Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
A traditional line of work starting with the Gestalt school has shown that patterns vary in strength and salience; a difference in “Perceptual goodness.” The Holographic weight of evidence model quantifies goodness of visual regularities. The key formula states that W = E/N, where E is number of holographic identities in a pattern and N is number of elements. We tested whether W predicts the amplitude of the neural response to regularity in an extrastriate symmetry-sensitive network. We recorded an Event Related Potential (ERP) generated by symmetry called the Sustained Posterior Negativity (SPN). First, we reanalyzed the published work and found that W explained most variance in SPN amplitude. Then in four new studies, we confirmed specific predictions of the holographic model regarding 1) the differential effects of numerosity on reflection and repetition, 2) the similarity between reflection and Glass patterns, 3) multiple symmetries, and 4) symmetry and anti-symmetry. In all cases, the holographic approach predicted SPN amplitude remarkably well; particularly in an early window around 300–400 ms post stimulus onset. Although the holographic model was not conceived as a model of neural processing, it captures many details of the brain response to symmetry.
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.