Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
While major mergers and their tidal debris are well studied, equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3). Minor mergers are less energetic than major mergers, but more common in the observable universe, and thus likely played a pivotal role in the formation of most large galaxies. Tidal debris regions have large amounts of neutral gas but a lower gas density and may have higher turbulence. We use star formation tracers such as young star cluster populations and H-alpha and CII emission to determine the different factors that may influence star formation in tidal debris. These tracers were compared to the reservoirs of molecular and neutral gas available for star formation to estimate the star formation efficiency (SFE). The SFR in tidal debris can reach up to 50% of the total star formation in the system. The SFE of tidal tails in minor mergers can range over orders of magnitude on both local and global scales. From the tidal debris environments in our study, this variance appears to stem from the formation conditions of the debris. Current surveys of the 2.12 micron line of molecular hydrogen, CO(1-0), and HI for 15 minor mergers, are providing a larger sample of environments to study the threshold for star formation that can inform star formation models, particularly at low densities.
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.