Main content

Contributors:
  1. John Letey
  2. Mingxuan Zhang

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Effective management of coastal risks demands projections of flood hazards that account for a wide variety of potential sources of uncertainty. Two typical approaches for estimating flood hazards include (1) direct physical process-based modeling of the storms themselves and (2) statistical modeling of the distributions and relevant characteristics of extreme sea level events. Recently, flexible and efficient mechanistically-motivated models for sea-level change have become widely used for characterizing uncertainty in projections of mean sea levels [Oppenheimer and Alley, 2016]. In order to complement these models for mean sea levels, there is also a need for fast and flexible estimates of extreme sea levels, and corresponding uncertainties. This is the motivating factor in the focus within the SSPipeline (Storm Surge Pipeline) project, that characterizes uncertainty in estimates of extreme sea levels, using a statistical modeling approach. Specifically, this work provides a high-level description of the input, methods and expected output from a software pipeline to process raw tide gauge information, and generate calibrated estimates of storm surge return levels.

Files

Loading files...

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.