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Most theories and hypotheses in psychology are verbal in nature, yet their evaluation overwhelmingly relies on infer-

ential statistical procedures. The validity of the move from qualitative to quantitative analysis depends on the verbal

and statistical expressions of a hypothesis being closely aligned—that is, that the two must refer to roughly the same

set of hypothetical observations. Here I argue that many applications of statistical inference in psychology fail to meet

this basic condition. Focusing on the most widely used class of model in psychology—the linear mixed model—I explore

the consequences of failing to statistically operationalize verbal hypotheses in a way that respects researchers' actual

generalization intentions. I demonstrate that whereas the "random effect" formalism is used pervasively in psychology

to model inter-subject variability, few researchers accord the same treatment to other variables they clearly intend to

generalize over (e.g., stimuli, tasks, or research sites). The under-specification of random effects imposes far stronger

constraints on the generalizability of results than most researchers appreciate. Ignoring these constraints can dramati-

cally inflate false positive rates, and often leads researchers to draw sweeping verbal generalizations that lack a mean-

ingful connection to the statistical quantities they are putatively based on. I argue that failure to take the alignment

between verbal and statistical expressions seriously lies at the heart of many of psychology's ongoing problems (e.g.,

the replication crisis), and conclude with a discussion of several potential avenues for improvement.
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Introduction
Modern psychology is—at least to superficial

appearances—a quantitative discipline. Evaluation of
most claims proceeds by computing statistical quanti-
ties that are thought to bear some important relation-
ship to the theories or practical applications psycholo-
gists care about. This observation may seem obvious,
but it’s worth noting that things didn’t have to turn
out this way. Given that the theories and constructs
psychologists are interested in usually have qualitative
origins, and are almost invariably expressed verbally,
a naive observer might well wonder why psychologists
bother with numbers at all. Why take the trouble to
compute p-values, Bayes Factors, or confidence inter-
vals when evaluating qualitative theoretical claims?
Why don’t psychologists simply look at the world
around them, think deeply for a while, and then
state—again in qualitative terms—what they think
they have learned?

The standard answer to this question is that quan-
titative analysis offers important benefits that quali-
tative analysis cannot (e.g., Steckler, McLeroy, Good-
man, Bird, & McCormick, 1992)—perhaps most no-

tably, greater objectivity and precision. Two observers
can disagree over whether a crowd of people should
be considered “big” or “small”, but if a careful count
establishes that the crowd contains exactly 74 people,
then it is at least clear what the facts on the ground
are, and any remaining dispute is rendered largely
terminological.

Unfortunately, the benefits of quantitation come
at a steep cost: verbally expressed psychological con-
structs1—things like cognitive dissonance, language
acquisition, and working memory capacity—cannot
be directly measured with an acceptable level of ob-
jectivity and precision. What can be measured objec-
tively and precisely are operationalizations of those
constructs—for example, a performance score on a
particular digit span task, or the number of English
words an infant has learned by age 3. Trading vague

1I avoid the conventional habit of describing psychological
constructs as latent variables, as such language is often taken
to imply a realist philosophical stance towards theoretical enti-
ties (e.g., Borsboom, Mellenbergh, & van Heerden, 2003). For
present purposes, it’s irrelevant whether one thinks psychologi-
cal constructs objectively exist in some latent or platonic realm,
or are merely pragmatic fictions.
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verbal assertions for concrete measures and manipu-
lations is what enables researchers to draw precise,
objective, quantitative inferences; however, the same
move also introduces new points of potential failure,
because the validity of the original verbal assertion
now depends not only on what happens to be true
about the world itself, but also on the degree to which
the chosen proxy measures successfully capture the
constructs of interest—what psychometricians term
construct validity (Cronbach & Meehl, 1955; Guion,
1980; O’Leary-Kelly & J. Vokurka, 1998).

When the construct validity of a measure or ma-
nipulation is low, any conclusions one draws at the
operational level run a high risk of failing to general-
ize to the construct level. An easy way to appreciate
this is to consider an extreme example. Suppose I hy-
pothesize that high social status makes people behave
dishonestly. If I claim that I can test this hypothesis
by randomly assigning people to either read a book
or watch television for 10 minutes, and then mea-
suring their performance on a speeded dishwashing
task, nobody is going to take me very seriously. It
doesn’t even matter how the results of my experiment
turn out: there is no arrangement of numbers in a
table, no p-value I could compute from my data, that
could possibly turn my chosen experimental manipu-
lation into a sensible proxy for social status. And the
same goes for the rather questionable use of speeded
dishwashing performance as a proxy for dishonesty.

The absurdity of the preceding example exposes a
critical assumption that often goes unnoticed: for an
empirical result to have bearing on a verbal assertion,
the measured variables must be suitable operational-
izations of the verbal constructs of interest, and the
relationships between the measured variables must
parallel those implied by the logical structure of the
verbal statements. Equating the broad construct of
honesty with a measure of speeded dishwashing is so
obviously nonsensical that we immediately reject such
a move out of hand. What may be less obvious is that
exactly the same logic implicitly applies in virtually
every case where researchers lean on statistical quan-
tities to justify their verbal claims. Statistics is not,
as many psychologists appear to view it, a rote, me-
chanical procedure for turning data into conclusions.

It is better understood as a parallel, and more precise,
language in which one can express one’s hypotheses
or beliefs. Every statistical model is a description of
some real or hypothetical state of affairs in the world.
If its mathematical expression fails to capture roughly
the same state of affairs as the verbal hypothesis the
researcher began with, then the statistical quantities
produced by the model cannot serve as an adequate
proxy for the verbal statements—and consequently,
the former cannot be taken as support for the latter.

Viewed from this perspective, the key question is
how closely the verbal and quantitative expressions
of one’s hypothesis align with each other. When a re-
searcher verbally expresses a particular proposition—
be it a theoretically-informed hypothesis or a purely
descriptive characterization of some data—she is im-
plicitly defining a set of hypothetical measurements
(or admissible observations; Brennan, 1992) that would
have to come out a certain way in order for the state-
ment to be corroborated. If the researcher subse-
quently asserts that a particular statistical procedure
provides a suitable operationalization of the verbal
statement, she is making the tacit but critical assump-
tion that the universe of hypothetical measurements
implicitly defined by the chosen statistical procedure,
in concert with the experimental design and measure-
ment model, is well aligned with the one implicitly
defined by the qualitative statement. Should a discrep-
ancy between the two be discovered, the researcher
will then face a choice between (a) working to resolve
the discrepancy in some way (i.e., by modifying either
the verbal statement or the quantitative procedure(s)
meant to provide an operational parallel); or (b) giv-
ing up on the link between the two and accepting that
the statistical procedure does not inform the verbal
expression in a meaningful way.

The next few sections explore this relationship with
respect to the most widely used class of statistical
model in psychology—linear mixed models containing
fixed and random effects (though the broader concep-
tual points I will make apply to any use of statistical
quantities to evaluate verbal claims). The exploration
begins with an examination of the standard random-
subjects model—a mainstay of group-level inferences
in psychology—and then progressively considers addi-
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tional sources of variability whose existence is implied
by most verbal inferences in psychology, but that the
standard model fails to appropriately capture. The
revealed picture is that an unknown but clearly very
large fraction of statistical hypotheses described in
psychology studies cannot plausibly be considered
reasonable operationalizations of the verbal hypothe-
ses they are meant to inform. (While I deliberately
restrict the focus of my discussion to the field of psy-
chology, with which I am most familiar, I expect that
researchers in various social and biomedical disciplines
will find that the core arguments I lay out generalize
well to many other areas.)

Fixed vs. random effects
Let us begin with a scenario that will be familiar

to many psychologists. Suppose we administer a cog-
nitive task—say, the color-word Stroop (MacLeod,
1991; Stroop, 1935)—to a group of participants (the
reader is free to mentally substitute almost any other
experimental psychology task into the example). Each
participant is presented with a series of trials, half in a
congruent condition and half in an incongruent condi-
tion. We are tasked with fitting a statistical model to
estimate the canonical Stroop effect—i.e., the increase
in reaction time (RT) observed when participants are
presented with incongruent color-word information
relative to congruent color-word information.

A naive, though almost always inappropriate, model
might be the following:

yij = β0 + β1Xij + eij (1)
eij ∼ N (0, σ2

e)

In this linear regression, yij denotes the i’th subject’s
response on trial j, Xij indexes the experimental
condition (congruent or incongruent) of subject i’s j’th
trial, β0 is an intercept, β1 is the effect of congruency,
and eij captures the errors, which are assumed to be
normally distributed.

What is wrong with this model? Well, one rather
serious problem is that the model blatantly ignores
sources of variance in the data that we know on the-
oretical grounds must exist. Notably, because the

model includes only a single intercept parameter and
a single slope parameter across all subjects and trials,
it predicts exactly the same reaction time value for
all trials in each condition, no matter which subject
a given trial is drawn from. Such an assumption is
clearly untenable: it’s absurd to suppose that the only
source of trial-to-trial RT variability within experi-
mental conditions is random error. We know full well
that people differ systematically from one another in
performance on the Stroop task (and for that matter,
on virtually every other cognitive task). Any model
that fails to acknowledge this important source of
variability is clearly omitting an important feature of
the world as we understand it.

From a statistical standpoint, the model’s failure
to explicitly acknowledge between-subject variability
has several deleterious consequences for our Stroop
estimate. The most salient one, given psychologists’
predilection towards dichotomous conclusions (e.g.,
whether or not an effect is statistically significant),
is that the estimated uncertainty surrounding the
parameter estimates of interest will tend to be biased—
typically downwards (i.e., in our Stroop example, the
standard error of the Stroop effect will usually be
underestimated)2. The reason is that, lacking any
concept of a “person”, our model cannot help but
assume that any new set of trials—no matter who
they come from—must have been generated by exactly
the same set of processes that gave rise to the trials
the model has previously seen. Consequently, the
model cannot adjust the uncertainty around the point
estimate to account for variability between subjects,
and will usually produce an overly optimistic estimate
of its own performance when applied to new subjects
whose data-generating process is at least somewhat
different from the process that generated the data the
model was trained on.

The deleterious impact of using Model (1) to es-

2The precise effect of failing to include random factors de-
pends on a number of considerations, including the amount
of variance between versus within the random effects, the co-
variance with other variables, and the effective sample sizes of
different factors. But in most real-world settings, the inclusion
of random effects will lead to (often much) larger uncertainty
estimates and smaller inferential test statistics.
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Figure 1: Consequences of mismatch between model specification and generalization intention. Each row represents
a simulated Stroop experiment with n = 20 new subjects randomly drawn from the same global population (the
ground truth for all parameters is constant over all experiments). Bars display the estimated Bayesian 95% highest
posterior density (HPD) intervals for the (fixed) condition effect of interest in each experiment. Experiments are
ordered by the magnitude of the point estimate for visual clarity. (A) The fixed-effects model specification in Eq. (1)
does not account for random subject sampling, and consequently underestimates the uncertainty associated with the
effect of interest. (B) The random-effects specification in Eq. (2) takes subject sampling into account, and produces
appropriately calibrated uncertainty estimates.

timate the Stroop effect when generalization to new
subjects is intended is illustrated in Figure 1A. The
figure shows the results of a simulation of 20 random
Stroop experiments, each with 20 participants and 200
trials per participant (100 in each condition). The true
population effect—common to all 20 experiments—is
assumed to be large. As expected, fitting the simu-
lated data with the fixed-effects model specification
in Eq. (1) produces an unreasonably narrow estimate
of the uncertainty surrounding the point estimates—
observe that, for any given experiment, most of the
estimates from the other experiments are well out-
side the 95% highest posterior density (HPD) interval.
Researchers who attempt to naively generalize the
estimates obtained using the fixed-effects model to
data from new subjects are thus setting themselves
up for an unpleasant surprise.

How might we adjust Model (1) to account for
the additional between-subject variance in the data
introduced by the stochastic sampling of individuals
from a broader population? One standard approach
is to fit a model like the following:

yij = β0 + β1Xij + u0i + u1iXij + eij (2)
u0i ∼ N (0, σ2

u0
)

u1i ∼ N (0, σ2
u1

)
eij ∼ N (0, σ2

e)

Here, we expand Model (1) to include two new terms:
u0 and u1, which respectively reflect a set of intercepts
and a set of slopes—one pair of terms per subject3.
The u parameters are assumed (like the error e) to

3To keep things simple, I ignore the question of how one
ought to decide whether or not to include both random slopes
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follow a normal distribution centered at zero, with the
size of the variance components (i.e., the variances of
the groups of random effects) σ2

uk
estimated from the

data.

Conventionally, the u parameters in Model (2)
are referred to as random (or sometimes, varying
or stochastic) effects, as distinct from the fixed effects
captured by the β terms4. There are several ways
to conceptualize the distinction between random and
fixed effects (Gelman & Hill, 2006), but since our
focus here is on generalizability, we will define them
this way: fixed effects are used to model variables that
must remain constant in order for the model to pre-
serve its meaning across replication studies; random
effects are used to model indicator variables that are
assumed to be stochastically sampled from some un-
derlying population and can vary across replications
without meaningfully altering the research question.
In the context of our Stroop example, we can say
that the estimated Stroop effect β1 is a fixed effect,
because if we were to run another experiment using
a different manipulation (say, a Sternberg memory
task), we could no longer reasonably speak of the
second experiment being a replication of the first. By
contrast, psychologists almost invariably think of ex-
perimental subjects as a random factor: we are rarely
interested in the particular people we happen to have
in a given sample, and it would be deeply problematic
if two Stroop experiments that differed only in their
use of different subjects (randomly sampled from the
same population) had to be treated as if they provided
estimates of two conceptually distinct Stroop effects.5

and random intercepts (for discussion, see (Barr, Levy, Scheep-
ers, & Tily, 2013; Matuschek, Kliegl, Vasishth, Baayen, & Bates,
2017). The goal here is simply to elucidate the distinction be-
tween fixed and random effects.

4Note that in econometrics, the term fixed effect has a
narrower meaning, and refers specifically to a group mean
parameter (rather than just any predictor variable) modeled as
non-random.

5A reasonable argument could be made that since no experi-
mental context is ever exactly the same across two measurement
occasions, in a technical sense, no design factor is ever truly
fixed. Readers who are sympathetic to such an argument (as I
also am) should remember Box’s dictum that “all models are
false, but some are useful”, and are invited to construe the
choice between fixed and random effects as a purely pragmatic
one that amounts to deciding which of two idealizations better

Note that while the model specified in (2) is a sub-
stantial improvement over the one specified in (1) if
our goal is to draw inferences over populations of sub-
jects, it is not in any meaningful sense the “correct”
model. Model (2) is clearly still an extremely sim-
plistic approximation of the true generative processes
underlying Stroop data, and, even within the con-
fines of purely linear models, there are many ways in
which we could further elaborate on (2) to account for
other potentially important sources of variance (e.g.,
practice or fatigue effects, stimulus-specific effects,
measured individual differences in cognitive ability,
etc.). Moreover, the fact that Model (2) supports
inference over some broader population of subjects
provides no guarantee that that population is one
the researcher is interested in. If, for example, our
subjects are all sampled from a Western undergrad-
uate population aged 18 - 23, then Model (2) may
license generalization of the results to other under-
graduates like the ones we studied, but we would be
leaning very heavily on auxiliary assumptions not ex-
plicitly included in our model if we were to generalize
our conclusions to the broader population of human
beings.

In highlighting the difference between models (1)
and (2), I simply wish to draw attention to two im-
portant and interrelated points. First, inferences
about model parameters are always tied to a par-
ticular model specification. A claim like “there is a
statistically significant effect of Stroop condition” is
not a claim about the world per se; rather, it is a claim
about the degree to which a specific model accurately
describes the world under certain theoretical assump-
tions and measurement conditions. Strictly speaking,
a statistically significant effect of Stroop condition in
Model (1) tells us only that the data we observe would
be unlikely to occur under a null model that considers
all trials to be completely exchangeable. By contrast,
a statistically significant effect in Model (2) for what
nominally appears to be the “same” β1 parameter
would have a different (and somewhat stronger) inter-
pretation, as we are now entitled to conclude that the
data we observe would be unlikely if there were no
effect (on average) at the level of individuals randomly

approximates reality.
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drawn from some population.

Second, the validity of an inference depends not just
on the model itself, but also on the analyst’s (typically
implicit) intentions. As discussed earlier, to support
valid inference, a statistical model must adequately
represent the universe of observations the analyst
intends to implicitly generalize over when drawing
qualitative conclusions. In our example above, what
makes Model (1) a bad model is not the model spec-
ification alone, but the fact that the specification
aligns poorly with the universe of observations that
researchers typically care about. In typical practice,
researchers intend their conclusions to apply to entire
populations of subjects, and not just to the specific
individuals who happened to walk through the labora-
tory door when the study was run. Critically, then, it
is the mismatch between our generalization intention
and the model specification that introduces an inflated
risk of inferential error, and not the model specifica-
tion alone. The reason we model subjects as random
effects is not that such a practice is objectively better,
but rather, that this specification more closely aligns
the meaning of the quantitative inference with the
meaning of the qualitative hypothesis we’re interested
in evaluating (for discussion, see Cornfield & Tukey,
1956).

Beyond random subjects
The discussion in the preceding section may seem

superfluous to some readers given that, in practice,
psychologists almost universally already model subject
as a random factor in their analyses. Importantly,
however, there is nothing special about subjects. In
principle, what goes for subjects also holds for any
other factor of an experimental or observational study
whose levels the authors intend to generalize over. The
reason that we routinely inject extra uncertainty into
our models in order to account for between-subject
variability is that we want our conclusions to apply
to a broader population of individuals, and not just
to the specific people we randomly sampled. But the
same logic also applies to a large number of other
factors that we do not routinely model as random
effects—stimuli, experimenters, research sites, and so

on. Indeed, as Brunswik long ago observed, “...proper
sampling of situations and problems may in the end
be more important than proper sampling of subjects,
considering the fact that individuals are probably on
the whole much more alike than are situations among
one another” (Brunswik, 1947, p. 179). As we shall
see, extending the random-effects treatment to other
factors besides subjects has momentous implications
for the interpretation of a vast array of published
findings in psychology.

The stimulus-as-fixed-effect fallacy

A paradigmatic example of a design factor that psy-
chologists almost universally—and inappropriately—
model as a fixed rather than random factor is ex-
perimental stimuli. The tendency to ignore stimulus
sampling variability has been discussed in the liter-
ature for over 50 years (Baayen, Davidson, & Bates,
2008; Clark, 1973; Coleman, 1964; Judd, Westfall,
& Kenny, 2012), and was influentially dubbed the
fixed-effect fallacy by (Clark, 1973). Unfortunately,
outside of a few domains such as psycholinguistics,
it remains rare to see psychologists model stimuli as
random effects—despite the fact that most inferences
researchers draw are clearly meant to generalize over
populations of stimuli. The net result is that, strictly
speaking, the inferences routinely drawn throughout
much of psychology can only be said to apply to a
specific—and usually small—set of stimuli. General-
ization to the broader class of stimuli like the ones
used is not licensed.

It is difficult to overstate how detrimental an impact
the stimulus-as-fixed-effect fallacy has had— and con-
tinues to have—in psychology. Empirical studies in
domains ranging from social psychology to functional
MRI have demonstrated that test statistic inflation of
up to 300% is not uncommon, and that, under realis-
tic assumptions, false positive rates in many studies
could easily exceed 60% (Judd et al., 2012; Westfall,
Nichols, & Yarkoni, 2016; Wolsiefer, Westfall, & Judd,
2017). In cases where subject sample sizes are very
large, stimulus samples are very small, and stimulus
variance is large, the false positive rate theoretically
approaches 100%.
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The clear implication of such findings is that many
literatures within psychology are likely to be popu-
lated by studies that have spuriously misattributed
statistically significant effects to fixed effects of in-
terest when they should actually be attributed to
stochastic variation in uninteresting stimulus proper-
ties. Moreover, given that different sets of stimuli are
liable to produce effects in opposite directions (e.g.,
when randomly sampling 20 nouns and 20 verbs, some
samples will show a statistically significant noun >
verb effect, while others will show the converse), it
is not hard to see how one could easily end up with
entire literatures full of “mixed results” that seem
statistically robust in individual studies, yet cannot
be consistently replicated across studies.

Generalizing the generalizability problem

The stimulus-as-fixed-effect fallacy is but one spe-
cial case of a general tradeoff between precision of
estimation and breadth of generalization. Each ad-
ditional random factor one adds to a model licenses
generalization over a corresponding population of po-
tential measurements, expanding the scope of infer-
ence beyond only those measurements that were ac-
tually obtained. However, adding random factors to
one’s model also typically increases the uncertainty
with which the fixed effects of interest are estimated.
The fact that most psychologists have traditionally
modeled only subject as a random factor—and have
largely ignored the variance introduced by stimulus
sampling—is probably best understood as an accident
of history (or, more charitably perhaps, of techno-
logical limitations, as the software and computing
resources required to fit such models were hard to
come by until fairly recently).

Unfortunately, just as the generalizability problem
doesn’t begin and end with subjects, it also doesn’t
end with subjects and stimuli. Exactly the same
considerations apply to all other aspects of one’s ex-
perimental design or procedure that could in prin-
ciple be varied without substantively changing the
research question. Common design factors that re-
searchers hardly ever vary, yet almost invariably in-
tend to generalize over, include experimental task,
between-subject instructional manipulation, research

site, experimenter (or, in clinical studies, therapist;
e.g., Crits-Christoph & Mintz, 1991), instructions,
laboratory testing conditions (e.g., Crabbe, Wahlsten,
& Dudek, 1999; Wahlsten et al., 2003), weather, and
so on and so forth effectively ad infinitum.

Naturally, the degree to which each such factor
matters will vary widely across domain and research
question. I’m not suggesting that most statistical in-
ferences in psychology are invalidated by researchers’
failure to explicitly model what their participants ate
for breakfast three days prior to participating in a
study. Collectively, however, unmodeled factors al-
most always contribute substantial variance to the
outcome variable. Failing to model such factors ap-
propriately (or at all) means that a researcher will
end up either (a) running studies with substantially
higher-than-nominal false positive rates, or (b) draw-
ing inferences that technically apply only to very nar-
row, and usually uninteresting, slices of the universe
the researcher claims to be interested in.

Case study: Verbal overshadowing

To illustrate the problem, it may help to consider
an example. Alogna and colleagues (2014) conducted
a large-scale “registered replication report” (RRR;
Simons, Holcombe, & Spellman, 2014) involving 31
sites and over 2,000 participants. The study sought
to replicate an influential experiment by Schooler and
Engstler-Schooler (1990) in which the original authors
showed that participants who were asked to verbally
describe the appearance of a perpetrator caught com-
mitting a crime on video showed poorer recognition
of the perpetrator following a delay than did partic-
ipants assigned to a control task (naming as many
countries and capitals as they could). Schooler &
Engstler-Schooler (1990) dubbed this the verbal over-
shadowing effect. In both the original and replication
experiments, only a single video, containing a single
perpetrator, was presented at encoding, and only a
single set of foil items was used at test. Alogna et al.
successfully replicated the original result in one of two
tested conditions, and concluded that their findings
revealed “a robust verbal overshadowing effect” in
that condition.
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Let us assume for the sake of argument that there is
a genuine and robust causal relationship between the
manipulation and outcome employed in the Alogna et
al study. I submit that there would still be essentially
no support for the authors’ assertion that they found
a “robust” verbal overshadowing effect, because the
experimental design and statistical model used in the
study simply cannot support such a generalization.
The strict conclusion we are entitled to draw, given the
limitations of the experimental design inherited from
Schooler and Engstler-Schooler (1990), is that there is
at least one particular video containing one particular
face that, when followed by one particular lineup of
faces, is more difficult for participants to identify if
they previously verbally described the appearance
of the target face than if they were asked to name
countries and capitals. This narrow conclusion does
not preclude the possibility that the observed effect is
specific to this one particular stimulus, and that many
other potential stimuli the authors could have used
would have eliminated or even reversed the observed
effect. (In later sections, I demonstrate that the latter
conclusion is statistically bound to be true given even
very conservative background assumptions about the
operationalization, and also that one can argue from
first principles—i.e., without any data at all—that
there must be many stimuli that show a so-called
verbal overshadowing effect.)

Of course, stimulus sampling is not the only unmod-
eled source of variability we need to worry about. We
also need to consider any number of other plausible
sources of variability: research site, task operational-
ization (e.g., timing parameters, modality of stimuli
or responses), instructions, and so on. On any rea-
sonable interpretation of the construct of verbal over-
shadowing, the corresponding universe of intended
generalization should clearly also include most of the
operationalizations that would result from randomly
sampling various combinations of these factors (e.g.,
one would expect it to still count as verbal overshad-
owing if Alogna et al. had used live actors to enact
the crime scene, instead of showing a video)6. Once

6That even small differences in such factors can have large
impacts on the outcome is clear from the Alogna et al. (2014)
study itself: due to an error in the timing of different compo-

we accept this assumption, however, the critical ques-
tion researchers should immediately ask themselves is:
are there other psychological processes besides verbal
overshadowing that could plausibly be influenced by
random variation in any of these uninteresting factors,
independently of the hypothesized psychological pro-
cesses of interest? A moment or two of consideration
should suffice to convince one that the answer is a
resounding yes. It is not hard to think of dozens of
explanations unrelated to verbal overshadowing that
could explain the causal effect of a given manipulation
on a given outcome in any single operationalization7.

This verbal overshadowing example is by no means
unusual. The same concerns apply equally to the
broader psychology literature containing tens or hun-
dreds of thousands of studies that routinely adopt
similar practices. In most of psychology, it is stan-
dard operating procedure for researchers employing
just one experimental task, between-subject manipu-
lation, experimenters, testing room, research site, etc.,
to behave as though an extremely narrow operational-
ization is an acceptable proxy for a much broader uni-
verse of admissible observations. It is instructive—and
somewhat fascinating from a sociological perspective—
to observe that while no psychometrician worth their
salt would ever recommend a default strategy of mea-
suring complex psychological constructs using a single
unvalidated item, the majority of psychology studies

nents of the procedure, Alogna et al actually conducted two
large replication studies. They observed a markedly stronger
effect when the experimental task was delayed by 20 minutes
than when it immediately followed the video.

7For example, perhaps participants in Alogna et al’s exper-
imental condition felt greater pressure to produce the correct
answer (having previously spent several minutes describing their
perceptions), and it was the stress rather than the treatment
per se that resulted in poorer performance. Or, perhaps the
effect had nothing at all to do with the treatment condition,
and instead reflected a poor choice of control condition (say,
because naming countries and capitals incidentally activates
helpful memory consolidation processes). And so on and so
forth. (A skeptic might object that each such explanation is
individually not as plausible as the verbal overshadowing ac-
count, but this misses the point: safely generalizing the results
of the narrow Schooler & Engstler-Schooler (1990) design to the
broad construct of verbal overshadowing implies that one can
rule out the influence of all other confounds in the aggregate—
and reality is not under any obligation to only manifest sparse
causal relationships that researchers find intuitive!)
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do precisely that with respect to multiple key design
factors. The modal approach is to stop at a per-
functory demonstration of face validity—that is, to
conclude that if a particular operationalization seems
like it has something to do with the construct of inter-
est, then it is an acceptable stand-in for that construct.
Any measurement-level findings are then uncritically
generalized to the construct level, leading researchers
to conclude that they’ve learned something useful
about broader phenomena like verbal overshadowing,
working memory, ego depletion, etc., when in fact
such sweeping generalizations typically obtain little
support from the reported empirical studies.

Unmeasured factors
In an ideal world, generalization failures like those

described above could be addressed primarily via sta-
tistical procedures—e.g., by adding new random ef-
fects to models. In the real world, this strategy is
a non-starter: in most studies, the vast majority of
factors that researchers intend to implicitly general-
ize over don’t actually observably vary in the data,
and therefore can’t be accounted for using traditional
mixed-effects models. Unfortunately, the fact that
one has failed to introduce or measure variation in
one or more factors doesn’t mean those factors can
be safely ignored. Any time one samples design el-
ements into one’s study from a broader population
of possible candidates, one introduces sampling error
that is likely to influence the outcome of the study to
some unknown degree.

Suppose we generalize our earlier Model (2) to in-
clude all kinds of random design factors that we have
no way of directly measuring:

yij = β0 + β1X1ij + u0ij + u1ij + . . . + ukij + eij

ukij ∼ N (0, σ2
uk

) (3)
eij ∼ N (0, σ2

e)

Here, u0 . . . uk are placeholders for all of the variance
components that we implicitly consider part of the
universe of admissible observations, but that we have
no way of measuring or estimating in our study. It

should be apparent that our earlier Model (2) is just
a special case of (3) where the vast majority of the
uk and σ2

uk
terms are fixed to 0. That is—and this

is arguably the most important point in this paper—
the conventional “random effects” model (where in
actuality only subjects are modeled as random effects)
assumes exactly zero effect of site, experimenter, stim-
uli, task, instructions, and every other factor except
subject—even though in most cases it’s safe to assume
that such effects exist and are non-trivial, and even
though authors almost invariably start behaving as if
their statistical models did in fact account for such
effects as soon as they reach the Discussion section.

Estimating the impact

We do not have to take the urgency of the above
exhortation on faith. While it’s true that we can’t di-
rectly estimate the population magnitude of variance
components that showed no observable variation in
our sample, we can still simulate their effects under dif-
ferent assumptions. Doing so allows us to demonstrate
empirically that even modest assumptions about the
magnitude of unmeasured variance components may
be sufficient to completely undermine many conven-
tional inferences about fixed effects of interest.

To illustrate, let’s return to Alogna et al (2014)’s
verbal overshadowing RRR. Recall that the dataset
included data from over 2,000 subjects sampled at
31 different sites, but used exactly the same experi-
mental protocol (including the same single stimulus
sequence) at all sites. Since most of the data are
publicly available, we can fit a mixed-effects model to
try and replicate the reported finding of a “robust ver-
bal overshadowing effect”. Both the dataset and the
statistical model used here differ somewhat from the
ones in Alogna et al. (2014)8, but the differences are

8The model differs in that I fit a single mixed-effects lin-
ear probability model with random intercepts and slopes for
sites, whereas Alogna et al. first computed the mean differ-
ence in response accuracy between conditions for each site,
and then performed a random-effects meta-analysis (note that
a logistic regression model would be appropriate here given
the binary outcome, but I opted for the linear model for the
sake of consistency with Alogna et al. and simplicity of pre-
sentation). The data differ because (a) some sites’ datasets
were not publicly available, (b) I made no attempt to adhere
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immaterial for our purposes. As Figure 2 illustrates
(top row, labeled σ2

unmeasured = 0), we can readily
replicate the key finding from Alogna et al. (2014):
participants assigned to the experimental condition
were more likely to misidentify the perpetrator seen
in the original video.

Figure 2: Effects of unmeasured variance components
on the putative “verbal overshadowing” effect. Error bars
display the estimated Bayesian 95% highest posterior den-
sity (HPD) intervals for the experimental effect reported
in Alogna et al. (2014). Positive estimates indicate better
performance in the control condition than in the experi-
mental condition. Each row represents the estimate from
the model specified in Eq. (4), with only the size of
σ2

unmeasured (corresponding to σ2
u2 in Eq. (4)) varying as

indicated. This parameter represents the assumed contri-
bution of all variance components that are unmeasured in
the experiment, but fall within the universe of intended
generalization conceptually. The top row (σ2

u2 = 0) can
be interpreted as a conventional model analogous to the
one reported in Alogna et al (2014)—i.e., it assumes that
no unmeasured sources have any impact on the putative
verbal overshadowing effect.

We now ask the following question: how would
the key result depicted in the top row of Fig. 2
change if we knew the size of the variance component
associated with random stimulus sampling? This
question cannot be readily answered using classical
inferential procedures (because there’s only a single
stimulus in the dataset, so the variance component
is non-identifiable), but is trivial to address using a

closely to the reported preprocessing procedures (e.g., inclu-
sion/exclusion criteria), and (c) I used only the data from the
(more successful) second RRR reported in the paper. All data
and code used in the analyses reported here are available at
https://github.com/tyarkoni/generalizability.

Bayesian estimation framework. Specifically, we fit
the following model:

yps = β0 + β1Xps + u0s + u1sXps + u2Xps + eps

u0s ∼ N (0, σ2
u0

)
u1s ∼ N (0, σ2

u1
) (4)

u2 ∼ N (0, σ2
u2

)
eps ∼ N (0, σ2

e)

Here, p indexes participants, s indexes sites, Xps

indexes the experimental condition assigned to partici-
pant p at site s, the β terms encode the fixed intercept
and condition slope, and the u terms encode the ran-
dom effects (site-specific intercepts u0, site-specific
slopes u1, and the stimulus effect u2). The novel fea-
ture of this model is the inclusion of u2, which would
ordinarily reflect the variance in outcome associated
with random stimulus sampling, but is constant in
our dataset (because there’s only a single stimulus).

Unlike the other parameters, we cannot estimate
u2 from the data. Instead, we fix its prior during esti-
mation, by setting σ2

u2
to a specific value. While the

posterior estimate of u2 is then necessarily identical
to its prior (because the prior makes no contact with
the data), and so is itself of no interest, the inclusion
of the prior has the incidental effect of (appropriately)
increasing the estimation uncertainty around the fixed
effect(s) of interest. Conceptually, one can think of
the added prior as a way of quantitatively represent-
ing our uncertainty about whether any experimental
effect we observe should really be attributed to ver-
bal overshadowing per se, as opposed to irrelevant
properties of the specific stimulus we happened to
randomly sample into our experiment. By varying the
amount of variance injected in this way, we can study
the conditions under which the conclusions obtained
from the “standard” model (i.e., one that assumes
zero effect of stimuli) would or wouldn’t hold.

As it turns out, injecting even a small amount of
stimulus sampling variance to the model has momen-
tous downstream effects. If we very conservatively set
σ2

u2
to 0.05, the resulting posterior distribution for the
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condition effect expands to include negative values
within the 95% HPD (Fig. 2). For perspective, 0.05 is
considerably lower than the between-site variance es-
timated from these data (σ2

u1
= 0.075)—and it’s quite

unlikely that there would be less variation between
different stimuli at a given site than between different
sites for the same stimulus (as reviewed above, in
most domains where stimulus effects have been quan-
titatively estimated, they tend to be large). Thus,
even under very conservative assumptions about how
much variance might be associated with stimulus sam-
pling, there is little basis for concluding that there
is a general verbal overshadowing effect. To draw
Alogna et al’s conclusion that there is a “robust” ver-
bal overshadowing effect, one must effectively equate
the construct of verbal overshadowing with almost
exactly the operationalization tested by Alogna et al.
(and Schooler & Schooler-Engstler before that), down
to the same single video.

Of course, stimulus variance isn’t the only missing
variance component we ought to worry about. As Eq.
(3) underscores, many other components are likely to
contribute non-negligible variance to outcomes within
our universe of intended generalization. We could
attempt to list these components individually and
rationally estimate their plausible magnitudes if we
like, but an alternative route is to invent an omnibus
parameter, σ2

unmeasured, that subsumes all of the un-
measured variance components we expect to system-
atically influence the condition estimate β1. Then we
can repeat our estimation of the model in Eq. (4)
with larger values of σ2

u2
(for the sake of convenience,

I treat σ2
u2

and σ2
unmeasured interchangeably, as the

difference is only that the latter is larger than the
former).

For example, suppose we assume that the hypothet-
ical aggregate influence of all the unmodeled variance
components roughly equals the residual within-site
variance estimated in our data (i.e., σ2

unmeasured =
σ2

eps
≈ 0.5). This is arguably still fairly conservative

when one considers that the aggregate σ2
unmeasured

now includes not only stimulus sampling effects, but
also the effects of differences in task operationaliza-
tion, instructions, etc. In effect, we are assuming

that the net contribution of all of the uninteresting
factors that vary across the entire universe of observa-
tions we consider “verbal overshadowing” is no bigger
than the residual error we observe for this one par-
ticular operationalization. Yet fixing σ2

unmeasured to
0.5 renders our estimate of the experimental effect
essentially worthless: the 95% HPD interval for the
putative verbal overshadowing effect now spans val-
ues between -0.8 and 0.91—almost the full range of
possible values! The upshot is that, even given very
conservative background assumptions, the massive
Alogna et al. study—an initiative that drew on the ef-
forts of dozens of researchers around the world—does
not tell us much about the general phenomenon of
verbal overshadowing. Under more realistic assump-
tions, it tells us essentially nothing. The best we can
say, if we are feeling optimistic, is that it might tell
us something about one particular operationalization
of verbal overshadowing9.

The rather disturbing implication of all this is that,
in any research area where one expects the aggregate
contribution of the missing σ2

u terms to be large—i.e.,
anywhere that “contextual sensitivity” (Van Bavel,
Mende-Siedlecki, Brady, & Reinero, 2016) is high—
the inferential statistics generated from models like
(2) will often underestimate the true uncertainty sur-
rounding the parameter estimates to such a degree
as to make an outright mockery of the effort to learn
something from the data using conventional inferen-
tial tests. Recall that the nominal reason we care
about whether subjects are modeled as fixed or ran-
dom effects is that the latter specification allows us to
generalize to theoretically exchangeable observations
(e.g., new subjects sampled from the same population),
whereas the former does not. In practice, however,
the majority of psychologists have no compunction
about verbally generalizing their results not only to
previously unseen subjects, but also to all kinds of
other factors that have not explicitly been modeled—
to new stimuli, experimenters, research sites, and so

9We should probably be cautious in drawing even this nar-
row conclusion, however, because the experimental procedure
in question could very well be producing the observed effect due
to idiosyncratic and uninteresting properties, and not because
it induces verbal overshadowing per se.
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on.

Under such circumstances, it’s unclear why any-
one should really care about the inferential statistics
psychologists report in most papers, seeing as those
statistics bear only the most tenuous of connections to
authors’ sweeping verbal conclusions. Why take pains
to ensure that subjects are modeled in a way that af-
fords generalization beyond the observed sample—as
nearly all psychologists reflexively do—while raising
no objection whatsoever when researchers freely gen-
eralize their conclusions across all manner of variables
that weren’t explicitly included in the model at all?
Why not simply model all experimental factors, in-
cluding subjects, as fixed effects—a procedure that
would, in most circumstances, substantially increase
the probability of producing the sub-.05 p-values psy-
chologists so dearly crave? Given that we’ve already
resolved to run roughshod over the relationship be-
tween our verbal theories and their corresponding
quantitative specifications, why should it matter if
we sacrifice the sole remaining sliver of generality af-
forded by our conventional “random effects” models
on the altar of the Biggest Possible Test Statistic?

It’s hard to think of a better name for this kind of
behavior than what Feynman famously dubbed cargo
cult science (Feynman, 1974)—an obsessive concern
with the superficial form of a scientific activity rather
than its substantive empirical and logical content.
Psychologists are trained to believe that their abil-
ity to draw meaningful inferences depends to a large
extent on the production of certain statistical quan-
tities (e.g., p-values below .05, BFs above 10, etc.),
so they go to great effort to produce such quantities.
That these highly contextualized numbers typically
have little to do with the broad verbal theories and
hypotheses that researchers hold in their heads, and
take themselves to be testing, does not seem to trou-
ble most researchers much. The important thing, it
appears, is that the numbers have the right form.

A crisis of replicability or of gen-
eralizability?

It is worth situating the above concerns within the
broader ongoing “replication crisis” in psychology and
other sciences (Lilienfeld, 2017; Pashler & Wagenmak-
ers, 2012; Shrout & Rodgers, 2018). My perspective
on the replicability crisis broadly accords with other
commentators who have argued that the crisis is real
and serious, in the sense that there is irrefutable evi-
dence that questionable research practices (Gelman
& Loken, 2013; John, Loewenstein, & Prelec, 2012;
Simmons, Nelson, & Simonsohn, 2011) and strong
selection pressures (Francis, 2012; Kühberger, Fritz,
& Scherndl, 2014; Smaldino & McElreath, 2016) have
led to the publication of a large proportion of spuri-
ous or inflated findings that are unlikely to replicate
(J. Ioannidis, 2008; J. P. A. Ioannidis, 2005; Yarkoni,
2009). Accordingly, I think the ongoing shift towards
practices such as preregistration, reporting checklists,
data sharing, etc. is a welcome development that will
undoubtedly help improve the reproducibility and
replicability of psychology findings.

At the same time, the current focus on reproducibil-
ity and replicability risks distracting us from more
important, and logically antecedent, concerns about
generalizability. The root problem is that when the
manifestation of a phenomenon is highly variable
across potential measurement contexts, it simply does
not matter very much whether any single realization
is replicable or not (cf. Gelman, 2015, 2018). Ongo-
ing efforts to ensure the superficial reproducibility
and replicability of effects—i.e., the ability to obtain
a similar-looking set of numbers from independent
studies—are presently driving researchers in psychol-
ogy and other fields to expend enormous resources on
studies that are likely to have very little informational
value even in cases where results can be consistently
replicated. This is arguably clearest in the case of
large-scale “registered replication reports” (RRRs)
that have harnessed the enormous collective efforts of
dozens of labs (e.g., Acosta et al., 2016; Alogna et al.,
2014; Cheung et al., 2016; Eerland et al., 2016)—only
to waste that collective energy on direct replications of
a handful of poorly-validated experimental paradigms.

12



While there is no denying that large, collaborative
efforts could have enormous potential benefits (and
there are currently a number of promising initiatives,
e.g., the Psychological Science Accelerator (Moshontz
et al., 2018) and ManyBabies Consortium (Bergelson
et al., 2017)), realizing these benefits will require
a willingness to eschew direct replication in cases
where the experimental design of the to-be-replicated
study is fundamentally uninformative. Researchers
must be willing to look critically at previous studies
and flatly reject—on logical and statistical, rather
than empirical, grounds—assertions that were never
supported by the data in the first place, even under
the most charitable methodological assumptions. A
recognition memory task that uses just one video, one
target face, and one set of foils simply cannot provide
a meaningful test of a broad construct like verbal
overshadowing, and it does a disservice to the field
to direct considerable resources to the replication of
such work. The appropriate response to a study like
Schooler & Engstler-Schooler (1990) is to point out
that the very narrow findings the authors reported did
not—and indeed, could not, no matter how the data
came out—actually support the authors’ sweeping
claims. Consequently, the study does not deserve any
follow-up until such time as its authors can provide
more compelling evidence that a phenomenon of any
meaningful generality is being observed.

The same concern applies to many other active sta-
tistical and methodological debates. Is it better to use
a frequentist or a Bayesian framework for hypothesis
testing (Kruschke & Liddell, 2017; Rouder, Speckman,
Sun, Morey, & Iverson, 2009; Wagenmakers, 2007)?
Should we move the conventional threshold for statisti-
cal significance from .05 to .005 (Benjamin et al., 2018;
Lakens et al., 2018; McShane, Gal, Gelman, Robert,
& Tackett, 2019)? A lot of ink continues to be spilled
over such issues, yet in any research area where effects
are highly variable (i.e., in most of psychology), the
net contribution of such methodological and analyti-
cal choices to overall inferential uncertainty is likely
to be dwarfed by the bias introduced by implicitly
generalizing over unmodeled sources of variance in
the data. There is little point in debating the mer-
its of a statistical significance cut-off of .005 rather

than .05 in a world where even a trivial change in
an unmodeled variable—e.g., a random choice be-
tween two nominally equivalent cognitive tasks, or
the use of a slightly different stimulus sample—can
routinely take one from p = .5 to p = .0005 or vice
versa (cf. Crits-Christoph & Mintz, 1991; Westfall et
al., 2016; Wolsiefer et al., 2017). Yet this root prob-
lem continues to go largely ignored in favor of efforts
to treat its downstream symptoms. It appears that,
faced with the difficulty of stating what the complex,
multicausal effects we psychologists routinely deal in
actually mean, we have collectively elected to instead
pursue superficially precise answers to questions none
of us really care much about.

To be clear, my suggestion is not that researchers
should stop caring about methodological or statis-
tical problems that presently limit reproducibility
and replicability. Such considerations are undeniably
important. My argument, rather, is that these consid-
erations should be reserved for situations where the
verbal conclusions drawn by researchers demonstra-
bly bear some non-trivial connection to the reported
quantitative analyses. The mere fact that a previous
study has had a large influence on the literature is
not a sufficient reason to expend additional resources
on replication. On the contrary, the recent move-
ment to replicate influential studies using more robust
methods risks making the situation worse, because in
cases where such efforts superficially “succeed” (in the
sense that they obtain a statistical result congruent
with the original), researchers then often draw the
incorrect conclusion that the new data corroborate
the original claim (e.g., Alogna et al., 2014)—when
in fact the original claim was never supported by the
data in the first place. A more appropriate course of
action in cases where there are questions about the
internal coherence and/or generalizability of a finding
is to first focus a critical eye on the experimental de-
sign, measurement approach, and model specification.
Only if a careful review suggests that these elements
support the claims made by a study’s authors should
researchers begin to consider conducting a replication.
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Where to from here?
A direct implication of the arguments laid out above

is that a huge proportion of the quantitative inferences
drawn in the published psychology literature are so
weak as to be at best questionable and at worst utterly
nonsensical. The difficult question I take up now is
what we ought to do about this. I suggest three broad
and largely disjoint courses of action researchers can
pursue that would, in the aggregate, considerably im-
prove the quality of research in psychological science.

Do something else

One perfectly reasonable course of action when
faced with the difficulty of extracting meaningful,
widely generalizable conclusions from effects that are
inherently complex and highly variable is to opt out
of the enterprise entirely. There is an unfortunate cul-
tural norm within psychology (and, to be fair, many
other fields) to demand that every research contribu-
tion end on a wholly positive or “constructive” note.
This is an indefensible expectation that I won’t bother
to indulge. In life, you often can’t have what you want,
no matter how hard you try. In such cases, I think
it’s better to recognize the situation for what it is
sooner rather than later. The fact that a researcher
is able to formulate a question in his or her head
that seems sensible (for example, “does ego depletion
exist”?) doesn’t mean that the question really is sen-
sible. Moreover, even when the question is a sensible
one to ask (in the sense that it’s logically coherent
and seems theoretically meaningful), it doesn’t auto-
matically follow that it’s worth trying to obtain an
empirical answer. In many research areas, if gener-
alizability concerns were to be taken seriously, the
level of effort required to obtain even minimally in-
formative answers to seemingly interesting questions
would likely so far exceed conventional standards that
I suspect many academic psychologists would, if they
were dispassionate about the matter, simply opt out.
I see nothing wrong with such an outcome, and think
it is a mistake to view a career in psychology (or any
other academic field) as a higher calling of some sort.

Admittedly, the utility of this advice depends on
one’s career stage, skills, and interests. It should not

be terribly surprising if few tenured professors are
eager to admit (even to themselves) that they have,
as Paul Meehl rather colorfully put it, “achieved some
notoriety, tenure, economic security and the like by
engaging, to speak bluntly, in a bunch of nothing”
(P. E. Meehl, 1990b, p. 230). The situation is more fa-
vorable for graduate students and postdocs, who have
much less to lose (and potentially much more to gain)
by pursuing alternative careers. To be clear, I’m not
suggesting that a career in academic psychology isn’t
a worthwhile pursuit for anyone; for many people, it
remains an excellent choice. But I do think all psy-
chologists, and early-career researchers in particular,
owe it to themselves to spend some time carefully and
dispassionately assessing the probability that the work
they do is going to contribute meaningfully—even if
only incrementally—to our collective ability either to
understand the mind or to practically improve the
human condition. There is no shame whatsoever in
arriving at a negative answer, and the good news
is that, for people who have managed to obtain a
PhD (or have the analytical skills to do so), career
prospects outside of academia have arguably never
been brighter.

Embrace qualitative analysis

A second approach one can take is to keep doing
psychological research, but to largely abandon inferen-
tial statistical methods in favor of qualitative methods.
This may seem like a radical prescription, but I con-
tend that a good deal of what currently passes for
empirical psychology is already best understood as in-
sightful qualitative analysis trying to quietly pass for
quantitative science. Careful consideration of the log-
ical structure of a psychological theory often makes it
clear that there is little point in subjecting the theory
to quantitative analysis. Sometimes this is because
the theory appears logically incoherent, or is so vague
as to make falsification via statistical procedures es-
sentially impossible. Very often, however, it is because
careful inspection reveals that the theory is actually
too sensible. That is, its central postulates are so
obviously true that there is nothing to be gained by
subjecting it to further empirical tests—effectively
constituting what Smedslund (1991) dubbed ”pseu-
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doempirical research”.

To see what I mean, let’s return to our running
example of verbal overshadowing. To judge by the
accumulated literature (for reviews, see Meissner &
Brigham, 2001; Meissner & Memon, 2002), the ques-
tion of whether verbal overshadowing is or is not
a “real” phenomenon seems to be taken quite seri-
ously by many researchers. Yet it’s straightforward
to show that some phenomenon like verbal overshad-
owing must exist given even the most basic, uncon-
troversial facts about the human mind. Consider the
following set of statements:

1. The human mind has a finite capacity to store
information.

2. There is noise in the information-encoding pro-
cess.

3. Different pieces of information will sometimes in-
terfere with one another during decision-making—
either because they directly conflict, or because
they share common processing bottlenecks.

None of the above statements should be at all con-
troversial, yet the conjunction of the three logically
entails that there will be (many) situations in which
something we could label verbal overshadowing will
predictably occur. Suppose we take the set of all
situations in which a person witnesses, and encodes
into memory, a crime taking place. In some subset
of these cases, that person will later reconsider, and
verbally re-encode, the events they observed. Because
the encoding process is noisy, and conversion between
different modalities is necessarily lossy, some details
will be overemphasized, underemphasized, or other-
wise distorted. And because different representations
of the same event will conflict with one another, it is
then guaranteed that there will be situations in which
the verbal re-consideration of information at Time 2
will lead a person to incorrectly ignore information
they may have correctly encoded at Time 1. We can
call this verbal overshadowing if we like, but there is
nothing about the core idea that requires any kind
of empirical demonstration. So long as it’s framed
strictly in broad qualitative terms, the “theory” is

trivially true; the only way it could be false is if at
least one of the 3 statements listed above is false—
which is almost impossible to imagine. (Note too, that
the inverse of the theory is also trivially true: there
must be many situations in which lossy re-encoding of
information across modalities actually ends up being
accidentally beneficial.)

To be clear, I am not suggesting that there’s no
point in quantitatively studying broad putative con-
structs like verbal overshadowing. On the contrary:
if our goal is to develop models detailed enough to
make useful real-world predictions, quantitative anal-
ysis may be indispensable. It would be difficult to
make real-world predictions about when, where, and
to what extent verbal overshadowing will manifest
unless one has systematically studied and modeled
the putative phenomenon under a broad range of
conditions—including extensive variation of the per-
ceptual stimuli, viewing conditions, rater incentives,
timing parameters, and so on and so forth. But tak-
ing this quantitative objective seriously requires much
larger and more complex datasets, experimental de-
signs, and statistical models than have typically been
deployed in most areas of psychology. As such, psy-
chologists intent on working in “soft” domains who
are unwilling to learn potentially challenging new
modeling skills—or to spend months or years try-
ing to meticulously address “minor” methodological
concerns that presently barely rate any mention in
papers—may need to accept that their work is, at
root, qualitative in nature, and that the inferential
statistics so often reported in soft psychology arti-
cles primarily serve as a ritual intended to convince
one’s colleagues and/or one’s self that something very
scientific and important is taking place.

What would a qualitative psychology look like? In
many sub-fields, almost nothing would change. The
primary difference is that researchers would largely
stop using inferential statistics, restricting themselves
instead to descriptive statistics and qualitative dis-
cussion. Such a policy is not without precedent: in
2014, the journal Basic and Applied Social Psychology
banned the reporting of p-values from all submitted
manuscripts (Trafimow, 2014; Trafimow & Marks,
2015). Although the move was greeted with derision
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by many scientists (Woolston, 2015), what is prob-
lematic about the BASP policy is, in my view, only
that the abolition of inferential statistics was made
mandatory. Framed as a strong recommendation that
psychologists should avoid reporting inferential statis-
tics that they often do not seem to understand, and
that have no clear implications for our understanding
of, or interaction with, the world, I think there would
be much to like about the policy.

For many psychologists, fully embracing qualitative
analysis would provide an explicit license to do what
they are already most interested in doing—namely,
exploring big ideas, generalizing conclusions far and
wide, and moving swiftly from research question to
research question. The primary cost would be the
reputational one: in a world where most psychology
papers are no longer accompanied by scientific-looking
inferential statistics, journalists and policy-makers
would probably come knocking on our doors less of-
ten. I don’t deny that this is a non-trivial cost, and I
can understand why many researchers would be hesi-
tant to pay such a toll. But such is life. I don’t think
it requires a terribly large amount of intellectual in-
tegrity to appreciate that one shouldn’t portray one’s
self as a serious quantitative scientist unless one is
actually willing to do the corresponding work.

Lest this attitude seem overly dismissive of qual-
itative approaches, it’s worth noting that the core
argument made in this paper is itself a qualitative
one. I do not rely on inferential statistical results to
support my conclusions, and all of the empirical data
I quantitatively analyze are used strictly to illustrate
general principles. Put differently, I am not making
a claim of the form ”87% of psychology articles draw
conclusions that their data do not support”; I am
observing that under modest assumptions that seem
to me almost impossible to dispute in most areas of
psychology (e.g., that the aggregate contribution of
random variation in factors like experimental stim-
uli, task implementation, experimenter, site, etc., is
(i) large, and (ii) almost never modeled), it is logi-
cally entailed that the conclusions researchers draw
verbally will routinely deviate markedly from what
the reported statistical analyses can strictly support.
Researchers are, of course, free to object that this

sweeping conclusion might not apply to their par-
ticular study, or that the argument would be more
persuasive if accompanied by a numerical estimate
of the magnitude of the problem in different areas10.
But the mere fact that an argument is qualitative
rather than quantitative in nature does not render
it inferior or dismissible. On the contrary, as the
verbal overshadowing example above illustrates, even
a relatively elementary qualitative analysis can often
provide more insightful answers to a question than a
long series of ritualistic quantitative analyses. So I
mean it sincerely when I say that an increased empha-
sis on qualitative considerations would be a welcome
development in its own right in psychology, and should
not be viewed as a consolation prize for studies that
fail to report enough numbers.

Adopt better standards

The previous two suggestions are not a clumsy at-
tempt at dark humor; I am firmly convinced that many
academic psychologists would be better off either pur-
suing different careers, or explicitly acknowledging
the fundamentally qualitative nature of their work (I
lump myself into the former group much of the time,
and this paper itself exemplifies the latter). For the
remainder—i.e., those who would like to approach
their research from a more quantitatively defensible
perspective—there are a number of practices that, if
deployed widely, could greatly improve the quality
and reliability of quantitative psychological inference.

Drawmore conservative inferences

Perhaps the most obvious, and arguably easiest,
solution to the generalizability problem is for authors
to draw much more conservative inferences in their
manuscripts—and in particular, to replace the sweep-

10For what it’s worth, it’s unclear how much utility global
quantitative estimates of this kind could actually have given
the enormous variation across studies, and the relative ease
of obtaining directly relevant local estimates. Individual re-
searchers who want to know whether or not it is safe to assume
zero stimulus, experimenter, or task effects in their statisti-
cal models do not have to wait for someone else to conduct
a comprehensive variance-partitioning meta-analysis in their
general domain; they can simply calculate the variance over
such factors in their own prior datasets!
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ing generalizations pervasive in contemporary psychol-
ogy with narrower conclusions that hew much more
closely to the available data. Concretely, researchers
should avoid extrapolating beyond the universe of ob-
servations implied by their experimental designs and
statistical models without clearly indicating that they
are engaging in speculation. Potentially relevant de-
sign factors that are impractical to measure or manip-
ulate, but that conceptual considerations suggest are
likely to have non-trivial effects (e.g., effects of stim-
uli, experimenter, research site, culture, etc.), should
be identified and disclosed to the best of authors’
ability. Papers should be given titles like “Transient
manipulation of self-reported anger influences small
hypothetical charitable donations”, and not ones like
“Hot head, warm heart: Anger increases economic
charity”. I strongly endorse the recent suggestion by
Simons and colleagues that most manuscripts in psy-
chology should include a Constraints on Generality
statement that explicitly defines the boundaries of
the universe of observations the authors believe their
findings apply to (Simons, Shoda, & Lindsay, 2017)—
as well as earlier statements to similar effects in other
fields (e.g., sociology; Walker & Cohen, 1985).

Correspondingly, when researchers evaluate results
reported by others, credit should only be given for
what the empirical results of a study actually show—
and not for what its authors claim they show. Contin-
ually emphasizing the importance of the distinction
between verbal constructs and observable measure-
ments would go a long way towards clarifying which
existing findings are worth replicating and which are
not. If researchers develop a habit of mentally rein-
terpreting a claim like “we provide evidence of ego
depletion” as “we provide evidence that crossing out
the letter e slightly decreases response accuracy on a
subsequent Stroop task”, I suspect that many findings
would no longer seem important enough to warrant
any kind of follow-up—at least, not until the original
authors have conducted considerable additional work
to demonstrate the generalizability of the claimed
phenomenon.

Take descriptive researchmore seriously

Traditionally, purely descriptive research—where
researchers seek to characterize and explore relation-
ships between measured variables without imput-
ing causal explanations or testing elaborate verbal
theories—is looked down on in many areas of psy-
chology. This stigma discourages modesty, inhibits
careful characterization of phenomena, and often leads
to premature and overconfident efforts to assess sim-
plistic theories that are hopelessly disconnected from
the complexity of the real world (Cronbach, 1975;
Rozin, 2001). I suspect it stems to a significant ex-
tent from a failure to recognize and internalize just
how fragile many psychological phenomena truly are.
Acknowledging the value of empirical studies that do
nothing more than carefully describe the relationships
between a bunch of variables under a wide range of
conditions would go some ways towards atoning for
our unreasonable obsession with oversimplified causal
explanations.

We know that a large-scale shift in expectations
regarding the utility of careful descriptive work is
possible, because other fields have undergone such a
transition to varying extents. Perhaps most notably,
in statistical genetics, the small-sample candidate gene
studies that made regular headlines in the 1990s (e.g.,
Ebstein et al., 1996; Lesch et al., 1996)—virtually all
of which later turned out to be spurious (Chabris
et al., 2012; Colhoun, McKeigue, & Davey Smith,
2003; Sullivan, 2007), and were motivated by elegant
theoretical hypotheses that seem laughably simplis-
tic in hindsight—have all but disappeared in favor
of massive genome-wide association studies (GWAS)
involving hundreds of thousands of subjects (Nagel
et al., 2018; Savage et al., 2018; Wray et al., 2018).
The latter are now considered the gold standard even
in cases where they do little more than descriptively
identify novel statistical associations between gene
variants and behavior. In much of statistical genetics,
at least, researchers seem to have accepted that the
world is causally complicated, and attempting to ob-
tain a reasonable descriptive characterization of some
small part of it is a perfectly valid reason to conduct
large, expensive empirical studies.
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Fit more expansive statistical models

To the degree that authors intend for their conclu-
sions to generalize over populations of stimuli, tasks,
experimenters, and other such factors, they should
develop a habit of fitting more expansive statistical
models. As noted earlier, nearly all statistical analy-
ses of multi-subject data in psychology treat subject
as a varying effect. The same treatment should be ac-
corded to other design factors that researchers intend
to generalize over and that vary controllably or natu-
rally in one’s study. Of course, inclusion of additional
random effects is only one of many potential avenues
for sensible model expansion (Draper, 1995; Gelman
& Shalizi, 2013)11. The good news is that improve-
ments in statistical computing over the past few years
have made it substantially easier for researchers to fit
arbitrarily complex mixed-effects models within both
Bayesian and frequentist frameworks. Models that
were once intractable for most researchers to fit due to
either mathematical or computational limitations can
now often be easily specified and executed on modern
laptops using mixed-effects packages (e.g., lmer or
MixedModels.jl; (Bates, Maechler, Bolker, Walker, &
Others, 2014)) or probabilistic programming frame-
works (e.g., Stan or PyMC; (Carpenter et al., 2017;
Salvatier, Wiecki, & Fonnesbeck, 2016)).

This recommendation conveniently sidesteps the
question of which varying factors researchers should
choose to focus on. A number of commentators on
earlier drafts of this paper have suggested that the
general prescription to fit bigger models, while tech-
nically reasonable, is too vague to be helpful. I am
sympathetic to this concern, but nevertheless think
that attempting to make generic statements about the
relative importance of different sources of variation
in “typical” psychology studies would be a mistake.
There are two reasons for this. First, I see little reason
to think that any brief domain-general summary of the
relative magnitudes of different variance components
would have much utility for almost any individual

11In a sense, the very idea of a random effect is just a
convenient fiction—effectively a placeholder for a large number
of hypothetical fixed variables (or functions thereof) that we
presently do not know how to write, or lack the capacity to
measure and/or estimate.

study. How important is it to consider the role of
different task operationalizations? Do cross-cultural
differences have a small or large impact on observed
effect sizes? And what about experimenter effects,
how big are those? The only answer one can give to
such questions that is both honest and concise is “it
depends”.

Second, the sense of discomfort some readers might
feel at the realization that they don’t know what to
do next is, in my view, a feature, not a bug. It should
bother researchers to discover that they don’t have a
good sense of what the major sources of variance are
in the data they routinely work with. What does it
say about a researcher’s ability to update their belief
in a hypothesis if they cannot even roughly state
the conditions under which the obtained statistical
results would or would not constitute an adequate
test of the hypothesis? I would not want to give
researchers the impression that there is some generic
list of factors one can rely on here; there is simply
no substitute for careful and critical consideration of
the data-generating processes likely to underlie each
individual effect of interest.

Designwith variation inmind

In most areas of psychology, there is a long-
dominant tradition of trying to construct random-
ized experiments that are as tightly controlled as
possible—even at the cost of decreased generalizabil-
ity. Though calls for researchers to emphasize the
opposite side of the precision-generalization tradeoff—
i.e., to embrace naturalistic, ecologically valid designs
that embrace variability—have a long history in psy-
chology (Brunswik, 1947; Cronbach, 1975), they have
intensified considerably in recent years. For exam-
ple, in neuroimaging, researchers are increasingly fit-
ting sophisticated models to naturalistic stimuli such
as coherent narratives or movies (Hamilton & Huth,
2018; Huth, de Heer, Griffiths, Theunissen, & Gallant,
2016; Huth, Nishimoto, Vu, & Gallant, 2012; Spiers &
Maguire, 2007). In psycholinguistics, large-scale anal-
yses involving databases of thousands of words and
subjects have superseded traditional small-n factorial
studies for many applications (Balota, Yap, Hutchi-
son, & Cortese, 2012; Keuleers & Balota, 2015). Even
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in domains where many effects traditionally display
little sensitivity to context, some researchers have
advocated for analysis strategies that emphasize vari-
ability. For example, Baribault and colleagues (2018)
randomly varied 16 different experimental factors in
a large multi-site replication (6 sites, 346 subjects,
and nearly 5,000 “microexperiments”) of a sublimi-
nal priming study (Reuss, Kiesel, & Kunde, 2015).
The “radical randomization” strategy the authors
adopted allowed them to draw much stronger conclu-
sions about the generalizability of the priming effect
(or lack thereof) than would have otherwise been pos-
sible.

The deliberate introduction of variance into one’s
studies can also be construed as a more principled
version of the conceptual replication strategy already
common in many areas of psychology. In both cases,
researchers seek to determine the extent to which
an effect generalizes across the levels of one or more
secondary design factors. The key difference is that
traditional conceptual replications do not lend them-
selves well to a coherent modeling strategy: when
authors present a series of discrete conceptual repli-
cations in Studies 2 through N of a manuscript, it
is rarely obvious how one can combine the results
to obtain a meaningful estimate of the robustness or
generalizability of the common effect. By contrast,
explicitly modeling the varying factors as components
of a single overarching design makes it clear what the
putative relationship between different measurements
is, and enables stronger quantitative inferences to be
drawn.

Naturally, variation-enhancing designs come at a
cost: they will often demand greater resources than
conventional approaches that seek to minimize ex-
traneous variation. But if authors intend for their
conclusions to hold independently of variation in un-
interesting factors, and to generalize to broad classes
of situations, there is no good substitute for studies
whose designs make a serious effort to respect and cap-
ture the complexity of real-world phenomena. Large-
scale, collaborative projects of the kind pioneered in
RRRs (Simons et al., 2014) and recent initiatives such
as the Psychology Accelerator (Moshontz et al., 2018)
are arguably the natural venue for such an approach—

but to maximize their utility, the substantial resources
they command must be used to directly measure and
model variability rather than minimizing and ignoring
it.

Emphasize variance estimates

An important and underappreciated secondary con-
sequence of the widespread disregard for general-
izability is that researchers in many areas of psy-
chology rarely have good data—or even just strong
intuitions—about the relative importances of differ-
ent sources of variance. One way to mitigate this
problem is to promote analytical approaches that em-
phasize the estimation of variance components rather
than focusing solely on point estimates. For primary
research studies, Generalizability Theory (Brennan,
1992; Cronbach, Rajaratnam, & Gleser, 1963; Shavel-
son & Webb, 1991) provides a well-developed (and
underused) framework for computing and applying
such estimates. At the secondary level, meta-analysts
could similarly work to quantify the magnitudes of dif-
ferent variance components—either by meta-analyzing
reported within-study variance estimates, or by meta-
analytically computing between-study variance com-
ponents for different factors. Such approaches could
provide researchers with critically important back-
ground estimates of the extent to which a new finding
reported in a particular literature should be expected
to generalize to different samples of subjects, stimuli,
experimenters, research sites, and so on. Notably,
such estimates would be valuable irrespective of the
presence or absence of a main effect of putative inter-
est. For example, even if the accumulated empirical
literature is too feeble to allow us to estimate anything
approximating a single overall universe score for ego
depletion, it would still be extremely helpful when
planning a new study to know roughly how much of
the observed variation in the existing pool of studies
is due to differences in stimuli, subjects, tasks, etc.

Make riskier predictions

There is an important sense in which most of the
other recommendations made in this section could
be obviated simply by making theoretical predictions
that assume a high degree of theoretical risk. I have

19



approached the problem of generalizability largely
from a statistical perspective, but there is a deep
connection between the present concerns and a long
tradition of philosophical commentary focusing on the
logical relationship (or lack thereof) between theoreti-
cal hypotheses and operational or statistical ones.

Perhaps the best exposition of such ideas is found in
the seminal work of Paul Meehl, who, beginning in the
1960s, argued compellingly that many of the method-
ological and statistical practices routinely applied
by psychologists and other social scientists are logi-
cally fallacious (e.g., P. E. Meehl, 1967, 1978, 1990b).
Meehl’s thinking was extremely nuanced, but a recur-
ring theme in his work is the observation that most
hypothesis tests in psychology commit the logical fal-
lacy of affirming the consequent. A theory T makes
a prediction P , and when researchers obtain data
consistent with P , they then happily conclude that
T is corroborated. In reality, the confirmation of P
provides no meaningful support for T unless the pre-
diction was relatively specific to T —that is, there are
no readily available alternative theories T ′

1 . . . T ′
k that

also predict P . Unfortunately, in most domains of
psychology, there are pervasive and typically very plau-
sible competing explanations for almost every finding
(Cohen, 2016; Lykken, 1968; P. E. Meehl, 1967, 1986).

The solution to this problem is, in principle, simple:
researchers should strive to develop theories that gen-
erate risky predictions (P. Meehl, 1997; P. E. Meehl,
1967, 1990a; Popper, 2014)—or, in the terminology
popularized by Deborah Mayo, should subject their
theories to severe tests (Mayo, 1991, 2018). The canon-
ical way to accomplish this is to derive from one’s
theory some series of predictions—typically, but not
necessarily, quantitative in nature—sufficiently spe-
cific to that theory that they are inconsistent with, or
at least extremely implausible under, other accounts.
As Meehl put it:

If my meteorological theory successfully pre-
dicts that it will rain sometime next April,
and that prediction pans out, the scientific
community will not be much impressed. If
my theory enables me to correctly predict
which of 5 days in April it rains, they will be

more impressed. And if I predict how many
millimeters of rainfall there will be on each
of these 5 days, they will begin to take my
theory very seriously indeed (P. E. Meehl,
1990a, p. 110).

The ability to generate and corroborate a truly risky
prediction strongly implies that a researcher must
already have a decent working model (even if only
implicitly) of most of the contextual factors that could
potentially affect a dependent variable. If a social
psychologist were capable of directly deriving from a
theory of verbal overshadowing the prediction that
target recognition should decrease 1.7% +/- 0.04%
in condition A relative to condition B in a given
experiment, concerns about the generalizability of
the theory would dramatically lessen, as there would
rarely be a plausible alternative explanation for such
precision other than that the theories in question
were indeed accurately capturing something important
about the way the world works.

In practice, it’s clearly wishful thinking to demand
this sort of precision in most areas of psychology (po-
tential exceptions include, e.g., parts of psychophysics,
mathematical cognitive psychology, and behavioral
genetics). The very fact that most of the phenomena
psychologists study are enormously complex, and ad-
mit a vast array of causal influences in even the most
artificially constrained laboratory situations, likely
precludes the production of quantitative models with
anything close to the level of precision one routinely
observes in the natural sciences. This does not mean,
however, that vague directional predictions are the
best we can expect from psychologists. There are a
number of strategies that researchers in such fields
could adopt that would still represent at least a mod-
est improvement over the status quo (for discussion,
see Gigerenzer, 2017; Lilienfeld, 2004; P. E. Meehl,
1990a; Roberts & Pashler, 2000). For example, re-
searchers could use equivalence tests (Lakens, 2017);
predict specific orderings of discrete observations; test
against compound nulls that require the conjunctive
rejection of many independent directional predictions;
and develop formal mathematical models that posit
non-trivial functional forms between the input and
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ouput variables (Marewski & Olsson, 2009; Smaldino,
2017). While it is probably unrealistic to expect truly
severe tests to become the norm in most fields of psy-
chology, severity is an ideal worth keeping perpetually
in mind when designing studies—if only as a natural
guard against undue optimism.

Focus on practical predictive utility

An alternative and arguably more pragmatic way
to think about the role of prediction in psychology
is to focus not on the theoretical risk implied by a
prediction, but on its practical utility. Here, the core
idea is to view psychological theories or models not
so much as statements about how the human mind
actually operates, but as convenient approximations
that can help us intervene on the world in useful
ways (Breiman, 2001; Hofman, Sharma, & Watts,
2017; Shmueli, 2010; Yarkoni & Westfall, 2017). For
example, instead of asking the question does verbal
overshadowing exist?, we might instead ask: can we
train a statistical model that allows us to meaningfully
predict people’s behaviors in a set of situations that
superficially seem to involve verbal overshadowing?
The latter framing places emphasis primarily on what
a model is able to do for us rather than on its implied
theoretical or ontological commitments.

One major advantage of an applied predictive fo-
cus is that it naturally draws attention to objective
metrics of performance that can be easier to mea-
sure and evaluate than the relatively abstract, and
often vague, theoretical postulates of psychological
theories. A strong emphasis on objective, communal
measures of model performance has been a key driver
of rapid recent progress in the field of machine learning
(Jordan & Mitchell, 2015; LeCun, Bengio, & Hinton,
2015; Russakovsky et al., 2015)—including numerous
successes in domains such as object recognition and
natural language translation that arguably already
fall within the purview of psychology and cognitive
science. A focus on applied prediction would also nat-
urally encourage greater use of large samples, as well
as of cross-validation techniques that can minimize
overfitting and provide alternative ways of assessing
generalizability outside of the traditional inferential
statistical framework (e.g., Woo, Chang, Lindquist,

& Wager, 2017). Admittedly, a large-scale shift to-
wards instrumentalism of this kind would break with a
century-long tradition of explanation and theoretical
understanding within psychology; however, as I have
argued elsewhere (Yarkoni & Westfall, 2017), there
are good reasons to believe that psychology would
emerge as a healthier, more reliable discipline as a
result.

Conclusion
Most contemporary psychologists view the use of

inferential statistical tests as an integral part of the
discipline’s methodology. The ubiquitous reliance on
statistical inference is the source of much of the per-
ceived objectivity and rigor of modern psychology—
the very thing that, in many people’s eyes, makes it
a quantitative science. I have argued that, for most
research questions in most areas of psychology, this
perception is illusory. Closer examination reveals that
the inferential statistics reported in psychology ar-
ticles typically have only a tenuous correspondence
to the verbal claims they are intended to support.
The overarching conclusion is that many fields of psy-
chology currently operate under a kind of collective
self-deception, using a thin sheen of quantitative rigor
to mask inferences that remain, at their core, almost
entirely qualitative.

Such concerns are not new, of course. Commenta-
tors have long pointed out that, viewed dispassion-
ately, an enormous amount of statistical inference in
psychology (and, to be fair, other sciences) has a de-
cidedly ritualistic character: rather than improving
the quality of scientific inference, the use of univer-
salized testing procedures serves mainly to increase
practitioners’ subjective confidence in broad verbal
assertions that would otherwise be difficult to defend
on logical grounds (e.g., Gelman, 2016; Gigerenzer,
2004; Gigerenzer & Marewski, 2015; P. E. Meehl, 1967,
1990b; Tong, 2019). What I have tried to emphasize
in the present treatment is that such critiques are not,
as many psychologists would like to believe, pedantic
worries about edge cases that one can safely ignore
most of the time. The problems in question are funda-
mental, and follow directly from foundational assump-
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tions of our most widely used statistical models. The
central point is that the degree of support a statistical
analysis lends to a verbal proposition derives not just
from some critical number that the analysis does or
doesn’t pop out (e.g., p < .05), but also (and really,
primarily), from the ability of the statistical model
to implicitly define a universe that matches the one
defined by the verbal proposition.

When the two diverge markedly—as I have argued
is extremely common in psychology—one is left with
a difficult choice to make. One possibility is to accept
the force of the challenge and adjust one’s standard op-
erating procedures accordingly—by moderating one’s
verbal claims, narrowing the scope of one’s research
program, focusing on making practically useful pre-
dictions, and so on. This path is effort-intensive and
incurs a high risk that the results one produces post-
remediation will, at least superficially, seem less im-
pressive than the ones that came before. But it is
the intellectually honest road, and has the secondary
benefit of reducing the probability of making unrea-
sonably broad claims that are unlikely to stand the
test of time.

The alternative is to simply brush off these concerns,
recommit one’s self to the same set of procedures that
have led to prior success by at least some measures
(papers published, awards received, etc.), and then
carry on with business as usual. No additional effort is
required here; no new intellectual or occupational risk
is assumed. The main cost is that one must live with
the knowledge that many of the statistical quantities
one routinely reports in one’s papers are essentially
just an elaborate rhetorical ruse used to mathematize
people into believing claims they would otherwise find
logically unsound.

I don’t pretend to think this is an easy choice. I have
little doubt that the vast majority of researchers have
good intentions, and genuinely want to do research
that helps increase understanding of human behavior
and improve the quality of people’s lives. I am also
sympathetic to objections that it’s not fair to expect
individual researchers to pro-actively hold themselves
to a higher standard than the surrounding commu-
nity, knowing full well that a likely cost of doing the

right thing is that one’s research may become more
difficult to pursue, less exciting, and less well received
by others. Unfortunately, the world we live in isn’t
always fair. I don’t think anyone should be judged
very harshly for finding major course correction too
difficult an undertaking after spending years immersed
in an intellectual tradition that encourages rampant
overgeneralization. But the decision to stay the course
should at least be an informed one: researchers who
opt to ignore the bad news should recognize that, in
the long term, such an attitude hurts the credibility
both of their own research program and of the broader
profession they have chosen. One is always free to
pretend that small p-values obtained from extremely
narrow statistical operationalizations can provide an
adequate basis for sweeping verbal inferences about
complex psychological constructs. But noone else—
not one’s peers, not one’s funders, not the public,
and certainly not the long-term scientific record—is
obligated to honor the charade.
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