Explanatory sequential research designs on autopilot: Using R Markdown to increase research and evaluation efficiency

Contributors:

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: In this paper, we show how automation on the side of the quantitative strand of research may help to alleviate this issue. For that purpose, we focus on explanatory sequential designs, where a quantitative strand of research is followed by a qualitative strand of research (Creswell, 2009). This is a common research design found in MMMR where quantitative results are further explained using qualitative methods (Schoonenboom, Johnson, & Froehlich, 2018). For instance, a survey may be followed by in-depth interviews with individuals from the survey population to help with contextualizing and interpreting the results. We report how R Markdown, a tool for report automation based on R (Froehlich, 2018b; Xie, 2013), may be used to increase research efficiency when applying such designs. We strongly believe that the quantitative strands of explanatory sequential designs lend themselves to such automation in order to free up resources for the (often labor intensive) qualitative strand. Next to increasing research efficiency, this measure is also helpful in aiding practitioners that do want to apply scientific methods, but do not possess the necessary in-depth knowledge about (quantitative) research methods.

This project represents an accepted paper submitted to SocArXiv . Learn more about how to work with paper files. View paper

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.

Create an Account Learn More Hide this message