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Abstract 

 

Technological advances have led to an increase in intensive longitudinal data and the statistical 

literature on modeling such data is rapidly expanding, as are software capabilities. Common 

methods in this area are related to time-series analysis, a framework that historically has received 

little exposure in psychology. There is a scarcity of psychology-based resources introducing the 

basic ideas of time-series analysis, especially for datasets featuring multiple people. We begin 

with basics of N=1 time-series analysis and build up to complex dynamic structural equation 

models available in the newest release of Mplus Version 8. The goal is to provide readers with a 

basic conceptual understanding of common models, template code, and result interpretation. We 

provide short descriptions of some advanced issues, but our main priority is to supply readers 

with a solid knowledge base so that the more advanced literature on the topic is more readily 

digestible to a larger group of researchers. 

 

 

KEYWORDS: Dynamic Structural Equation Modeling; Time-Series Analysis; Intensive 

Longitudinal Data; Multilevel Modeling
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A Primer on Two-Level Dynamic Structural Equation Models  

for Intensive Longitudinal Data in Mplus 

 
 As technological advances have continued to emerge at a rapid rate, data collection methods 

such as experience sampling, ambulatory assessment, daily diaries and ecological momentary 

assessment are allowing different types of longitudinal data to be collected, in far less intrusive 

manners, with fewer barriers (Conner & Barrett, 2012; Hamaker & Wichers, 2017; Mehl & Conner, 

2012; Trull & Ebner-Priemer, 2014). Whereas traditional longitudinal data tend to consist of a small 

number of repeated measures with relatively large time intervals between them, the innovative data 

collection techniques result in much larger numbers of repeated measures which tend to be closely 

spaced in time. As the nature of longitudinal data collection changes, the methods for modeling such 

data have similarly changed, requiring psychologists and methodologists to adapt to evolving data 

structures (Jebb, Tay, Wang, & Huang, 2015). Though growth modeling has historically been the 

dominant method by which to model longitudinal data in psychology and related fields (e.g., Jebb & 

Tay, 2017), the focus in the newer forms of longitudinal research has shifted from modeling trends 

over time that reflect developmental processes, to investigating the dynamics of stable processes 

(Hamaker & Wichers, 2017; Molenaar, 2004; Molenaar & Campbell, 2009). This has led to a surge 

of recent advances in statistical models for intensive longitudinal data (ILD; e.g., Asparouhov, 

Hamaker, & Muthen, 2017; Gates & Molenaar, 2012; Jongerling, Laurenceau, & Hamaker, 2015; 

Oravecz, Tuerlinckx, & Vanderkerckhove, 2011, 2016; Schuurman, Ferrer, de Boer-Sonnenschein, & 

Hamaker, 2016), roughly defined as data with 20 or more measurement occasions (Collins, 2006; 

Walls & Schafer, 2006).  

Software programs have similarly adapted to facilitate these types of analyses, such as the 

newly released Mplus Version 8, which now has a dedicated module on dynamic structural equation 

modeling (DSEM) for ILD (Asparouhov, Hamaker, & Muthén, 2018). DSEM integrates three 

different modeling approaches, that is: a) time-series analysis, which allows for modeling the lagged 
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relation in single subject data that consist of a large number of repeated measures; b) multilevel 

modeling, which can be used to simultaneous model longitudinal data of multiple individuals while 

allowing for individual differences in the parameters that describe the individual processes; and c) 

structural equation modeling (SEM), which offers the opportunity to have multiple outcome 

variables, latent variables, and mediation effects. DSEM can be used for N = 1 time series data, but 

also to model the data from multiple individuals simultaneously, where the within-person dynamics 

are modeled using a time-series model at the within-person level, while individual differences in 

individual parameters are modeled at the between-person level.  

Multilevel modeling and SEM, as well as the combination of the two, are fairly well known 

among psychological researchers. In contrast however, time-series analysis is still relatively novel for 

most in this field (Jebb & Tay, 2017), although the literature and applications of these methods are 

rapidly expanding, and statistical research continues to push the boundaries (Boker et al., 2011; 

Driver, Oud, & Voelkle, 2017; Hamaker & Wichers, 2017; Hamaker, Asparouhov, Brose, 

Schmiedek, & Muthén, 2018; Ou, Hunter, & Chow, 2018). Nevertheless, conceptual understanding 

of these new techniques remains difficult for empirical and quantitative researchers alike as many of 

the concepts that are fundamental to time-series analysis—and therefore also to DSEM—are not 

common in psychology (Jebb et al., 2015). Furthermore, existing treatments in fields with a richer 

history of time-series models tend to focus on forecasting (Shmueli, 2010), an interest that is 

relatively uncommon in psychology when compared to explanation (though this may be changing, 

see, Yarkoni & Westfall, 2017). As a result, many researchers are left to start nearly from scratch 

with minimal resources at their disposal that are targeted specifically to an audience with little to no 

background on the subject. Alternatively, as noted by Hamaker, Ceulmans, Grasman, and Tuerlinckx 

(2015), many sources will provide an overview of why and how to collect ILD but will not include 

details on how to analyze such data to answer relevant research questions (p. 317).  
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The goal of this paper is to follow the call of Sharpe (2013) to bridge the gap from the high-

end statistical work being done in this area to researchers who are just beginning to use these 

methods or who may not yet be aware of power of these techniques to answer research questions in 

their field. Essentially, our aim is to provide readers with a primer on the very basics of DSEM, how 

these models are fit in Mplus, and how the estimates are interpreted so that readers can more 

comfortably and confidently dive into the more comprehensive and nuanced discussions of these 

models (e.g., the recent work by Asparouhov et al., 2017, 2018 or Hamaker et al., 2018). That is, 

though some resources exist that are targeted to an intermediate audience where some familiarity is 

assumed, this paper is intended to readers at the novice level where we assume that readers possess 

knowledge of the basics of structural equation and multilevel modeling but no familiarity with ILD 

or time-series analysis. 

 To outline the structure of this paper, we first compare Developmental Process longitudinal 

data, which has historically been associated with growth modeling with the focus on a developmental 

trajectory and individual differences therein, to Stable Process longitudinal data, which is more 

typically associated with ILD and that is characterized by a focus on regulatory mechanisms and the 

dynamics of this. We then begin with some of the fundamental terminology for analysis of ILD and 

overview a single-level analysis where N = 1. We then extend the example to the more common case 

where multiple people are followed over time such that the data possess a multilevel structure with 

measurement occasions nested within people. We show how some straightforward DSEM models for 

ILD can be written in a very similar manner as growth models, though the focus and interpretation 

differ. We proceed with additional features that can be added to DSEM models, some of which are 

difficult to accommodate in other modeling frameworks and software. We then highlight some of the 

common difficulties with these models and how particular advanced features of DSEM can address 

them. Throughout the paper, example analyses and annotated software code are provided to facilitate 

application of these models to empirical datasets. Detailed interpretations and explanations of 
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idiosyncrasies of the DSEM framework that are not common in other frameworks are also provided 

as this basic but crucial information is often glanced over in more technical treatments of the topic.    

Developmental Processes vs. Stable Processes 

 Data collected over time on the same people fall under the umbrella of longitudinal data and 

the characteristics of such data can fall into one of two general classifications: developmental 

processes and stable processes (Jongerling et al., 2015). Table 1 summarizes the major differences 

between the two processes, details of which are expanded upon in this section. There are, of course, 

nuances and exceptions to what is presented here. We aim to provide a broad overview of the 

distinctions and differences in structure for different types of longitudinal data, so these 

characteristics describe more-or-less textbook cases, but should not be taken as rigid classifications.1  

[Table 1 about here] 

Developmental Processes 

Developmental process data (also known as panel data) typically feature a few measurement 

occasions that are widely spaced over the observations window (often months or years apart). The 

primary focus is questions about the means of the outcome variable over the course of the 

observation window (Nesselroade, 1991) – how much do the means change from the first to the last 

measurement occasion? What shape or trajectory does the change in the means follow over time? 

Common models for such data include mixed-effect models, latent growth models, or latent change 

score models (Grimm, Ram, & Estabrook, 2017). These models tend to take a nomothetic approach 

in describing the overall mean across people (McNeish, Stapleton, & Silverman, 2017). When 

expanded to person-specific growth curves, the focus is on within-person change not on within-

person variability (Ram & Gertsoff, 2009).  That is, the growth curve of each person is assessed and 

                                                 
1 For example, the measurement burst design of Nesselraode (1991) would not squarely fit into either of the 

classifications we present here. Also, the data structure for a cross-lagged panel model may have several features of 

developmental processes but the interest may not necessarily focus on change. 
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considered a trait score but the variability around each person’s growth curve is considered noise 

(Wang, Hamaker, & Bergeman, 2012). In models for developmental processes, it is typical for little 

consideration to be given to the covariance structures (Grimm & Widaman, 2010; Preacher & 

Hancock, 2015) and this information is frequently not reported in articles (McNeish et al., 2017). 

Moreover, when covariates are added to the model, the predominant focus is variables that affect the 

shape of the growth curve (Curran, Bauer, & Willoughby, 2014) – which variables predict higher or 

lower intercepts? How do particular variables affect the steepness of the growth curve? However, 

covariates that affect the variability around the growth curve are much less frequent, partially 

because data requirements to do so may not be present unless there are more measurement occasions 

(Hedeker, Mermelstein, Berbaum, & Campbell, 2009). Plainly stated, covariates for developmental 

process commonly explain between-person variability (factors that lead to differently shaped growth 

curves) but less commonly explain within-person variability (deviation around the growth curve).  

With developmental processes, the important aspect of data collection is the length of the 

observations window – collecting data more frequently within a window that is too narrow provides 

little benefit with developmental processes given the focus on long-term change. Data must be 

collected long enough to allow mean changes to occur. The number of measurement occasions 

collected depends mostly on the expected functional form of the mean change over time (Curran, 

Obeidat, & Losardo, 2010; Duncan & Duncan, 2009). If the change is expected to be linear, it is 

efficient to collect only 3 or 4 measurement occasions that are spread out over a lengthy period of 

time – the cost of collecting additional time-points is unlikely to be worth the information additional 

measurement occasions provide. In most cases, the number of measurement occasions rarely enters 

double digits because even complex non-linearly trajectories can be sufficiently modeled with fewer 

data points.  

Stable Processes 
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 Stable process data (also known as ILD) are characterized by collecting many measurement 

occasions over a short observations window (i.e., measurements taken several times per day over the 

course of a few days or weeks). This strategy is taken because the stable processes are mean-

reverting (Stroe-Kunold, Gruber, Stadnytska, Werner, & Brosig, 2012), meaning that the outcome 

variable may be higher or lower than the mean at specific measurement occasions, but values do not 

systematically change from the first measurement occasion to the last. That is, the mean is stable 

with respect to time even though values fluctuate over measurement occasions. If there is a trend in 

the data such that the mean does change, this is problematic for many types of models and the data 

are transformed or the model is altered to correct-out the trend over time (Jebb et al., 2015). 

Therefore, unlike developmental processes, many measurements are taken in quick succession to 

capture the variability of the outcome across time. It is precisely this within-person variability that is 

of interest with stable processes (Ram & Gertsoff, 2009) – Why do some people have taller peaks 

and lower valleys on the outcome? Which covariates predict spikes in the outcome variable? To what 

extent do spikes and valleys persist over time? The within-person deviations from the mean are 

primary interest with stable processes, which is opposed to developmental processes where this 

information is treated as noise (Wang et al., 2012).  

Because the focus is on within-person variability instead of long-term change, taking many 

measurements close together does not affect the ability to address research questions of interest as 

there is no change for which researchers must wait. The outcome is dynamic and constantly in flux, 

so every new measurement provides new information about within-person variability (provided that 

the measure is sensitive enough to detect possibly subtle changes), regardless of how long it has been 

since the previous measurement (Nesselroade & Ram, 2004). For this type of data, time-series 

models tend to be applied.  

Comparing Developmental and Stable Processes 
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 To visually compare how data from different processes appear, consider the two plots in 

Figure 1. The left panel shows a hypothetical trajectory plot for a developmental process and the 

right panel shows a trace plot for stable process data. The trajectory plot on the left shows a growth 

curve which captures how the means at each measurement occasion change over time. The trace plot 

on the right has a constant mean over time (the dashed horizontal line) with time-specific values 

fluctuating around this mean (i.e., it is mean-reverting). This exemplifies the difference between 

models for the difference types of processes. Growth models are interested in change and covariates 

affecting change; time-series models are interested in variability and covariates predicting when 

values will deviate from the mean.  

[Figure 1 about here] 

 In the next section, we begin with an overview of time-series models for stable process data 

collected from a single person to define some of the essential terminology. We follow this overview 

by then extending the model to data containing multiple people.  

N = 1 Model for ILD 

 Before extending the model to a multilevel structure where measurement occasions are 

nested within people, first consider N =1 ILD where a single participant is repeatedly measured 50 

times regarding their Urge to Smoke. Data for this type of analysis in Mplus should be structured in 

the ‘long’ format such that each measurement occasion occupies one row, the repeated measures are 

all contained in a single column, and there is a column containing an index variable for the time to 

which the measurement occasions corresponds. This is opposed to the ‘wide’ format used in some 

growth modeling frameworks (e.g., latent growth models) where each person occupies one row and 

each measurement occasion occupies a unique column. The time-series plot for the data that we will 

use were featured in the right panel of Figure 1 (M = -.03, SD = 2.90). The data, all syntax files, and 
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all output files are available on the first author’s Open Science Framework page, 

https://osf.io/wuprx/.  

Stationarity  

Before applying any statistical model, it is important to assess some characteristics of the data. 

The first step is typically to check whether the series is stationary (Hamilton, 1994). For a series of a 

normally distributed to be stationary, three conditions must be satisfied (Chatfield, 2003): 

1. ( )tE y   : the expected value of the outcome is constant for any arbitrary time t  

2. 2( )tVar y   : the variance of the outcome is constant at any arbitrary time t 

3. ( , )t t j jCorr y y    : the autocorrelation between outcome values at time t and time t – j (for 

j an arbitrary integer j < t) is only dependent upon how far apart the values are in time. This 

means that the autocorrelation is the same between any two observations that are j 

measurement occasions apart, regardless of where they are located in the series.  

Essentially, these three properties require that the mean, variance, and autocorrelations of the 

outcome do not systematically change over time. If these conditions are not met, then the process 

does not necessarily fit under the “Stable” umbrella and most of the models we discuss in this paper 

cannot be applied because effects will depend on time-specific behavior of the series. 

One common violation of stationarity is a trend such that values are consistently increasing 

or decreasing across measurement occasions. Linear trends can be checked with a simple linear 

regression model with Time as the only predictor. For the example data here, the slope of time is 

quite close to zero and not statistically significant (β = -.01, p = .63) which comfortably suggests that 

there is no linear trend over time. Researchers should also consider other types of non-linear trends 

such as seasonality (e.g., relations between measures at constant intervals) or cyclical trends (e.g., 

sine or cosine that can also violate stationarity. If a trend is present, the data must be de-trended so 

that the first property ( ( )tE y  ) is re-established. Linear trends and potential remedies are 

https://osf.io/wuprx/
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discussed at the end of this paper and the discussion that follows assumes stationarity is reasonably 

upheld. 

Bayesian Estimation  

In Mplus, the relevant models that we cover are sufficiently complex that Bayesian Markov 

Chain Monte Carlo (MCMC) is used for estimation because traditional frequentist methods like 

maximum likelihood (ML) often encounter convergence issues or are intractable. We will not fully 

review Bayesian statistics since they are used in Mplus more so as a computational tool rather than 

for its philosophical principles (Asparouhov et al., 2018). However, we will cover some relevant 

differences in terminology for readers who are not well-versed in Bayesian statistics to facilitate 

proper interpretation the output. Readers interested in a deeper understanding of Bayesian statistics 

are referred to Kruschke, Aguinis, and Joo, (2012), van de Schoot et al. (2014), or Zyphur, Oswald, 

and Rupp (2015) for pedagogical introductions. Readers familiar with Bayesian methods may skip 

this section without any loss of generality.   

A major difference between ML and Bayesian MCMC is that ML yields a single point 

estimate for each parameter whereas MCMC yields an entire distribution of possible values for each 

unknown parameter. This distribution is referred to as the posterior distribution or just “the 

posterior” for short. This posterior distribution is formed by updating researchers’ prior beliefs for 

each parameter (prior distributions) with information from the data (the likelihood, the same 

likelihood used in ML estimation). If researchers do not have specific prior beliefs, Mplus will assign 

parameters with uninformative priors such that all admissible values are about equally plausible. 

Instead of a point estimate for each parameter, in MCMC, the values of the posterior distribution are 

summarized with a measure of central tendency (i.e., mean, median, or mode) to provide a single 

representative estimate for the parameter. By providing a posterior distribution instead of point 

estimates, MCMC provides more intuitive analogs of standard errors or confidence intervals that do 

not rely on assumptions or asymptotic theory. Instead, the MCMC analog of the frequentist standard 
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error is the standard deviation of the posterior and the analog of the frequentist confidence interval is 

the Bayesian credible interval, for which the bounds of a 95% interval are the 2.5 and 97.5 

percentiles of the posterior. With MCMC, there are no null hypotheses for any effects as with ML 

and, consequently, there are no p-values.2 To determine whether an estimate is null in the population, 

a common test is whether 0 is within the 95% credible interval for the parameter of interest (this 

method is often ineffective for variances because they are typically assigned priors that preclude 

negative values, so 0 is always outside the 95% credible interval). 

Model fit operates differently with MCMC estimation than with ML. Whereas ML has 

familiar indices like RMSEA, SRMR, or CFI and likelihood ratio tests for comparison of nested 

models, Mplus does not provide Bayesian analogs of these methods. Instead, model comparisons are 

based on the deviance information criteria (DIC). The DIC operates similar to the AIC and BIC in 

frequentist contexts such that lower values of the DIC indicate relatively better model fit, even for 

non-nested models so long as the models have the same latent variables (Asparouhov et al., 2018). 

Readers are cautioned not to rely too heavily on the DIC with time-series data until further advances 

are made, however, because it tends to be unstable and can be lead to different conclusions for 

different seed values for the Monte Carlo chains.  

AR(1) Model 

 When the outcome is repeatedly measured for the same individuals in a stationarity series, 

the data are typically autocorrelated within people such that the variable at time t for a particular 

person is correlated with itself at previous times for the same person (but especially so at times with 

the closest proximity). In such case, it follows that the variable at a previous measurement occasion 

                                                 
2 The Mplus output does provide a Bayesian analog to a one-side p-value, though its interpretation does not directly 

coincide with the interpretation provided by a traditional frequentist p-value. The Bayesian p-value in Mplus 

corresponds to the proportion of the posterior distribution on the opposite side of 0 than the posterior mean. For 

example, a value of .03 for a positive estimate would mean that 3% of the posterior distribution is below 0 (Muthén, 

2010 p. 7) 
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may serve as a good predictor of the same variable at the current measurement occasions. For 

instance, if Urge to Smoke is high the first measurement occasion, Urge to Smoke is likely to also be 

high at the second measurement occasion. Predicting a variable from itself at earlier measurement 

occasions is referred to as autoregression. Autoregressive Lag-1 – denoted by AR(1) – means that 

the outcome at time t is predicted by the outcome at the immediate preceding time and no other 

previous measurement occasions. The number of previous measurement occasions used for 

prediction can be increased; for instance, an AR(2) model would predict time t from both times t – 1 

and t – 2.  

For the example data where the outcome is Urge to Smoke, the AR(1) model can be written 

as  

 1t t tUrge Urge e     .  (1) 

This model states that the Urge to Smoke at time t is equal to an intercept  , plus an autoregressive 

slope   times Urge to Smoke at time t – 1, plus an normally distributed time-specific residual 

2~ (0, )te N   that has constant variance over time. The mean of the series can be expressed as a 

function of the intercept and the autoregressive slope, that is, 
(1 )








.The model can be fit in the 

DSEM framework in Mplus with the following code 

VARIABLE:  

LAGGED = urge(1); !Create Lag-1 for Urge to Smoke; 

ANALYSIS:    

ESTIMATOR=BAYES;!Lagged variables can only be estimated with Bayes in Mplus; 

BITERATIONS=(1000);!Run at least 1000 iteration of the MCMC algorithm; 

MODEL:  

urge ON urge&1; !Autoregressive effect, Phi; 

urge; ! residual variance, sigma^2; 

[urge]; !intercept value, alpha; 
 

The LAGGED = urge(1) statement tells Mplus to create a new variable that is equal to  urge 

at the previous measurement occasion. Including a LAGGED = statement tells Mplus to use DSEM, 

which requires the use of Bayesian estimation, so ESTIMATOR=BAYES is included in the 
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ANALYSIS command. The BITERATIONS=(1000)statement is not required, but can be helpful to 

ensure that the estimation is more stable; when the trace plots lead to doubts about whether the model 

converged, the user can increase the number of iterations.  

In the MODEL command, Lag-1 Urge is specified by including “&1” after urge. It is 

assumed that the autoregressive effect is constant, so that a regression coefficient can capture the 

relation for any number of measurement occasions, for any arbitrary time. Table 2 shows the 

estimates for the model. 

[Table 2 about here] 

From Table 2, the interpretation is that Urge to Smoke at time t is positively related to Urge to 

Smoke at time t – 1 such that a one-unit increase in Urge to Smoke at time t – 1 is expected to 

increase Urge to Smoke at time t by .31 points. This model assumes no trend over time, so the 

expected value for Urge to Smoke is a horizontal line at 
   

.03
.04

1 1 .31






  

 
. Urge to Smoke is 

on a scale where 0 correspond to average so this person’s Urge to Smoke is about average in this 

population. The outcome variable at each measurement occasions fluctuates around the horizontal 

line at -.04 with a variance of 8.18, after accounting for Lag-1 of Urge to Smoke. 

Time-Varying Covariates 

The model can be extended to include time-varying covariates that are also collected at each 

measurement occasion to explain why Urge to Smoke rises and falls across measurement occasions. 

For instance, if a Z-scored measure of Depression was collected at each measurement occasion,3 the 

model could be extended such that  

                                                 
3 We use the time-varying covariate measured at the same time as the outcome, but note that causality is usually 

attributed to temporal precedence. It may be preferable to use the time-varying covariates from time t – 1 instead of 

time t if the variables are truly measured simultaneously. Using the time-varying covariate from time t becomes 

more sensible when different variables at the same measurement occasion refer to differ timespans. For instance, 

simultaneity would be more justified if the outcome at time t were phrased “what is your urge to smoke right now?” 

while the time-varying covariate were phrased “what has your level of depression been since the last response?” 
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 1t t t tUrge Urge Depression e        (2) 

Equation 2 builds upon Equation 1 by adding β, which captures the effect of Depression at time t on 

Urge to Smoke at time t. In Mplus, the code would be expanded to: 

VARIABLE:  

LAGGED = urge(1); !Create Lag-1 for Urge to Smoke; 

ANALYSIS:    

ESTIMATOR=BAYES;!Lagged variables can only be estimated with Bayes in Mplus; 

BITERATIONS=(1000);!Run at least 1000 iteration of the MCMC algorithm; 

MODEL:  

urge ON urge&1; !Autoregressive effect, Phi; 

urge ON dep; !Time-varying effect, Beta; 

urge; ! residual variance, sigma^2; 

[urge]; !intercept value, alpha; 

To help visualize the model, a path diagram with the Mplus code superimposed on the paths shown 

in Figure 2. Even though there are 50 measurement occasions, the model reduces to two 

measurement occasions with at arbitrary times t and t – 1. This is accomplished by making an 

assumption that the autoregressive effect  and the time-varying covariate effect   are constant at 

each time-point. That is, the effect of Depression at Time 1 is constrained to be the same as the 

Depression effect at Time 2, and so on; this also becomes clear from the fact that these parameters do 

not have a subscript for time in Equation 2. This assumption is reasonable in many contexts but can 

be relaxed if necessary as well (Asparouhov et al., 2018). Unconstraining effects across time is 

discussed at the end of this paper, but note that it can present computational challenges.  

[Figure 2 about here] 

Table 3 shows the estimates for the model with Depression as a time-varying covariate. The 

horizontal mean line around which Urge to Smoke varies is equal to 

 

 
   

  
 

2.43 .03.07
.00

1 1 1 .35 1 .35

Dep

 

  
   

   
 for –0.03 the mean of Depression for this 

person (even though the scale is standardized, the mean is not exactly 0). This value is slightly 

different from the results from the model in Table 2 because it is now conditional of Depression. The 
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autoregressive path (i.e.,   ) in Table 3 (.35) is about the same as in Table 2 (.31). The effect of 

Depression (i.e., β) is quite large: A one-unit increase in Depression is predicted to yield a 2.43 unit 

increase in Urge to Smoke, indicating that this person is much more likely to feel a strong urge to 

smoke when they feel more depressed. The residual variance in Table 3 dramatically decreased 

(1.36) compared to Table 2 (8.18), indicating that Depression explains much of the variability in 

Urge to Smoke across measurement occasions.  

[Table 3 about here] 

As a reminder, note that the model is not directly accounting for mean changes – the intercept 

of Urge to Smoke (i.e., α) is included as a constant across all 50 measurement occasions. There could 

be a trend in Urge to Smoke, if there is a trend in Depression. When Depression is not characterized 

by a trend, the model can be used to focus on the way that momentary fluctuations in Urge to Smoke 

are related to momentary fluctuations in Depression.  

This type of N =1 model is invaluable in disciplines like economics, finance, and 

meteorology where ILD are collected over time for a single entity. In psychology, such N=1 research 

could be of interest if we want to closely monitor a particular individual, for instance with the 

purpose to intervene in time when there are indications that the individual is at increased risk for 

relapse. However, in psychology and related behavioral sciences, it is more typical to collect ILD on 

multiple people, meaning that N >1 and that the data structure becomes multilevel in nature such that 

measurement occasions are nested within people. For the remainder of the paper, we focus on the 

multilevel extension of models for ILD.  

Two-Level DSEM for N >1 

For researchers who associate longitudinal data with developmental processes and growth 

modeling, two-level models are a familiar modeling framework (Bliese & Ployhart, 2002; Singer, 

1998). Several different models fall under the umbrella of “two-level model” (e.g., multilevel 
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models, mixed effect models, latent growth models, random coefficient models, or hierarchical linear 

models), and while there are some nuanced differences (e.g., McNeish & Matta, 2018), the 

underlying idea behind each of the models is the same (Curran, 2003). The average growth trajectory 

across all participants is modeled with fixed effects, while person-specific random effects are 

included to capture each person’s deviation from the average trajectory. This results in each person in 

the data begin described by a unique growth trajectory that follows the same functional form as the 

average growth trajectory of all participants but with potentially different values for the coefficients.  

The basic two-level growth model can be written as4  
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  (3) 

 The first equation specifies that the outcome variable at time t for person i ( tiy ) is equal to the 

person-specific intercept for person i ( 0i ) plus a person-specific slope for person i ( 1i ) multiplied 

by the Time variable plus a person-specific residual at time t ( tie ) that captures the difference 

between the predicted value and the observed value. The second equation then specifies a mode for 

determining the person-specific intercept for person i. In this basic model, the person-specific 

intercept ( 0i ) is equal to the overall average intercept across all people, 00 , plus a person-specific 

random intercept 0iu . The third equation is similar to the second in that it models the person-specific 

linear slope for Time. Similar to the second equation, in the basic model, the person-specific slope (

1i ) is equal to the average linear slope across all participants, 10 , plus a person-specific random 

                                                 
4 The model can similarly be specified as a single-level model using a multivariate data structure (i.e., as a latent 

curve model), but we focus on the multilevel approach to better connect the model to the multilevel format 

specification used in DSEM.  
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slope 1iu . A notable assumption of the model is that the vector of random effects, 0
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assumed to follow multivariate normal distribution with mean vector 0 and covariance matrix τ [i.e., 
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u ]. There is also an assumption about the within-time residual though it 

is common to model these residuals as having constant variance [i.e., 2~ (0, )tie  ].  

 When extending DSEM to N  > 1, two-level models can similarly be utilized. However, if the 

process is stationary, the focus is not on the association with mean change and the Time variable (or 

some function thereof) as in a growth model. Instead, increased attention is paid to the variability, 

especially within-person variability that is often of little consequence in growth models. The next 

section outlines how to extend the AR(1) model to N > 1 with a two-level model, how the model can 

incorporate both time-varying and time-invariant covariates, how random effects can be extended to 

the residual variance, and how the model extends to multiple outcomes.  

Multilevel AR(1) Model 

Though the focus of growth models and ILD models differ, the multilevel extension of each 

can be modeled within the same general two-level framework. Take the AR(1) model in Equation 2 

featuring Urge to Smoke predicted by Lag-1 Urge to Smoke and a time-varying value of Depression. 

Instead of having 50 measurement occasions on a single person as in the previous sections, now 

imagine that there are 50 measurement occasions on 100 different people. The model in Equation 2 

can be extended to a multilevel framework such that the multilevel AR(1) model would be  
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  (4a) 
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This basic multilevel AR(1) model has many similarities to the growth models to which 

psychologists are accustomed. The first equation specifies the Within-Level model such that the 

outcome variable Urge to Smoke at time t for person i is equal a person-specific intercept ( i ) plus a 

person-specific autoregressive term ( i ) multiplied by Urge to Smoke for person i at time t – 1 plus 

a person-specific coefficient ( i ) multiplied by the Depression score for person i at time t plus a 

time-point specific residual ( tie ) for person i which is assumed to be normally distributed with 

constant variance, 2~ (0, )tie N  . 

The Lag-1 predictor and the time-varying covariate have an ‘n’ to denote that these variables 

are the raw, non-centered version of the variable. When extending to datasets with multiple people – 

as with multilevel models in general – how covariates in the Within-Level model are centered can 

have major consequences for the results, and changes the substantive interpretation of the results 

(e.g., Curran & Bauer, 2011; Enders & Tofighi, 2007; Kreft, de Leeuw, & Aiken, 1995; Raudenbush 

and Bryk (2002). The model in Equation 4a is not quite how Mplus fits the model by default, which 

is important to note if comparing results to other software like SAS Proc Mixed. We will return to 

centering and how it is handled in Mplus shortly.  

Every coefficient in the first equation (the Within-Level equation) with only an i subscript 

subsequently becomes an outcome of a separate equation in the Between-Level model equations so 

that between-person differences in the person-specific coefficients can be modeled. In this basic 

Between-Level model, each person-specific coefficient is equal to the fixed effect (γ) capturing the 

average effect across all people, and a person-specific random effect ( iu ) capturing the deviation of 

the specific person’s coefficient from the average.  

The random effect covariance structure can be manipulated by the researcher. For this 

example, we assume uncorrelated random effects and constant residual variance such that 
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u . As a difference between growth models and models for ILD, note 

that Equation 4a does not include Time as a covariate in the equation for tiUrge . This reflects the 

difference in focus: While growth curve modeling is focused on capturing the growth trajectories of 

individuals over time, the current model is focused on capturing the momentary dynamics of a 

process. The latter is concerned with the way the current state of a person can be predicted by their 

preceding state, and how external influences perturb the process. 

Centering. When the focus of the model is on within-person quantities as in the models we 

discuss in this paper, it is important to distinguish within-person effects from between-person effects. 

That is, we want to interpret the covariates in a relative fashion for each person. For instance, 

imagine hypothetically that Person 1 has low Depression in general but that their Depression spikes 

at Time 6 (relative to their average Depression). If Depression is in its raw metric, this spike may 

appear uninteresting when compared to the entire dataset – high depression for someone who is, on 

average, low on Depression, may appear like an average Depression score when compared to the 

grand mean on Depression. However, if we want to understand the within-person process, we are 

interested in whether an elevated Depression score relative to the person’s mean (rather than the 

grand mean) predicts an increase in this person’s Urge to Smoke. In that case it is important to 

capture that – although the Depression value at Time 6 may be average in general – the Depression 

value at Time 6 for Person 1 is high, relative to their typical value.  

In the general multilevel modeling framework, this interest can be accommodated by 

centering covariates in the Within-Level model (e.g., Curran & Bauer, 2011; Enders & Tofighi, 

2007; Kreft, de Leeuw, & Aiken, 1995). In particular, person-mean centering can be used such that 

each person’s mean value on the covariate (across all measurement occasions) is subtracted from the 

raw value at each measurement occasion. This rescales the covariate such that 0 represents the 
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average for each person. That is, after person-mean centering, Person 6 and Person 12 may have 0 

values for Depression at the same measurement occasion, which would represent that each person is 

at their mean for the covariate value, even though the raw values of Depression are likely to be 

different for each person. Essentially, the application of person-mean centering rescales the covariate 

values so that the values represent deviation from the person’s mean. Note that centering is not the 

same as standardization because it does not transform the variance to one or any other specific value.  

A common approach to centering in multilevel models is to use observed person-mean 

centering whereby the sample mean for each person is calculated and subtracted from the raw value. 

For the Lag-1 Urge to Smoke covariate in Equation 4a, this would be conducted by calculating the 

mean of the outcome for each person across all measurement occasions, iUrge  and subtracting this 

value from the raw Lag-1 Urge to Smoke:  ( 1)t i i
Urge Urge  . Similarly, the Depression score could 

be centered with the individual’s sample mean:  ti i
Depression Depression . However, this 

method can lead to multiple forms of bias in the estimates of φ and β that can be avoided by using 

latent person-mean centering, which is the default in DSEM in Mplus (cf. Asparouhov et al., 2018; 

Nickell, 1981).  

Specifically, Mplus will use latent person-mean centering for all variables that are not 

specified as either a within-level or between-level variable (i.e., that do not appear in a WITHIN= or 

BETWEEN= statement). Latent centering has the advantage that it: (a) provides more substantively 

interpretable within-person effects when compared to not centering or grand mean centering; (b) 

eliminates Nickell’s bias and Lüdtke’s bias5 for the autoregressive effect and the effect(s) of other 

                                                 
5 Nickell’s Bias refers to the phenomenon where negative bias is present in autoregressive estimates when a lagged 

covariate is observed mean centered. Lüdtke’s Bias is the phenomenon where contextual effect estimates are bias 

with observed mean centering due to possible unreliability in the observed mean.   
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time-varying covariates respectively; and (c) leads to an intercept that can be interpreted as the 

person’s mean, which can be further modeled at the between level.6  

Using Equation 4a as an example, the Within-Level lagged Urge variable and Depression 

covariate would be partitioned in a Within-Level component and a Between-Level component: 
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where ( 1)

n

t iUrge   and n

tiDep are the raw non-centered values of the lagged Urge variable and the 

Depression variable in the data for the ith person at the (t –1)th and tth measurement occasion 

respectively, ( 1)

c

t iUrge   and c

tiDep are the Within-Level components that have a mean of 0 by 

definition, and ( 1)

b

t iUrge   and b

iDep are the Between-Level components that are latent variables with 

an estimated mean and variance. The latter parts are conceptually similar to the descriptive sample 

mean of Urge to Smoke and Depression, but creating latent variables for these components allows 

measurement error to be accounted for so that the mean estimate is as accurate as possible 

(Asparouhov & Muthén, 2018).  

Thus, instead of Equation 4a, Mplus uses 
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6 An important note here is that the Mplus User’s Guide at the time of this writing is based on Version 8.0 and 

provides examples using observed person-mean centering. Observed person-mean centering is conducted by 

including a variable in a WITHIN statement and then adding DEFINE: dep (GROUPMEAN) to the VARIABLE 

command. The examples we present utilize the latent person-mean centering approach given its aforementioned 

advantages (Asparouhov & Muthen, 2018), but the discrepancy between the current User’s Guide and what is 

described in this paper is important to keep in mind.  
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The ‘c’ superscript is used to indicate that these covariates are person-mean centered. For each of the 

four Between-Level variables, the fixed effect represents the overall mean across persons (i.e., the 

𝛾’s), and a random effect that represents the variance of person-specific deviations around this mean 

(i.e., the 𝑢’s). Hence, the covariance matrix of the random effects will now be expanded to be 4 4  

instead of 3 3 . This specification will yield estimates that have substantively meaningful within-

person effects. For instance, after centering in this way, the intercept 
i  is equal to the mean of Urge 

to Smoke for individual i: b

i iUrge  . Otherwise, the effects in Equation 4a will contain a mix of 

non-partitioned within-person and between-person effects that cannot be disentangled (Enders & 

Tofighi, 2007; Raudenbush & Bryk, 2002 p. 139).  

 Path diagram & code. The path diagram representation of the multilevel AR(1) model is 

presented in Figure 3. Because the data have a multilevel structure, the path diagram is split into two 

levels, each mirroring different lines of Equation 4c: the Within-Level features relations in the 

equation with tiUrge as the outcome and the Between-Level models the equations with i , i , i , 

and b

iDep  as the outcomes. Following conventions from Curran and Bauer (2007) for visually 

representing models with multiple levels, the intercept, the Lag-1 slope, and the time-varying 

covariate slope all have superimposed circles.7 This indicates that this path is treated as a latent 

variable with a mean and variance in the Between-Level model. Each circle in the Within-Level 

model becomes a latent variable in the Between-Level model. The intercept of the Between-Level 

latent variables are equivalent to fixed effects γ parameters in a mixed effect model equation.  

[Figure 3 about here] 

                                                 
7 In this notation and framework, any Within-Level predictor would have a circle drawn over the path because it will 

be a latent variable in the Between-Level model. If no random effect is desired for certain predictor in the Within-

Level, the latent variable variance in the Between-Level model would be constrained to zero (but the latent variable 

would not be removed).  
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 Mplus code for fitting the model in Equation 4 is shown below (on the top of the next page). 

The Within-Level model corresponds to the tiUrge equation in Equation 4c. The urge on dep and 

urge on urge&1 code informs Mplus that Urge to Smoke is predicted by latent person-mean 

centered Depression and latent person-mean centered Lag-1 Urge to Smoke. Prior to each of these 

lines, a vertical pipe is included to signify that these paths are person-specific, and they will be latent 

variables in the Between-Level model. The label that precedes the pipe may be designated with 

whichever label the user wishes because the latent variable is not observed; here we use Greek letters 

for clarity. In the terms of Equation 4c, the “phi|” and “beta|” labels signify that phi and beta 

will appear as latent variables in the Between-Level equation (i.e., that   and   have i subscripts). 

The outcome variable by itself in the Within-Level model (i.e., “urge;”) corresponds to the residual 

Within-Level variance, 2 . There is no “alpha|” code in the Within-Level model because Mplus 

uses the outcome variable label to specify the intercept, the Between-Level intercept variance, and 

the residual variance.  

VARIABLE:   

LAGGED = urge(1) ;!Created a Lag-1 variable for urge to smoke; 

CLUSTER = person;!The Between-Level ID variable is Person; 

ANALYSIS:    

TYPE = TWOLEVEL RANDOM; !Two-Level Model with paths that are latent variables; 

ESTIMATOR = BAYES;!Lagged variables can only be estimated with Bayes in Mplus; 

BITERATIONS =(1000);!Run at least 1000 iteration of the MCMC algorithm; 

MODEL: 

%WITHIN% 

phi | urge ON urge&1;! urge is regressed on Lag-1 urge, the slope is latent; 

beta | urge ON dep;! urge is regressed on Depression, the slope is latent; 

urge; !within-level variance, sigma^2; 

%BETWEEN% 

[urge]; !mean intercept, gamma_00; 

[phi];  !mean of autoregressive slope,gamma_10; 

[beta]; !mean of TVC slope, gamma_20; 

[dep]; !the overall mean of Depression, gamma_30; 

urge;  !intercept variance, tau_00; 

phi;   !autoregressive slope variance, tau_11; 

beta;  !TVC slope variance, tau_22; 

dep;   !Between-person variance of Depression, tau_33; 

In the Between-Level model, each variable is modeled using an intercept and a variance. The 

intercepts of the latent variables are defined by placing their labels in square brackets: These 

correspond to the fixed effects 00 , 10 , 20 , and 30  in Equation 4c for i , i , i , and b

iDep   
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respectively. The variance of the latent variables (the τ parameters) are included by specifying the 

latent variable label by itself outside of brackets: So urge, beta, phi, and dep correspond to 

00 , 11 , 22 , and 33  associated with Equation 4c. In the current model, all the random effects are 

uncorrelated, which may be considered a rather restrictive assumption; this can be relaxed by adding 

WITH statements to allow the random effects to covary with each other. To concretize the function of 

each line of code in this model, Figure 4 shows the path diagram for this model with Mplus code 

placed over the relevant paths.  

 [Figure 4 about here] 

Results & interpretation. The results are presented in Table 4. The average horizontal mean 

line across all people around which Urge to Smoke varies is -.01 and there is non-null variability 

around this line (.60) meaning that some people have consistently higher or lower horizontal mean 

lines than the average. That is, there are between-person differences for average Urge to Smoke – we 

did not include a trend, and the line remains horizontal constant across time for all people. However, 

each person is characterized by their own constant deviation from this line. Following from the 

normality assumption of the latent variables, 95% of people in this data have person-specific 

intercepts between [-1.53 .1.51] (calculated from; .01 1.96 .60  ; the intercept plus and minus 

1.96 deviations).  

The average autoregressive coefficient across all people is .21 and there is a small amount of 

variability (.02). Between-person variance for the autoregressive path will tend to be small because 

the definition of stationarity requires an autoregressive parameter to be bound between -1 and 1, so 

small variances do not necessarily mean the between-person variance is unimportant. In these data, 

an average value of .21 with a variance of .02 would mean that 95% of people in this data have 

person-specific autoregressive coefficients between [-.07, .49]. Even though the variability estimate 

of .02 seems small in absolute terms, the substantive result seems rather meaningful considering that 
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the autoregressive coefficient can only range from -1 to 1 and the [-.07, .49] range covers a large 

portion of admissible autoregressive coefficient values. Regarding the effect of Depression, the 

average effect across all people is .80 with a between-person variance of .79. This means that the 

95% of the person-specific effects are between [-.94, 2.54]. The intercept and variance of b

iDep  are 

also included in the output but are typically more important for proper person-mean centering of the 

Within-Level covariates than for their substantive effect on the outcome of interest. Covariances of 

b

iDep with other Between-Level latent variables could be included in the model, if they are of interest 

(e.g., to assess whether people who are generally higher on depression systematically have higher 

autoregressive coefficients).  

[Table 4 about here] 

Whether effects should be considered large or small, and whether the individual differences 

are large or small is difficult to ascertain. This distinction will depend on the variances of Depression 

and Urge to Smoke, which themselves may vary across individuals. As a result, even if two 

individuals have the same value for the effect of Depression on Urge to Smoke, this may mean 

something different when their variances differ. To make the interpretation easier, Mplus can also 

produce the standardized parameters and variance explained measures by including OUTPUT: 

STANDARDIZED in the code. Standardized within-person estimates are based on first standardizing 

the regression coefficients for each person separately, taking into account their particular variances 

on the covariate and the outcome, and then taking the average of this across individuals (it is also 

possible to output each individual’s standardized parameter estimate). This approach was first 

proposed by Schuurman et al. (2016), and is referred to as within-person standardization. 

Standardizing between-person estimates is done using the between-person variances on the 

predictor and outcome variables. An R2 variance explained measure is also provided for each 

outcome variable. For outcomes in the Within-Level model, variance explained is calculated 
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separately for each person and then averaged across all people. Because Bayesian estimation is used, 

95% credible intervals are provided for all standardized estimates and variance explained measures.  

Time-Invariant Covariates 

 The model in the previous section included two time-varying covariates (Lag-1 Urge to 

Smoke, Depression) to explain the variation in Urge to Smoke. Time-invariant covariates that are 

constant across all measurement occasions within a person but that vary between people can also be 

added to the model to predict intercepts, autoregressive slopes, or time-varying covariate slopes. For 

instance, imagine that measures of Job Stress and Home Stress were also collected in the Urge to 

Smoke data, but that these variables were collected only once at the beginning of the study instead of 

at each of the 50 measurement occasions. Each person will have a different value for Job Stress and 

Home Stress but the values will be constant for all measurement occasions within a person (e.g., the 

Job Stress value for Person 16 will be the same at the first measurement occasion as at the last 

measurement occasion). In this context, the variables would be time-invariant based on how they 

were collected and would be included into the model as such. Note that nearly any variable could be 

time-varying or time-invariant and the distinction is based upon how the data are collected rather 

than the nature of the variable itself.  

Centering of time-invariant covariates functions differently than centering of time-invariant 

covariates. First, time-invariant covariates can only be centered around the grand-mean and not the 

person-mean. Because the value of the time-invariant covariates are constant within a person, 

centering around the person-mean would not make sense because it would yield a 0 value for every 

person in the data (i.e., the person-specific mean is the value of the variable for each person). In 

multilevel modeling in general, centering of time-invariant covariates can be done to improve 

interpretation of the intercept of the latent variable that is regressed on these predictors: When all 

predictors have a mean of zero (due to grand mean centering), the intercept of the outcome variable 
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is identical to its mean, as the intercept is the expected score when the predictors have a score of 

zero.   

 The model in Equation 4c can be expanded to accommodate time-invariant covariates in the 

Between-Level portion of the model:    
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  (5) 

Where the “c” superscripts on c

iJobStress and c

iHomeStress indicate that they have been grand-mean 

centered such that 
c n

i iJobStress JobStress JobStress   and

c n

i iHomeStress HomeStress HomeStress  . Because time-invariant covariates do not vary within a 

person (i.e., they have “i” subscripts, not “ti” subscripts), they can only appear in the Between-Level 

model whose equations feature an outcome variable that only have “i” subscripts as well. In Equation 

5, Job Stress and Home Stress are included as predictors of the person-specific intercept, the person-

specific autoregressive coefficient, and the person-specific time-varying covariate coefficient. 

 Also note that b

iDep has now been included as a covariate of the intercept in the i  equation 

in Equation 5. Including the latent person-mean centered c

tiDep in the Within-Level model and the 

latent person mean b

iDep  in the Between-Level model allows the Depression effect to be fully 

partitioned. This allows researchers to inspect whether a one-unit change in a covariate at a specific 

measurement occasion affects the outcome (the within-person effect) and how a one-unit change in 

the covariate mean across all measurement occasions affects the average of the outcome variable (the 

between-person effect). By including both effects in the model simultaneously, it is possible to 

investigate whether the within-person and between-person effects differ. For example, that might 
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mean that changes in Depression across measurement occasions could affect Urge to Smoke, 

reflecting a momentary within-person process, but having a generally high value of Depression 

(across all measurement occasions) may have no effect on people’s average Urge to Smoke, meaning 

that if we interpret these person-specific means as traits, these traits are unrelated.  

Substantively, the i  Between-Level equation models the person-specific intercept (the 

location of the horizontal mean line around which measurement occasions vary) as a function of Job 

Stress, Home Stress, and the person-specific mean on Depression. Perhaps people with more stress in 

their lives are more likely to have higher mean Urge to Smoke so their horizontal mean line is 

elevated. Note that these time-invariant covariates do not state that the Urge to Smoke linearly 

increases over time. Rather, it simply specifies a vertical shift in the location of the horizontal mean 

line as a function of Job Stress, Home Stress, and person-specific average on Depression. The i

equation models the autoregressive coefficient as a function of Job Stress and Home Stress to test 

whether people with more stress have larger or smaller carryover effects in their Urge to Smoke. The

i  equation similarly models whether the effect of Depression differs for people with different stress 

levels.  

Path diagram & code. Figure 5 shows the path diagram for the model in Equation 5. In 

Figure 5, the time-invariant predictors are restricted to the Between-Level model because they do not 

vary within people and only predict differences between people.  

[Figure 5 about here] 

The Mplus code for the model including time-invariant covariates would be 

VARIABLE:   

Lagged = urge(1); !create variable for Lag-1 of Urge to Smoke; 

BETWEEN = js hs;!Job Stress and Home Stress are time-invariant, used only in !the Between-Model; 

CLUSTER = person; !The Between-Level ID variable is Person; 

Define: CENTER js hs(GRANDMEAN);!Person-mean center to time-varying covariate to get a !within-

person effect; 

ANALYSIS:    

TYPE = TWOLEVEL RANDOM;!Two-Level Model with paths that are latent variables; 

ESTIMATOR = BAYES;!Lagged variables can only be estimated with Bayes in Mplus; 

BITERATIONS = (1000);!Run at least 1000 iteration of the MCMC algorithm;          

MODEL: 



TWO-LEVEL DSEM PRIMER   28 

 

%WITHIN% 

phi | urge ON urge&1;! urge is regressed on Lag-1 urge, the slope is latent; 

beta | urge ON dep;! urge is regressed on Depression, the slope is latent; 

urge; !within-level variance, sigma^2;            

%BETWEEN% 

[urge]; !mean intercept, gamma_00; 

[phi];  !mean of autoregressive slope,gamma_10; 

[beta]; !mean of TVC slope, gamma_20; 

[dep]; !the overall mean of Depression, gamma_30; 

urge;  !intercept variance, tau_00; 

phi;   !autoregressive slope variance, tau_11; 

beta;  !TVC slope variance, tau_22; 

dep;   !Between-person variance of Depression, tau_33; 

urge ON js hs dep; !Job Stress and Home Stress predict the intercept,gamma_01 and gamma_02 

!The latent person mean of Depression gives the !between-person effect of the TVC, gamma_03; 

phi ON js hs;!Job Stress and Home Stress predict the autoregressive slope,gamma_11 and gamma_12; 

beta ON js hs;!Job Stress and Home Stress predict the TVC slope,gamma_01 and gamma_02; 

 

The difference between this code and the code in the previous section is that the time-invariant 

covariates must be declared in a BETWEEN= statement in the VARIABLE command. The time-

invariant covariates have no within-person variance, so including these variables in the Within-Level 

model will yield a warning message. Specifying the time-invariant covariates in a BETWEEN= 

statement properly acknowledges that these variables only differ across people and will only appear 

in the portion of the model corresponding to between-person differences. In the Between-Level 

model, Job Stress (JS) and Home Stress (HS) are included as predictors of the Between-Level latent 

variables in a standard regression equation. Also in the VARIABLE command, a DEFINE statement 

is included to properly grand mean center the time-invariant covariates.   

Results & interpretation. The model estimates are provided in Table 5. Each of the time-

invariant effects were non-null. The covariates for the intercept show that the value of the person’s 

mean (the horizontal line) around which people vary tends to be higher in people who experience 

more stress at their job or at home. A one-unit increase in Job Stress predicts an increase in the 

person’s horizontal mean line of .50 points; a one-unit increase in Home Stress is associated with an 

increase in the person’s horizontal mean line of .33 points. A similar pattern emerges for the 

autoregressive slope – both time-invariant coefficients are positive meaning that increases in Job 

Stress and Home Stress are expected to strengthen the carryover effect of Urge to Smoke (by .12 and 

.06 points, respectively). Increases in Job Stress and Home Stress are similarly predictive of a 
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stronger effect of Depression on Urge to Smoke such that people with higher stress level tend to 

respond with larger changes in their Urges to Smoke when their Depression changes (by .29 and .35 

points, respectively). Put another way, the time-invariant covariates can be seen as moderators of the 

time-varying effects in the model, these are sometimes referred to as cross-level interactions, as they 

involve the interaction of a time-varying Within-Level covariate and a time-invariant Between-Level 

covariate. The person mean of Depression does not appear to have an effect on the individual 

intercept of Urge to Smoke ( 03 ), as 0 is within the 95% credible interval for the effect of regressing 

Alpha on Depression.  

[Table 5 about here] 

Note that the Between-Level variances decreased in this model compared to the estimates in 

Table 4. This is because part of the random variation from person to person captured by the Between-

Level variance in Table 4 has been explained by the time-invariant covariates in Table 5. The 

intercept variance dropped from .60 to .34, meaning that Job Stress and Home Stress account for 

 .60 .34
43%

.60


  of the variability in people’s means. Applying the same formula to the 

autoregressive slope and time-varying covariate slope yields explained variances of 50% and 19%, 

respectively (using estimates rounded to two decimal places). In the next section, we expand the 

model further to allow the residual variance to be person-specific rather than constant across all 

people by using location-scale models.  

Multilevel Location-Scale Model 

 The DSEM models presented in the previous section mirror two-level growth models and 

assume that the residual variance is the same for each person in the data. That is, the within-person 

variance 2  had no “i” subscript meaning that it is the same for all people. Substantively, a constant 

residual variance across all people means that each person’s behavior is equally predictable 
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(Jongerling et al., 2015). Abstractly, this would mean that – conditional on the covariates in the 

model – the peaks and valleys of the series have about the same height for each person. However, 

this may often be violated in psychological research because some individuals are less predictable 

and prone to larger swings across time compared to other individuals, possibly due to individual 

differences in sensitivity external factors (e.g., Wichers et al., 2009). Variability is directly of interest 

in models for ILD, so it is commonly of interest to know who is experiencing larger swings and if it 

is possible to predict why these large swings occur. 

To demonstrate, Figure 6 shows overlaid trace plots for two people in the example Urge to 

Smoke data (Person 5 and Person 96). For both of these people, the average Urge to Smoke is 

somewhat similar (.32 for Person 5, -.08 for Person 96), both are stationary (the slope for Time is -

.01 for both people, which is negligible), but there is a noticeable difference in the behavior of the 

trace plot over time. Person 5 (in grey) has much higher peaks, much lower valleys, and more 

variability across measurement occasions than Person 96. Because of the increased emphasis on 

variability in models for ILD, it is often important to allow the within-person residual variance to be 

person-specific and explicitly modeled rather than constant (as is typical in growth modeling). This 

type of model is referred to as a multilevel location-scale model (Hedeker, Mermelstein, & Demirtas, 

2008, 2012; Jongerling et al., 2015; Wang et al., 2012). The model is called “location-scale” because 

it includes covariates both for the mean structure (the location) and also for the residual variance (the 

scale). It is possible to incorporate modeling features for these types of questions in multilevel 

software; however, prepackaged software like Proc Mixed are limited in their functionality (e.g., no 

random effects) or require users to write a custom likelihood in a procedure like SAS Proc Nlmixed 

(Hedeker et al., 2012). The DSEM framework can fully accommodate these types of modeling 

extensions with minimal additional code.  

[Figure 6 about here] 
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The multilevel location-scale model looks similar to the model in the previous section except 

that the residual variance is now also an outcome in the Between-Level equation. Because the 

residual variance is a Within-Level quantity, it is permitted to be latent by taking an “i” subscript –  

2~ (0, )i ie   – and become an outcome in the Between-Level model. This allows the residual 

variance to be person-specific and allows time-invariant covariates (or person means of time-varying 

covariates) to be added to model differences in residual variability for different people. For instance, 

Job Stress and Home Stress can be included as time-invariant covariates of the residual variance such 

that the additional Between-Level equation would be  

 2

0 1 2 4exp( )i i i iJobStress HomeStress u         (6)The Between-Level component of 

Depression ( b

iDep ) could also be included as a predictor of 2

i , but we omit it here (a) to keep the 

model and associated figures succinct and (b) for parsimony because the effect of b

iDep  is null were 

it included in the model.  

An important point in Equation 6 is that the variance is modeled as the exponential of the 

linear regression on the right; alternatively we could take the log on both sides, such that the log of 

the variance is modeled as a linear regression. This is necessary because variances cannot be 

negative, and using a log-linear model precludes negative values. It is important to remember this 

transformation when interpreting coefficients. In Equation 6 0exp( ) is the expected residual 

variance for a person with 0 values on Job Stress and Home Stress (the mean residual variance if the 

covariates are centered), 1exp( ) is the expected multiplicative change in the residual variance for a 

one-unit change in Job Stress, and 2exp( )  is the expected multiplicative change in the residual 

variance for a one-unit change in Job Stress. Equation 6 also features a random effect – 4iu  – which 

allows the within-person residual variance to vary randomly for reasons not explained by the 

included covariates. We emphasis “multiplicative” because using a log-linear model has implications 
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for interpretation, similar to other log-linear models like those for count data (e.g., Poisson or 

negative binomial). We will cover the difference in interpretation in more detail after fitting this 

model.  

 Path diagram & code. The path diagram for the multilevel location-scale model is shown in 

Figure 7. It is similar to the path diagram in Figure 5 but the within-person residual variance 

specified as latent variable,8 allowing it to vary for each person.  

[Figure 7 about here] 

 The DSEM code in Mplus would be: 

VARIABLE: 

LAGGED= urge(1);!Create Lag-1 variable for outcome; 

BETWEEN = js hs;!Job Stress and Home Stress only appear in the Between-!Level model;  

CLUSTER = person;!The ID variable at the person-level is PERSON; 

Define: CENTER js hs (GRANDMEAN); !Person-mean center to time-varying covariate to get a 

!within-person effect; 

ANALYSIS:    

TYPE = TWOLEVEL RANDOM; !Two-Level Model with paths that are latent variables; 

ESTIMATOR = BAYES;!Lagged variables can only be estimated with Bayes in Mplus; 

BITERATIONS = (1000);!Run at least 1000 iteration of the MCMC algorithm; 

 

MODEL: 

%WITHIN% 

phi | urge ON urge&1;!urge is regressed of Lag-1 urge, the slope is latent, phi_i; 

beta | urge ON dep;!urge is regressed on Depression, the slope is latent, beta_i; 

logv| urge;  

!the Within-Level residual variance is latent, sigma^2_i; 

 

%BETWEEN% 

[urge]; !mean intercept, gamma_00; 

[phi];  !mean of autoregressive slope,gamma_10; 

[beta]; !mean of TVC slope, gamma_20; 

[dep]; !the overall mean of Depression, gamma_30; 

[logv]; !log of the mean of the residual variance, omega_0; 

urge;  !intercept variance, tau_00; 

phi;   !autoregressive slope variance not explained by JS and !HS, tau_11; 

beta;  !TVC slope variance not explained by JS and HS, tau_22; 

dep;   !Between-person variance of Depression, tauu_33; 

logv; ! between-person variance of sigma^2_i not explained by !JS and HS, tau_44; 

urge ON js hs dep; !The person-specific intercept is predicted by Job Stress and !Home Stress 

and the latent person mean of Depression; 

phi ON js hs; 

!The person-specific autoregressive slope is predicted by Job Stress and Home Stress; 

beta ON js hs;!The person-specific TVC slope is predicted by Job Stress and !Home Stress; 

logv ON js hs; 

!The person-specific residual variance is predicted by Job !Stress and Home Stress; 

 

The model looks similar to the model in the previous section featuring the time-invariant covariates. 

The difference for this model is that the residual variance in the Within-Level model is now specified 

                                                 
8 To clarify, the Within-Level residual (the difference between observed and predicted values) is a latent variable. 

The difference here is that the residual variance is also a latent variable in addition to the residual itself.  
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to be a latent variable and allowed to vary by person via the “logv|” prefix. The label does not 

need to begin with “log” nor does it need to contain “v”; whichever label this parameter is given, 

Mplus will note that this latent variable is associated with a variance and will use a log-linear model 

in the Between-Level model. In the Between-Level model, the intercept of the log residual variance 

is specified by placing the logv label in square brackets. Including logv by itself denotes that there 

is unexplained variability in the person-specific residual variances. The last line of the code specifies 

that the log residual variance is predicted by Job Stress and Home Stress (both grand-mean centered).  

 Results & interpretation. Table 6 shows the estimates of the model. The parameters new to 

the location-scale model are the ω parameters involving the residual variance as an outcome in the 

Between-Level model and the person-specific variance, 44 . Recall that these parameters are on the 

log scale, so they must be exponentiated to place them back on the raw scale. The estimate of 0  is 

the expected log residual variance for a person who has mean values on Job Stress and Home Stress 

(as these predictors were grand mean centered); on the raw scale, the expected residual variance is 

0
ˆexp( ) exp(.05) 1.05   . The between-person variance is .09, meaning that assuming normality, 

95% of people’s residual variance are between  exp .05 1.96 .09 .58   and 

 exp .05 1.96 .09 1.89  . In a log-linear model, the addition or subtraction must occur prior to 

apply the exponential function – it is not appropriate to exponentiate first and then add [e.g., 

exp(.05) 1.96*exp( .09) 1.05 2.64 3.69    is not the correct upper limit]. 

[Table 6 about here] 

The raw residual variance is expected to change multiplicatively by 

1
ˆexp( ) exp(.33) 1.39    for a one-unit change in Job Stress. Note, this means that a one-unit 

change in Job Stress predicts a residual variance of 1.05 1.39 1.46   not 1.05 1.39 2.44  . The 

differential interpretation is the result of converting for a log-linear model (similar to Poisson 
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models). To emphasize this point, a two-unit change in Job Stress would predict a residual variance 

on the raw scale of 21.05 1.39 1.05 1.39 1.39 2.03      - each additional one-unit increase in the 

covariate raises the exponent of the effect (the exponent does not need to be an integer). Similarly, a 

one-unit change in Home Stress is predicted to multiplicatively increase the residual variance by 

2
ˆexp( ) exp(.05) 1.05   . The 95% credible interval for Home Stress contained 0, so the effect 

would be interpreted as being null. Substantively, this would mean that people with higher Job Stress 

are expected to have more unexplained within-person variability but higher Home Stress does not 

appear to affect within-person variability. In other words, Urge to Smoke is less predictable for 

people with higher values of Job Stress than people with lower reported Job Stress.  

Multilevel VAR (1) Model 

 Each of the models in the previous section have been univariate in nature such that there was 

a single outcome variable in the Within-Level model. In terms of the path diagram, this means that 

single-headed arrows only point to a single variable. Models for ILD may be extended to multiple 

outcomes simultaneously. The multilevel VAR(1) model is an example of a multivariate model that 

can easily be accommodated in the DSEM framework but that would be difficult to specify within 

standard multilevel modeling software like SAS Proc Mixed or lme4 in R (the mlVAR package in R 

can accommodate this by fitting each outcome variable separately and then combining information 

together, Epskamp, Desrno, & Bringmann, 2017). One example would be the so-called Lag-1 

multilevel vector autoregressive model [denoted as multilevel VAR(1)].  In the multilevel VAR(1) 

model, there are two outcome variables collected at each measurement occasion and the interest is 

whether the Lag-1 of either outcome predicts either outcome at the current time.9 Using our running 

                                                 
9 Note that the relation between Depression and Urge to Smoke has changed from a Lag-0 relation (when both 

variables are collected at the same measurement occasion) to a Lag-1 relation (Depression at the previous 

measurement occasion predicts Urge to Smoke at the current measurement occasion). This section intends to 

demonstrate the VAR(1) model using the same running example, but theoretical relations between variables should 

be considered when deciding which lag relation exists between variables.  
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example, the two outcomes would be Urge to Smoke and Depression. Urge to Smoke would be 

regressed on Lag-1 Urge to Smoke and Lag-1 Depression. Similarly, Depression would be regressed 

on Lag-1 Depression and Lag-1 Urge to Smoke. As in previous models, any of the intercepts or 

slopes can be specified to vary from person to person, as can the residual variances like in the 

location-scale model. A Within-Level portion of the path diagram for this model is shown in Figure 

8.  

[Figure 8 about here] 

If we wanted to fit the multilevel VAR(1) model in Figure 8 with latent variables for the 

residual variances, this is a straightforward extension of DSEM in Mplus. The model equations 

would be 

 

1 1 ( 1) 4 ( 1) 1

2 2 ( 1) 3 ( 1) 2

1 00 0

2 10 1

1 20 2

2 30 3

3 40 4

4 50 5

c c

ti i i t i i t i ti

c c

ti i i t i i t i ti

i i

i i

i i

i i

i i

i i

Urge Urge Dep e

Dep Dep Urge e

u

u

u

u

u

u

  

  

 

 

 

 

 

 

 

 

   

    

 

 

 

 

 

 

  (7) 

where 2

1 1~ (0, )ti ie N   and 2

2 2~ (0, )ti ie N  . Because both Urge to Smoke and Depression are 

outcome, both are latent person-mean centered by default such that  ( 1) ( 1) 1

c n

t i t i iUrge Urge     and 

 ( 1) ( 1) 2

c n

t i t i iDep Dep    . The residual variances have i subscripts as in the location-scale model 

and become outcomes in the Between-Level model, 

 

2

1 0 6

2

2 1 7

exp( )

exp( )

i i

i i

u

u

 

 

 

 
  (8) 
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This model is bivariate, so there are two residual variances – one for each outcome. Because the 

VAR(1) has multiple residual variances, covariances between the within-level residual random 

effects (
6 7and i iu u in Equation 8) can also be included if desired. We omit this term for 

simplicity, but more detail on how to expand the model to include it can be found in Section 4.2 

of Hamaker et al. (2018). Similar to the location-scale model, the model for the person-specific 

residual variances is log-linear so that values cannot be negative. Covariates could be included in 

these equations as well. The Between-Level latent variable covariance matrix used for this model is 

  8 00 77~ , ...i MVN diag  u 0  meaning that there is no correlation between the latent variables, 

though the latent variables are permitted to covary if desired.  

The Mplus code for this model would be  

VARIABLE: 

LAGGED = urge(1) dep(1);!Created a Lag-1 variable for urge and depression; 

CLUSTER=person;!The Between-Level ID variable is Person; 

ANALYSIS:    

TYPE = TWOLEVEL RANDOM; !Two-Level Model with paths that are latent variables; 

ESTIMATOR = BAYES;!Lagged variables can only be estimated with Bayes in Mplus; 

BITERATIONS=(1000);!Run at least 1000 iteration of the MCMC algorithm; 

MODEL: 

%WITHIN% 

phi1 | urge ON urge&1;! urge to smoke is regressed on Lag-1 urge to smoke,phi_1i 

!the slope is latent 

phi2 | dep ON dep&1;! depression is regressed on Lag-1 depression,phi_2i the slope is latent; 

phi3 | dep ON urge&1;!Depression is regressed on Lag-1 urge to smoke, phi_3i the slope is 

latent; 

phi4 |urge ON dep&1;!urge to smoke is regress on Lag-1 depression, phi_4ithe slope is latent; 

logv1|urge;!the Within-Level residual variance of urge to smoke is latent, !sigma^2_1i; 

logv2|dep;!the Within-Level residual variance of depression is latent, !sigma^2_2i; 

%BETWEEN% 

[urge]; !mean intercept of urge to smoke, gamma_00; 

[dep]; !mean intercept of depression, gamma_10; 

[phi1]; !mean of urge autoregressive slope,gamma_20; 

[phi2]; !mean of depression autoregressive slope,gamma_30; 

[phi3]; !mean of dep on urge&1 slope,gamma_40; 

[phi4]; !mean of urge on dep&1 slope,gamma_50; 

[logv1]; !log of the mean of the urge residual variance, omega_0; 

[logv2];!log of the mean of the urge residual variance, omega_1; 

urge; !urge to smoke intercept variance, tau_00; 

dep;  !depression intercept variance, tau_11; 

phi1; !urge to smoke autoregressive slope variance, tau_22; 

phi2; !depression autoregressive slope variance, tau_33; 

phi3; !dep on urge&1 slope variance, tau_44; 

phi4; !urge on dep&1 slope,tau_55; 

logv1;!between-person variance of urge to smoke residual variance, tau_66; 

logv2; !between-person variance of depression residual variance, tau_77; 

 

In the code for this model, both Urge and Depression are included in the LAGGED statement because 

each are predicted by their Lag-1 component. The Within-Level model includes more relations now 
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because there are two autoregressive slopes (urge ON urge&1 and dep ON dep&1) and two 

cross-lagged paths (urge ON dep&1 and dep ON urge&1). Each of these relations are 

specified to be person-specific by placing a latent variable label followed by a vertical pipe before 

the particular path. The remaining Between-Level model code is similar to previous DSEM models 

we have discussed: each latent variable in the Within-Level model receives an intercept by placing 

the label in square brackets and a between-person variance by placing the label by itself outside of 

square brackets. 

 Results & interpretation. Table 7 shows the estimates from this model. From Table 7, the 

results show that the Lag-1 Urge to Smoke affects Urge to Smoke at time t (0 is outside the credible 

interval for the mean of Phi1) but Lag-1 Depression does not affect Depression at time t (0 is inside 

the credible interval for the mean of Phi2). Lag-1 Urge to Smoke does affect Depression at time t (0 

is outside the credible interval for the mean of Phi3) such that higher Urge to Smoke at time t –1 

predicts lower Depression at time t. Lag-1 Depression does not appear to affect Urge to Smoke at 

time t (0 is inside the credible interval for the intercept of Phi4). As in the Multilevel Location-Scale 

Model, the residual variance of both Urge to Smoke and Depression vary from person to person. The 

average residual variance of Urge to Smoke is exp(.66) 1.94  but there is between-person 

variability as indicated by the .51 random effect variance estimate ( 66 ). Similarly, the average 

residual variance of Depression is exp( .01) .99   but the between-person variability is much 

smaller with a random effect variance estimate of .01 ( 77 ).  

[Table 7 about here] 

The default prior distributions in Mplus do not allow for variances in the Between-Level 

model to drop below 0, so the credible intervals of variances will never contain zero. As a result, 

these credible intervals are not always informative for determining whether there is a non-null 

between-person variance in particular paths. The Between-Level variances of 
2 , 2 3 4, ,andi i i i     
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each have credible intervals of [0.00, 0.01], suggesting that these paths hardly vary across people and 

the credible interval is only positive because Mplus is preventing inadmissible negative values.10 The 

Lag-1 effect of Urge to Smoke on Urge to Smoke at time t ( 1i ) shows between-person variability, 

meaning that some people have less carry-over than others do.  

When considering the variances of the intercepts (i.e., the individual differences in person-

specific mean over time), we see a large variance for the intercept of Urge to Smoke, which means 

that the horizontal mean lines around which values fluctuate within a person are considerably 

different across people. In contrast, the small variance of the intercept of Depression indicates that 

the horizontal mean line around which Depression scores vary is about the same across people (e.g., 

people do not exhibit much difference on average Depression). The large between-person variance of 

2

1i  indicates that there are marked differences across people in the degree to which their Urge to 

Smoke cannot be predicted (based on their Urge to Smoke and Depression at the preceding time 

point). The small between-person variance of 2

2i indicates that there are very small between-person 

differences in the unpredictability of Depression.  

Issue to Consider: Trend in the Series 

 At the onset of this paper, we mentioned that most models for ILD require the series to be 

stationarity, one condition of which is that the expected value across the series is constant (

( )tE y  ). Though the Urge to Smoke examples we have covered met this assumption, it is not 

uncommon for ILD to have a trend such that the expected value is a function of time (Stroe-Kunold 

et al., 2012). For instance, imagine that the context of the Urge to Smoke example data were changed 

                                                 
10 This model did not feature any time-invariant covariates. If time-invariant covariates are included in the model, 

these Between-Level variances represent the unexplained variance present after accounting for effects of the 

covariates. Therefore, if the time-invariant covariates have non-null coefficients and the Between-Level variance are 

quite close to 0, it is still possible that there are between-person differences but that these differences are near-

perfectly predicted by the time-invariant covariates present in the model.  
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such that participants quit cold turkey immediately preceding the observation window. 

Hypothetically, the Urge to Smoke might decrease linearly over time and the time-series plot for a 

single person may hypothetically look like the left panel of Figure 9. If there is a constant linear trend 

over time, the series may be made stationary by de-trending the series. In N = 1 context, a simple 

way to do this is to use a regression model with time as the covariate, save the residuals, and model 

the trend-free residuals instead of the raw outcome. 

[Figure 9 about here] 

  This process is not always as simple to implement in N  > 1 settings because there are 

multiple residuals that could be used if de-trending with a two-level growth model. Rather than 

performing the analysis in two steps, the model can be estimated in a single step by including Time 

as a time-varying covariate in the model (e.g., Hamaker et al., 2018; Wang & Maxwell, 2015). To 

demonstrate with a multilevel AR(1) without time-invariant covariates, a trend could be accounted 

for with the following model,  
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  (9) 

A simulation by Asparouhov (2018) shows that this method recovers the coefficients accurately but 

does not estimate the variance terms correctly. A complete explanation is given in Appendix D of 

Asparouhov et al. (2018), but the general idea is that it is best to model the trend separately from the 

autoregression to ensure stationarity. This can be done using residual DSEM (RDSEM) which allows 

for modeling the autoregression on the Within-Level residuals rather than on the variable itself. In 

equation form, the model would be  
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  (10) 

Note that 
( 1)t iUrge 

no longer appears as a covariate in the first equation; instead, the residual of the 

first equation appears as the outcome in the second equation and it is regressed on the residual at the 

previous time-point with some residual 2~ (0, )ti  . This specification separates the trend ( 2i ) 

from the autoregression ( i ) into different equations. Similar to DSEM, the individual differences in 

the autoregression path can be further modeled as a latent variable in the Between-Level model. To 

make this process as clear as possible, Figure 10 shows the Within-Level path diagram for this 

model. Mplus code for this is listed below – note that RDSEM is available beginning in Version 8.1 

or higher.  

[Figure 10 about here] 

VARIABLE:   

LAGGED = urge(1);!Created a Lag-1 variable for urge to smoke; 

WITHIN = time;! Time is only used in the Within-Level model; 

CLUSTER = person;!The Between-Level ID variable is Person; 

ANALYSIS:    

TYPE = TWOLEVEL RANDOM;!Two-Level Model with paths that are latent variables; 

ESTIMATOR = BAYES;!Lagged variables can only be estimated with Bayes in Mplus; 

BITERATIONS = (1000);!Run at least 1000 iteration of the MCMC algorithm; 

Define: CENTER dep (GROUPMEAN);!Person-mean center to time-varying covariate to get a !within-

person effect;      

MODEL: 

%WITHIN% 

beta | urge ON dep;! urge is regressed on Depression, the slope is latent; 

phi | urge^ ON urge^1;!The “ ^ “ symbol is shorthand for residual; 

! The residual of Urge to Smoke is regressed on Lag-1 residual !of Urge to Smoke, the slope is 

latent; 

trend | urge ON time;! urge is regressed on time to capture the trend over time, the !slope is 

latent; 

Urge; !within-level variance, sigma^2;   

  

%BETWEEN% 

[urge]; !mean intercept, gamma_00; 

[phi];  !mean of autoregressive slope,gamma_10; 

[beta]; !mean of TVC slope, gamma_20; 
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[trend]; !mean of the linear trend slope, gamma_30; 

[dep]; !the overall mean of Depression, gamma_40; 

urge;  !intercept variance, tau_00; 

phi;   !autoregressive slope variance, tau_11; 

beta;  !TVC slope variance, tau_22; 

trend; !linear trend slope variance, tau_33; 

dep;   !Between-person variance of Depression, tau_44; 

Issue to Consider: Unequally Spaced Measurement Occasions 

 The Urge to Smoke example data was ideally structured in that each of the 100 people had 50 

measurements at the same occasions. However, this is not always the case, especially when the 

measurement occasions are very close together and not all participants respond at the same 

measurement occasions. For instance, some techniques like ecological momentary assessment 

intentionally use random measurement occasions so that participants cannot anticipate the timing of 

the next prompt. When the data are unequally spaced in time, or when participants are not measured 

at the same occasions, the model setup and interpretation provided in the Urge to Smoke example 

may be inaccurate. Specifically, the issue is that the two-level DSEM assumes that the Lag-1 effect is 

constant across all measurement occasions.  

 To explain, imagine the first few measurement occasions for Person 1 occurred at 11am, 

3pm, and 4pm. If these times were coded at Time 1, Time 2, and Time 3, the Lag-1 effect for 11am 

to 3pm would be assumed to be the same as the effect of 3pm to 4pm in a two-level DSEM, even 

though the elapsed time is four times as long between Time 1 and Time 2 as Time 2 and Time 3. The 

two-level DSEM setup discussed earlier would not account for the fact that the distance between two 

adjacent measurement occasions is potentially different. This is highlighted in Figure 11. The 

standard DSEM operates as in the top panel such that measurement occasions are equally spaced. 

However, the proper interpretation would be closer to that shown in the bottom panel where there are 

unobserved potential measurement occasions between unequally spaced observed data. In the bottom 

panel, the carryover from 11am to 3pm would be equal to 
4         rather than   as shown 

in the top panel.  
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[Figure 11 about here] 

To accommodate this situation, users can use the TINTERVAL statement in the VARIABLE 

command of Mplus. In this statement, the time variable immediately follows TINTERVAL = with the 

desired time metric in parentheses. If the data were coded in one-hour increments such that 11am was 

coded as 11, 3pm as 15, and 4pm as 16,11 including TINTERVAL = time(1) would be added to 

the code to rescale time into one hour increments. Mplus would do this by appending the dataset and 

inserting all increments of the parenthetical value into the data. In the hypothetical example where 

the “1” is specified in parentheses, Mplus would insert rows for Time=12, 13, and 14 even though 

there are no observed data. The outcome is simply coded as missing. However, by appending the data 

in this way, it allows the autoregressive term to maintain a constant interpretation as shown in the 

bottom panel of Figure 11 –   would be the carryover from one-hour prior rather than being some 

complex weighted average of the diverse intervals (De Haan-Rietdijk, Voelkle, Keijsers & Hamaker, 

2017) as would be the case in the top panel of Figure 11.  

 The value included in parentheses of the TINTERVAL statement depends on how the data are 

coded. For instance, imagine the same data discussed in the preceding paragraph were coded daily 

instead of hourly. In this case, a one-hour increase would correspond to 
1

.04
24

  increase in time 

instead of 1, so .04 would be included in the parenthetical argument to get the one-hour lag effect 

instead. 

Asparouhov et al. (2018) suggest that the transformed time interval be selected such that the 

interval be (a) interpretable form a substantive or theoretical point of view, (b) be large enough to not 

produce large amounts of missing data, and (c) be small enough to preserve the original time metric. 

The definition of “large” amounts of missing data is suggested to be 90% or larger in simulations by 

                                                 
11 If coding this way, 0 would be the start of the study so 10am on day 2 would be coded as 34.  
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Asparouhov et al. (2018). For instance, if people are only measured twice per day, using an hourly 

interval may not be helpful because there will be 22 missing values, per person, per day. But 

choosing an interval of an entire day (24 hours) would be too large because it would not preserve the 

fact that multiple observations exist per day. Depending on when the measurement occasions were 

taken, perhaps it would be best to use 6 hour or 12 hour intervals to transform time in an interpretable 

manner.  

Essentially, when time is treated discretely, the results will depend on the time interval that is 

used in the study because this will dictate the distance between measurement occasions and how lags 

are interpreted (Kuiper & Ryan, 2018), which has been referred to as the lag problem (Reichardt, 

2011). The lag problem can be circumvented by adopting continuous time models rather than the 

operating in the discrete time framework we have used throughout this paper (e.g., Voelkle, Oud, 

Davidov, & Schmidt, 2012; Voelkle & Oud, 2013). By treating time as continuous, the benefit is that 

no interval needs to be specified, though the disadvantage is that estimation tends to be much more 

intensive and the model tends to be more difficult to specify in software. We will not go into detail 

about continuous time modeling here given the depth required to adequately discuss its nuances, but 

interested readers are referred to Ryan, Kuiper, and Hamaker (2018) for additional detail.   

Discussion  

DSEM combines time-series techniques for long sequences of observations from a single 

person with multilevel structural equation modeling, thereby allowing for individual differences in 

parameters that define an individual’s time series process. This makes DSEM particularly suitable for 

many forms of ILD in psychological research, as these data are formed from large numbers of 

repeated measures from multiple individuals. The structural equation modeling component implies 

that DSEM can handle multiple outcome variables and allows for the inclusion of latent variables in 

the model, in both the Within-Level and Between-Level models. Thus, while DSEM overlaps with 

existing and well-known approaches, it combines unique strengths of these different modeling 
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approaches, resulting in a flexible and sophisticated modeling framework that is specifically designed 

to tackle the challenges posed by ILD. Below, we compare DSEM to existing methods in more 

detail, noting where DSEM holds advantages over other traditional methods that researchers may 

alternatively consider. We also discuss potential drawbacks that researchers may want to note before 

embarking on a DSEM analysis.  

DSEM Compared to Time-Series Analysis 

  Like time-series analysis, DSEM was specifically designed to model the autocorrelation 

structure in ILD through the use of lagged regressions between observed variables and/or latent 

variables. However, time-series analysis is in essence an N = 1 technique, which implies that when 

ILD are obtained from multiple individuals, one must perform separate N = 1 analyses for each 

person. In contrast, DSEM combines the N = 1 time-series techniques with multilevel modeling, 

allowing for the simultaneous modeling of ILD of multiple people. Specifically, DSEM features a 

time-series model in the Within-Level model while modeling individual difference in the time-series 

parameters (such as means, autoregression and cross-lagged regressions) as latent variables in the 

Between-Level model. As such, DSEM allows researchers to study differences in the dynamics of 

individuals in a straightforward way, all within a single model.  

DSEM Compared to SEM 

Longitudinal data in psychology are often analyzed using SEM approaches such as latent 

growth curve modeling or cross-lagged panel modeling, which allow for the inclusion of multiple 

outcome variables as well as latent variables (McNeish & Matta, 2018).  Such SEM approaches are 

based on having the data in wide format, where each row represents a separate person (or dyad) and 

the different waves are represented as different columns (and thus treated as different variables). 

Although SEM with data in wide format is suitable for traditional panel data that consist of a 

relatively small number of repeated measures (say, between two and ten), it becomes less practical as 

the number of time points increases, although this approach has been used for N=1 time series data 



TWO-LEVEL DSEM PRIMER   45 

 

(cf. Hamaker, Dolan & Molenaar, 2005). However, when the number of time points increases, 

especially when dealing with multivariate data, at some point, computational problems will emerge 

(Asparouhov & Muthén, 2015 p. 182). Alternatively, researchers have used a Toeplitz approach 

(e.g., Brown & Nesselroade, 2005; Gonzales & Ferrer, 2014, Molenaar, 1985), which is known 

to lead to moment estimates instead of maximum likelihood estimates (Hamaker, Dolan & 

Molenaar, 2003). 

In contrast, DSEM is based on data in long format, where repeated measures are included as 

separate rows; this makes an increase in the number of time points arbitrary from a computational 

point of view. In addition, while SEM allows for individual differences in means or intercepts and for 

individual differences in the slope over time, the (lagged) regression coefficients are invariant across 

people (i.e., they cannot take random effects and must be modeled solely with fixed effects). In 

contrast, due to the multilevel features of DSEM, we can easily incorporate individual differences in 

(lagged) regression coefficients in our longitudinal analysis, and investigate how these differences 

are related to other individual differences.      

DSEM Compared to Multilevel Modeling  

Multilevel modeling is a regression technique for analyzing data where observations are 

clustered within higher level units (Hox, Moerbeek, & van de Schoot, 2017). Longitudinal data are a 

special case where repeated measures are clustered in individuals (or dyads, etc.), and multilevel 

models are often used to model such data (Bolger & Laurenceau, 2013; Walls & Schafer, 2006). 

However, as indicated above, the key focus of time-series analysis and DSEM is the autocorrelation 

structure of the data. In DSEM, this is modeled through decomposing the data into within-person and 

between-person variance, and subsequently modeling the remaining autocorrelation in the within-

person component through the use of lagged relations, either between a variable and itself at an 

earlier time point (autoregression), or between two different variables at different time points (cross-
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lagged regression). To some extent, this approach can be mimicked in standard multilevel regression 

software (e.g., Bringmann et al., 2013; Kuppens, Allen & Sheeber, 2010; Rovine & Walls, 2005; 

Suls, Green & Hillis, 1998). Below, we briefly describe how such an analysis can be performed using 

standard multilevel regression software, and then we discuss the limitations of this approach. 

Including Lagged Regressions in Standard Multilevel Software. To be able to study 

lagged relations and individual differences therein with ILD in standard multilevel software, 

researchers first need to create lagged variables that can be used as predictors. For instance, when 

considering the VAR(1) model in Equation 7, the researcher needs to create two lagged predictors: 

 1

n

t i
Urge


 and 

 1

n

t i
Dep


(recall that an n superscript refers to the raw, non-centered version of the 

variable). Subsequently, the researcher should person-mean center these lagged predictors using the 

observed means ( iUrge and iDep , as this is the only mean that is available with multilevel 

modeling), to yield    1 1

omc n

it i t i
Urge Urge Urge

 
   and    1 1

omc n

it i t i
Dep Dep Dep

 
  , where the 

superscript “omc” refers to “observed mean centered”. Then, these centered predictors can be 

included as Within-Level predictors in a multilevel model. Though person mean centering in 

multilevel software is the only option, this leaves estimates susceptible to both Nickell’s bias and 

Ludtke’s bias. These disadvantages are overcome by DSEM in Mplus, as it uses latent mean 

centering by default to similarly partition within-person and between-person effects, while also 

guarding against these biases (Asparouhov et al., 2018).  

Unequal Intervals and Missing Observations. Two common—and related—characteristics 

of ILD are unequal intervals between the observations and missing observations. Unequal intervals 

are a key feature of certain measurement designs, such as experience sampling, which is based on 

using random measurement times to ensure the participants are not anticipating the next 

measurement occasion. But even when the intervals between the measurement occasions are equal in 

the design, there will be some missing observations, which also result in unequal intervals between 
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the observations present in the data. When the interest is in lagged relations, this is a concern as it is 

well known that the strength of lagged relations (whether autoregressive or cross-lagged) depend on 

the time interval between occasions (Gollob & Reichardt, 1987; Ryan et al., 2018; Voelkle et al., 

2012). That is, the more temporally distant two observations are, the less strongly they will tend to be 

related.  

To account for different intervals between observations, researchers may decide to add 

missing values to the data file in order to make the distance between the observations 

(approximately) equal (cf. de Haan et al., 2017). However, this implies that when a lagged version of 

this variable is used as a predictor, there will also be a missing value on the predictor for the 

subsequent record. This means that the missing data problem is actually much larger than it would be 

in ordinary multilevel modeling without lagged regressions, and could lead to listwise deletion in 

programs that use conditional versions of maximum likelihood estimation (Bauer, 2003). 

DSEM circumvents this problem by using a Kalman filter approach in which missing data are 

easily incorporated. Heuristically, the approach can be understood as follows (for details, see 

Hamaker & Grasman, 2012; Kim & Nelson, 1999). The Kalman filter makes a prediction of the next 

observation, based on the lagged predictors. This prediction is compared to the observation for that 

occasion and updated in light of it. If there is no observation, the Kalman filter simply continues with 

the prediction it had; if there is an observation, the Kalman filter continues with the updated 

prediction. In both cases, the filter moves forward to the next occasion and now makes a prediction 

based on the observations and predictions of the previous occasion.  

Due to this procedure, none of the observations are lost, even if the majority of occasions are 

characterized by either a missing outcome or predictor (see Asaparouhov et al., 2018). Furthermore, 

there is no need for the user to add records with missing data to make the records equally spaced in 

time; instead, the user can allow Mplus to handle the unequal intervals between observations by 
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adding a variable that represents time since the first observation, and use this in the TINTEVAL 

command described earlier.     

Multivariate Outcomes. In comparison to standard multilevel modeling, DSEM extends 

easily to more complex types of models. For instance, the multilevel VAR(1) model has two (or 

more) outcome variables, a feature that is often not straightforward to accommodate within a single 

model with standard multilevel software and could require fitting a separate model to each outcome. 

Fitting separate models for each outcome can be particularly undesirable it does not allow for a direct 

estimation of the correlations between the innovations, nor of the correlations between the random 

coefficients associated with different outcome variables (for instance, the means and/or 

autoregressive parameters of different variables). Other multivariate models involving ILD would 

similarly require multiple univariate models to be combined, while DSEM allows for fitting a single, 

multivariate model.  

Latent Variables & Measurement Error. The outcome variable and predictors in standard 

multilevel software are observed and each is featured within a column in the data. In contrast, this is 

not necessary with DSEM as the predictors and/or outcome(s) at each time could be any combination 

of observed and latent variables. This implies that autoregression can be performed by regressing the 

latent variable at time t on the same latent variable at time t – 1, while time-varying observed 

covariates could then predict latent variable at time t. If latent variables were treated with a 

multistage approach where latent variables are scored in the first stage and treated as known in the 

second stage, this could lead to biased coefficients (Devlieger, Mayer, & Rosseel, 2016) and a Croon 

correction is recommended (Croon, 2002).  

While latent variables are typically measured using multiple indicators (and if so, researchers 

would need to assess measurement invariance to ensure that the latent variable has the same meaning 

over time), this need not be the case. Schuurman, Houtveen, and Hamaker (2015) note that 
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measurement error in observed variables may be a pervasive problem in ILD, which can be 

partitioned out via latent variables, using only one observed indicator for the latent variable. This can 

also be done in the multilevel case with DSEM (Schuurman & Hamaker, 2019). Additionally, 

moving average components—which were not discussed in this paper, but are often considered in the 

time-series literature—can also be considered as latent variables: Moving average models include 

delayed effects of the residual at time t – 1 on the outcome at time t. From the time-series literature it 

is known that an AR(1) model with measurement error can be rewritten as a model with a moving 

average component, although the reverse is not necessarily true (see also Asparouhov et al., 2018; 

Schuurman et al., 2015).  

Structural Relations in the Between-Level Model. Standard multilevel software allows for 

observed time-invariant variables to be included at the between-level model, meaning that the latent 

variables can only be treated as outcomes (Sadikaj, Wright, Dunkley, Zuroff, & Moskowitz, 2019). 

In DSEM, one can specify any structural relations of interest in the Between-Level model, meaning 

that one can specify any relations desired using either latent variables or time-invariant observed 

variables, without restriction. That is, either latent or observed variables can be as predictors, 

mediators, or outcomes. Multivariate relations are permissible at the Between-Level, including factor 

models or a path models (such as mediation; Preacher, Zyphur, & Zhang, 2010). Essentially, DSEM 

removes constraints on what can be modeled in the Between-Level model compared to the relatively 

strict constraints of a standard multilevel model.  

Advantages of DSEM in Comparison to Multilevel SEM 

  Mplus includes the possibility of multilevel SEM, which combines aspects of multilevel 

models with aspects of SEM to allow an SEM at the Within-Level with latent variables that can be 

further modeled in the Between-Level model. Many of the advantages of DSEM in comparison to 

SEM or multilevel modeling that were discussed above are also possible with multilevel SEM (e.g., 

Sadikaj et al., 2019). The main advantage of DSEM over multilevel SEM is that DSEM is 
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specifically designed to model lagged relations and to account for the time-order of the observations. 

Typical DSEM tools that do not exist in multilevel SEM are the commands that creation lagged 

observed and latent variables, the TINTERVAL command that can be used to account for unequal 

intervals (Asparouhov et al., 2018), the Kalman filter foundation that handles missing observations in 

an elegant and appropriate manner (Hamaker & Grasman, 2012; Harvey, 1989), and many plotting 

options that can be used to investigate the observed and latent time sequences.   

Potential Concerns with DSEM 

Constant Autoregressive Coefficients. Two-level DSEM models that we covered assume 

that the effects are constant between any arbitrary pair of measurement occasions. For instance, the 

autoregressive slope (averaged across individuals) for Urge to Smoke on Lag-1 Urge to Smoke in 

Table 7 was .19. This means that the autoregressive slope between Time 2 and Time 3 is .19, Time 3 

and Time 4 is .19, and so forth. This similarly applies to any time-varying covariates such as the 

effect of Depression in our examples, which would be assumed to have a constant effect across time. 

Asparouhov et al. (2018) note that this is reasonable in a large number of application areas but may 

be violated in others.  

If effects in the Within-Level model are thought to change across people and across time, this 

can be accommodated with a cross-classified model within Mplus. A cross-classified DSEM is 

similar to the time-varying effect model proposed in Shiyko, Lanza, Tan, Li and Shiffman (2012; see 

also Bringmann, Ferrer, Hamaker, Borsboom & Tuerlinckx, 2018), except that the time-specific 

effects are captured with random effects in DSEM, meaning that researchers do not need to specify 

the functional form of the effects over time. Such a cross-classified DSEM model would estimate the 

average autoregressive coefficient over all measurement occasions but would allow each 

measurement occasion to have a potentially different effect so that the values are not constrained 

(Asparouhov et al., 2018).  



TWO-LEVEL DSEM PRIMER   51 

 

Heterogeneity in Series. DSEM follows the random effect tradition, which means that it has 

implicit assumptions about time-series processes across people (Nesselroade & Molenaar, 1999). 

Specifically, DSEM, like most multilevel models, posits that random effects (e.g., means, 

autoregressive parameters, cross-lagged regression parameters) that follow a multivariate normal 

distribution (Molenaar, 2004). Researchers may be concerned about this assumption, and wonder 

about possible ramifications when the random effects are actually not normally distributed, but 

perhaps are formed for instance a mixture of two normal distributions. 

If one has a variable that may be considered as predictive of this mixture (e.g., gender or age 

group), this could be included as a predictor in the Between-Level model (Voelkle, Brose, 

Schmiedek, & Lindenberger, 2014). Alternatively, a two-step approach may be employed, which 

similarly follows suggested practice for clustered data prior to the proliferation of multilevel models. 

Here, this process involves modeling each person separately (i.e., running N single-subject time-

series models, either with DSEM or with standard time-series analysis software), saving the estimates 

for each person, and then performing subsequent analyses on these estimates. This approach may 

however be rather time-consuming, and it is difficult to combine the results in a single analysis 

afterwards, as one should account for the uncertainty of the individual parameter estimates before 

combining them. Also, this may not be necessary – even if the random effects are not normally 

distributed in the population: When the individual time-series are of sufficient length (say 30 

observation or more), the normality assumption is overruled by the data, and one can find non-

normal distributed random effects when plotting the person-specific estimates, which is possible with 

DSEM in Mplus. However, this does require researchers to obtain these estimates and inspect plots 

created from them, which arguably should become default practice when employing DSEM.     

Concluding Remarks 

This paper intended to serve as a basic introduction to two-level DSEM, how these models 

are fit in Mplus, and how the estimates are interpreted. Given our intended purpose and audience, we 
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admittedly did not cover some of the more advanced features of DSEM framework and constrained 

the discussion to two-level models with observed outcomes. The DSEM framework extends further 

than what is presented here and we strongly encourage readers interested in more advanced models to 

consult Asparouhov et al. (2018) for a complete and nuanced treatment of these capabilities within 

Mplus once they feel they have a grasp on the basic elements of DSEM.  

 The DSEM framework is broad and encompasses many models. All nuances of DSEM 

cannot be covered within a single paper and we only scratched the surface with the models that we 

covered. However, we hope that this primer provides readers with a foundational understanding of 

DSEM needed to dive deeper in this expanding literature.    
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Table 1 

Comparison of characteristics of developmental and stable process  

 

 

  

  

Developmental 

Processes 

Stable 

Processes 

Number of 

Measurement 

Occasions  

 

Few (3-8) 

 

Many (10+) 

 

Spacing of 

Measurements 

Further apart (months or years) 

 

 

Closer together  (hours or days) 

 

 

Longitudinal 

Focus 

Change in outcome across entire 

observation window 

 

Instantaneous changes from time-

point to time-point 

 

Mean 

Change 

Primary focus; goal is to capture 

changes across the observation 

window 

 

 

Non-interest because the process is 

mean-reverting and stable across the 

observation window. A nuisance to 

accommodate if present  

 

Variability Secondary focus to mean change and 

typically regarded as noise; 

commonly not reported 

 

 

Variability around a stable mean is 

the main focus; goal is capture why 

there are peaks and valleys across 

time 

 

Covariate 

Focus 

Variables that change the growth 

curve (explaining between-person 

variability) 

Variables predicting fluctuations 

from time to time (explaining within-

person variability) 
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Table 2 

Estimates and 95% credible intervals for N =1 AR(1) model  

Effect Notation 
Posterior 

Median 

95% 

Credible Interval 

Urge on URGE&1    0.31 [.03,.60] 

Intercept (URGE)    -0.03 [-.81,.81] 

Res. Var. (URGE)  2   8.18 [5.59,12.26] 
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Table 3 

Estimates and 95% credible intervals for N =1 AR(1) model with a time-varying covariate  

  

Effect Notation 
Posterior  

Median 

95% 

Credible Interval 

URGE on URGE&1    .35 [.25, .46] 

Intercept (URGE)    .07 [-.24, .39] 

URGE on DEP    2.43 [2.12, 2.75] 

Res. Var. (URGE)  2   1.36 [.92, 2.20] 
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Table 4 

 Estimates and 95% credible intervals for multilevel AR(1) model  

 

 

 

  
Effect Notation   

Posterior 

Median 

95% 

Credible Interval 
  

Intercept (Alpha) 00   -.01 [-.18, .16]  

Intercept (Phi) 10   .21 [.17, .24]  

Intercept(Beta) 20   .80 [.61, .95]  

Intercept(Dep) 30    .01 [-.02, .04]  

Var. (Alpha) 00   .60 [.44, .83]  

Var. (Phi) 11   .02 [.01, .03]  

Var. (Beta) 22   .79 [.61, 95]  

Var. (Dep) 33    .01 [.00, .01]  

Res. Var (Urge) 2    1.14 [1.09, 1.19]  
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Table 5 

Estimates and 95% credible intervals for multilevel AR(1) model with time-invariant covariates 

 

 

 

 

 

 

   

Effect Notation 
Posterior 

Median 

95% 

Credible Interval 

Intercept (Alpha) 00  .06 [-.14,.30] 

Intercept (Phi) 10  .19 [.16,.22] 

Intercept(Beta) 20  .79 [.62,.95] 

Intercept(Dep) 30   .02 [-.01, .05] 

Alpha on Job Stress 01  .50 [.35,.65] 

Alpha on Home Stress 02  .33 [.19,.46] 

Alpha on Dep 03   -2.35 [-11.22, 4.35] 

Phi on Job Stress 11  .12 [.09,.15] 

Phi on Home Stress 12  .06 [.03,.08] 

Beta on Job Stress 21  .29 [.11,.48] 

Beta on Home Stress 22  .35 [.17,.51] 

Var. (Alpha) 00  .34 [.16.49] 

Var. (Phi) 11  .01 [.00,.01] 

Var. (Beta) 22  .64 [.47,.88] 

Var. (Dep) 33   .01 [.00, .01] 

Res. Var. (Urge) 2   1.14 [1.09,1.18] 
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Table 6 

Estimates and 95% credible intervals for multilevel location-scale model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Effect Notation 

Posterior 

Median 

95% 

Credible Interval 

Intercept (Alpha) 00  .03 [-.18, .26] 

Intercept (Phi) 10  .19 [.17, .22] 

Intercept(Beta) 20  .79 [.64, .95] 

Intercept(Dep) 30   .02 [-.01,.05] 

Intercept(LogV) 0  .05 [-.04, .12] 

Alpha on Job Stress 01  .50 [.34, .65] 

Alpha on Home Stress 02  .31 [.18, .44] 

Alpha on Dep 03   -.77 [-8.62, 8.08] 

Phi on Job Stress 11  .12 [.09, .15] 

Phi on Home Stress 12  .06 [.03, .09] 

Beta on Job Stress 21  .28 [.10, .49] 

Beta on Home Stress 22  .35 [.19, .51] 

LogV on Job Stress 1  .33 [.23, .40] 

LogV on Home Stress 2  .05 [-.03, .12] 

Var. (Alpha) 00  .34 [.21, .47] 

Var. (Phi) 11  .01 [.00, .01] 

Var. (Beta) 22  .63 [.49, .86] 

Var. (Dep) 33   .01 [.00,.01] 

Var. (LogV) 44  .09 [.06, .15] 
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Table 7 

Estimates and 95% credible intervals for multilevel VAR(1) model 

 

Effect Notation 
Posterior 

Median 

95% 

Credible Interval 

Intercept (Alpha Urge)  00  -.01 [-.19, .15] 

Intercept (Alpha Dep) 10   .01 [-.02, .05] 

Intercept(Phi1) 20  .18 [.13, .22] 

Intercept(Phi2) 30  .01 [-.03, .05] 

Intercept(Phi3) 40  -.03 [-.05, .-01] 

Intercept(Phi4) 50  .02 [-.02, .06] 

Intercept(LogV Urge) 0  .66 [52, .81] 

Intercept(LogV Dep) 1  -.01 [-.05, .03] 

Var. (Alpha Urge) 00  .62 [.46, .88] 

Var. (Alpha Dep) 11  .00 [.00,.01] 

Var. (Phi1) 22  .02 [.01, .03] 

Var. (Phi2) 33  .00 [.00,.01] 

Var. (Phi3) 44  .00 [.00,.01] 

Var. (Phi4) 55  .00 [.00,.01] 

Var. (LogV Urge) 66  .51 [.38,.70] 

Var. (LogV Dep) 77  .01 [.00,.02] 
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Figure 1. Comparison of 

developmental process data for 6 measurements occasions (left) and stable process data for 50 

measurement occasions (right) 
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Figure 2. Path diagram of N =1 AR(1) model with time-varying covariate based on Equation 2 

with labels corresponding to Mplus code. The means and variances of the exogenous variables 

(Lage-1 Urge to Smoke and Depression) are not shown to focus on parameters of interest in the 

model.  
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Figure 3. Path diagram of multilevel AR(1) model from Equation 4c. The means and variances 

of the exogenous variables (Lage-1 Urge to Smoke and Depression) are not shown to focus on 

parameters of interest in the model.   
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Figure 4. Multilevel AR(1) path diagram for the model in Equation 4c with labels corresponding 

to Mplus code. The means and variances of the exogenous variables (Lage-1 Urge to Smoke and 

Depression) are not shown to focus on parameters of interest in the model.  
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Figure 5. Path diagram for multilevel AR(1) model with time-invariant covariates based on 

Equation 5. The means and variances of the exogenous variables (Lage-1 Urge to Smoke, 

Depression, Home Stress, and Job Stress) are not shown to focus on parameters of interest in the 

model.  

Within-Level 

Between-Level 
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Figure 6. Comparison of trace plots for Person 5 (grey) and Person 96 (black) to highlight 

differences in variability across people when N > 1. Means for each person are shown as dashed 

lines  
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Figure 7. Path diagram for multilevel location-scale model based on Equations 5 and 6. The 

means and variances of the exogenous variables (Lage-1 Urge to Smoke, Depression, Home 

Stress, and Job Stress) are not shown to focus on parameters of interest in the model.  
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Figure 8. Within-Level path diagram for the multilevel VAR(1) model based on Equation 7. The 

means and variances of the exogenous variables (Lage-1 Urge to Smoke, Lag-1 Depression) are 

not shown to focus on parameters of interest in the model.  Major changes occur in the Within-

Level model, so we do not include the Between-Level model in order to focus on the relevant 

pedagogical information. The Between-Model also has no covariates and is comprised only of 

means and variances.  
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Figure 9. Trace plot for a single hypothetical individual with a negative linear trend 

superimposed with a dashed grey line.  
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Figure 10. Within-Level path diagram for RDSEM model with a linear trend for the model 

shown in Equation 10. The means and variances of the exogenous variables (Lage-1 Urge to 

Smoke, Depression, and Time) are not shown to focus on parameters of interest in the model. 
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Figure 11. Model specification if treating unequally spaced measurement occasions as if they are 

equally spaced (top) vs. using the TINTERVAL statement in Mplus to accommodate unequally 

spaced measurement occasions. In the bottom panel, the dashed circles are not observed in the 

data but are included as missing observations to facilitate the interpretation of the autoregressive 

term.  


