructed set of 

behavior phrases. It may also be possible to use phrase structure grammars (or even probabilistic 

variants thereof), combined with a lexicon of common words with their grammatical class (and 
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possibly semantic features, e.g., POSSIBLE-AGENT), to generate new verb phrases, which 

could then be filtered down into a set of valid human behaviors with the classifier we have 

developed here. As the number of possible phrases can be impractically vast with even (a) a 

relatively small lexicon and grammar and (b) limits on the length of the phrase or number of 

phrase structure rule applications, it would be important to intelligently sample from the possible 

productions such that the space of behaviors (e.g., as represented in USE or BERT space, or in 

terms of LIWC constructs) is efficiently covered with a relatively small number of phrases. 

 

Conclusion 

We have proposed a novel approach to studying naturalistic behavior. Our approach is 

not limited by artificial experimental tasks or narrow aspects of cognition and behavior pre-

selected by psychologists. Rather it embraces the complexity of the real-world, and attempts to 

study this complexity using novel techniques taken from machine learning and natural language 

processing. When applied to a large dataset of behavioral propensity ratings, our approach is able 

to accurately predict how likely individuals are to engage in behaviors in an out-of-sample 

manner. 

The reader may note that our approach is not grounded in an established theoretical 

paradigm. The reason for this is that there is no current psychological theory that can 

accommodate the richness and variety of everyday behaviors. By quantifying and predicting 

everyday behaviors, and by extracting insights regarding naturalistic behavior in a data-driven 

manner, this paper lays the groundwork for such a theory (see Yarkoni & Westfall, 2017 and 

Hofman et la., 2017 for discussions of the value of prediction in social and behavioral science). 
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In doing so it shows the power of computational models trained on large-scale digital data for 

analyzing and predicting behavioral phenomena (Griffiths, 2017; Harlow & Oswald, 2016). We 

look forward to the use of such an approach in the development of a new scientific paradigm, 

one that is capable of quantitatively describing the naturally occurring and free-flowing 

behaviors humans engage in over the course of their everyday lives. 



Running head: PREDICTING BEHAVIOR  41 

Declarations 

Funding: Funding was received from the National Science Foundation grant SES-1847794. 

Conflicts of interest: The authors have no conflicts of interest to declare. 

Availability of data and material:  Additional materials can be found at https://osf.io/93nfb/. 

Code availability: Code is available from authors upon request.  



Running head: PREDICTING BEHAVIOR  42 

References 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2015). 

TensorFlow: large-scale machine learning on heterogeneous systems. Software available 

from tensorflow. org. 2015. URL https://www. tensorflow. org. 

Abelson, R. P. (1981). Psychological status of the script concept. American Psychologist, 36(7), 

715–729. 

Alammar, J. (2018). The Illustrated Transformer. Retrieved from 

https://jalammar.github.io/illustrated-transformer/ 

Arrindell, W. A., Heesink, J., & Feij, J. A. (1999). The satisfaction with life scale (SWLS): 

Appraisal with 1700 healthy young adults in The Netherlands. Personality and individual 

differences, 26(5), 815-826. 

Bhatia, S., Richie, R, & Zou, W. (2019). Distributed semantic representations for modelling 

human judgment. Current Opinion in Behavioral Sciences, 29, 31-36.  

Bhatia, S. & Stewart, N. (2018). Naturalistic multiattribute choice. Cognition, 179, 71-88. 

Blais, A. R., & Weber, E. U. (2006). A domain-specific risk-taking (DOSPERT) scale for adult 

populations. Judgment and Decision making, 1(1), 33-47. 

Bowman, S. R., Angeli, G., Potts, C., & Manning, C. D. (2015). A large annotated corpus for 

learning natural language inference. arXiv preprint arXiv:1508.05326. 

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. 

(2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165. 

https://jalammar.github.io/illustrated-transformer/


Running head: PREDICTING BEHAVIOR  43 

Bruine de Bruin, W., Parker, A. M., & Fischhoff, B. (2007). Individual differences in adult 

decision-making competence. Journal of Personality and Social Psychology, 92(5), 938-

956. 

Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality and Social 

Psychology, 42(1), 116-131. 

Cer, D., Yang, Y., Kong, S. Y., Hua, N., Limtiaco, N., John, R. S., ... & Strope, B. (2018). 

Universal sentence encoder for English. In Proceedings of EMNLP (pp. 169-174). 

Chollet, F., & others. (2015). Keras. GitHub. Retrieved from https://github.com/fchollet/keras 

Davies, M. (2009). The 385+ million word Corpus of Contemporary American English (1990–

2008+): Design, architecture, and linguistic insights. International Journal of Corpus 

Linguistics, 14(2), 159-190. 

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep 

bidirectional transformers for language understanding. In Proceedings of NAACL-HLT 

(pp. 4171-4186). 

Duckworth, A. L., & Quinn, P. D. (2009). Development and validation of the Short Grit Scale 

(GRIT–S). Journal of personality assessment, 91(2), 166-174. 

Eisenberg, I. W., Bissett, P. G., Enkavi, A. Z., Li, J., MacKinnon, D. P., Marsch, L. A., & 

Poldrack, R. A. (2019). Uncovering the structure of self-regulation through data-driven 

ontology discovery. Nature communications, 10(1), 1-13. 

Goldberg, L. R. (1990). An alternative" description of personality": the big-five factor structure. 

Journal of Personality and Social Psychology, 59(6), 1216-1229. 



Running head: PREDICTING BEHAVIOR  44 

Gosling, S. D., Rentfrow, P. J., & Swann, W. B., Jr. (2003). A very brief measure of the Big Five 

personality domains. Journal of Research in Personality, 37, 504-528. 

Griffiths, T. L. (2015). Manifesto for a new (computational) cognitive revolution. Cognition, 

135, 21-23. 

Harlow, L. L., & Oswald, F. L. (2016). Big data in psychology: Introduction to the special issue. 

Psychological Methods, 21(4), 447. 

Hofman, J. M., Sharma, A., & Watts, D. J. (2017). Prediction and explanation in social systems. 

Science, 355(6324), 486–488. 

Hollis, G., Westbury, C., & Lefsrud, L. (2016). Extrapolating Human Judgments from Skip-gram 

Vector Representations of Word Meaning. The Quarterly Journal of Experimental 

Psychology, 70(8), 1603-1619. 

Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with Bloom 

embeddings, convolutional neural networks and incremental parsing. 

Johns, B. T., & Dye, M. (2019). Gender bias at scale: Evidence from the usage of personal 

names. Behavior research methods, 51(4), 1601-1618. 

Jones, M.N., Willits, J.A., & Dennis, S. (2015). Models of semantic memory. In Oxford 

Handbook of Computational and Mathematical Psychology. Edited by Busemeyer JR, 

Wang Z, Townsend JT, Eidels A. Oxford University Press, 232-254. 

Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart, G. L., ... & 

Brown, R. A. (2002). Evaluation of a behavioral measure of risk taking: the Balloon 

Analogue Risk Task (BART). Journal of Experimental Psychology: Applied, 8(2), 75. 

https://sites.ualberta.ca/~hollis/files/ExtrapolatingSemantics.pdf
https://sites.ualberta.ca/~hollis/files/ExtrapolatingSemantics.pdf


Running head: PREDICTING BEHAVIOR  45 

Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: 

Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression 

and Anxiety Inventories. Behaviour research and therapy, 33(3), 335-343. 

Mandera, P., Keuleers, E., & Brysbaert, M. (2017). Explaining human performance in 

psycholinguistic tasks with models of semantic similarity based on prediction and 

counting: a review and empirical validation. Journal of Memory and Language, 92, 57-

78. 

McCoy, R. T., Pavlick, E., & Linzen, T. (2019). Right for the wrong reasons: Diagnosing 

syntactic heuristics in natural language inference. In Proceedings of ACL (pp. 3428-

3448).  

Michel, J. B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Pickett, J. P., ... & Pinker, S. 

(2011). Quantitative analysis of culture using millions of digitized books. Science, 

331(6014), 176-182. 

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed 

representations of words and phrases and their compositionality. In Advances in Neural 

Information Processing Systems (pp. 3111-3119). 

Nenkov, G. Y., Morrin, M., Schwartz, B., Ward, A., & Hulland, J. (2008). A short form of the 

Maximization Scale: Factor structure, reliability and validity studies. Judgment and 

Decision making, 3(5), 371-388. 

Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt 

Impulsiveness Scale. Journal of Clinical Psychology, 51(6), 768-774. 



Running head: PREDICTING BEHAVIOR  46 

Pechenick, E.A., Danforth, C.M., Dodds, P.S. (2015) Characterizing the Google Books Corpus: 

Strong limits to inferences of socio-cultural and linguistic evolution. PLoS ONE 10(10): 

e0137041. https://doi.org/10.1371/journal.pone.0137041 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Vanderplas, 

J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning 

Research, 12, 2825-2830. 

Pennebaker, J. W., Boyd, R. L., Jordan, K., & Blackburn, K. (2015). The development and 

psychometric properties of liwc2015 (Tech. Rep.). 

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word 

representation. In Proceedings of EMNLP (pp. 1532-1543). 

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language 

understanding by generative pre-training. OpenAI. 

Rushton, J. P., Chrisjohn, R. D., & Fekken, G. C. (1981). The altruistic personality and the self-

report altruism scale. Personality and Individual Differences, 2(4), 293-302.\ 

Schwartz, B., Ward, A., Monterosso, J., Lyubomirsky, S., White, K., & Lehman, D. R. (2002). 

Maximizing versus satisficing: Happiness is a matter of choice. Journal of Personality 

and Social Psychology, 83(5), 1178-1197. 

Utsumi, A. (2020). Exploring what is encoded in distributional word vectors: A 

neurobiologically motivated analysis. Cognitive Science, 44(6), e12844. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. 

(2017). Attention is all you need. In Advances in Neural Information Processing Systems 

(pp. 5998-6008). 

https://doi.org/10.1371/journal.pone.0137041


Running head: PREDICTING BEHAVIOR  47 

Weber, E. U., Blais, A. R., & Betz, N. E. (2002). A domain-specific risk-attitude scale: 

Measuring risk perceptions and risk behaviors. Journal of Behavioral Decision Making, 

15(4), 263-290. 

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., ... & Brew, J. (2019). 

Transformers: State-of-the-art natural language processing. arXiv preprint 

arXiv:1910.03771. 

Xiao, H. (2018). bert-as-a-service. Retrieved from https://github.com/hanxiao/bert-as-service. 

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons 

from machine learning. Perspectives on Psychological Science, 12(6), 1100-1122. 

https://github.com/hanxiao/bert-as-service

