Main content

Contributors:

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Brier score decompositions, including those attributed to Murphy and to Yates, provide popular metrics for estimating forecast performance attributes like calibration and discrimination. However, the decompositions are generally limited to situations where forecasters make successive forecast judgments against the same class of substantive event (e.g., rain vs. no rain). They do not readily translate to common situations where: forecasts are weighted unequally; forecasts can be made against a range of heterogeneous topics and events over varying time horizons; forecasts can be updated over time until an event occurs or an event deadline is reached; or outcome alternatives can vary in number and nature (e.g., ordered vs. unordered outcomes) across forecast questions. In this paper, we propose extensions of the Murphy and Yates decompositions to address these features. The extensions involve new analytic expressions for the decompositions of weighted Brier scores, along with proposed resampling methods. We use data from a recent forecasting tournament to illustrate the methods.

License: Other

Wiki

Add important information, links, or images here to describe your project.

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.