
DRAFT

DO
NOT

DIS
TRIB

UTE

DO
NOT

CIT
E

Bayesian inference and testing any hypothesis you
can specify
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Hypothesis testing is a special form of model selection. Once a pair of competing models is fully defined, their definition immediately leads
to a measure of how strongly each model supports the data. The ratio of their support is often called the likelihood ratio or the Bayes factor.
Critical in the model selection endeavor is the specification of the models. In the case of hypothesis testing, it is of the greatest importance
that we specify exactly what is meant by a “null” hypothesis as well as the alternative to which it is contrasted, and that these are suitable
instantiations of theoretical positions. Here, we provide an overview of different instantiations of null and alternative hypotheses that can be
useful in practice, while the underlying method of likelihood comparison is universal and identical in all cases. An associated app can be
found via https://osf.io/mvp53/.
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Just as a computer stands ready to perform any calculation
we ask of it, our present theory of Bayesian inference stands
ready to answer any question we put to it.

E. T. Jaynes (Rosenkrantz, 1983, p. 382)

The topic of this special section of Advances in Methods and
Practices in Psychological Science is “providing evidence against
a (meaningful) effect.” Here, we will provide a few examples of how
such evidence can be quantified. Once evidence is quantified, it
can easily be combined with existing knowledge to evaluate the
probability that an effect is (practically) non-existent.

However, owing to the advancement of statistical computing
power, it is not the computation of evidence or of probabilities that
is most challenging in scientific inference. What is critical in the
evaluation of theories, models, and hypotheses is that they are
clearly and unambiguously specified. Indeed, once a model is
sufficiently specified, the scientist only has to “turn the crank” of
inference to calculate the evidence for or against some theory
(Edwards, Lindman, & Savage, 1963). Both for the quantification of
evidence and for combining evidence with prior knowledge, we can
turn to probability theory. The use of probability theory for this goal
starts with Bayes (1763), and is followed by seminal advances due
to de Finetti (1974), Jeffreys (1961), Laplace (1829), and Savage
(1951). Several tutorials in the psychological literature are available
including our most recent ones Etz and Vandekerckhove (in press)
and Rouder and Morey (in press).

Here, we provide a theoretical introduction to the step that
precedes these computational steps: stating a question clearly.
We illustrate how slightly different questions can lead to different
outcomes, and how models that seem qualitatively different are
sometimes very difficult to distinguish. In order to set up our
discussion of precise scientific hypotheses, we first introduce some
relevant concepts from the philosophy of science and statistics.
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Occam’s Razor and Russell’s Teapot It is hopefully self-evident
that no statistical procedure can discriminate between two models
if they make exactly the same predictions for all scenarios (Wrinch
& Jeffreys, 1921). Similarly, if one of the models is so flexible that
it generates predictions that are arbitrarily close to the predictions
of the other, they can strictly speaking not be distinguished. For
example, if Theory A says that some difference is 0 IQ points,
Theory B says the difference is 10−12 IQ points, and modern
studies have a maximum precision of roughly 5 points of difference,
then intelligence researchers will simply have to make peace with
the fact that these two theories cannot be told apart from IQ data
alone. If, on the other hand, Theory C says that the difference can
be anywhere from -100 to +100, and the available data happen to
indicate that the difference is very close to zero, we are justified
in concluding that the more complex, less parsimonious Theory C
should probably be discarded.

A famous argument by Bertrand Russell (1952) involves a mys-
terious teapot orbiting the Sun, somewhere between Earth and the
planet Mars. To summarize the argument: no observations that
we have available can conclusively rule out the existence of such
a teapot – the “teapot theory” and the “no teapot theory” make
essentially identical predictions about the data received by even
the strongest of our telescopes.1 However, the litany of additional
assumptions that one would need in order to make the celestial
teapot theory likely is so extensive that any rational observer (justly)
rejects the claim out of hand. The theory is not per se falsified by
any data, but it lacks parsimony, and so with each observation that
fails to confirm the existence of the teapot, evidence for its nonex-
istence accrues. Figure 1 provides a modern example of the same
line of reasoning. This concept—that all other things being equal,
simpler theories are preferred to more complex theories—is alter-
natively known as Occam’s razor, the principle of parsimony, and
the simplicity rule (Myung & Pitt, 1997; Vandekerckhove, Matzke,
& Wagenmakers, 2015).

Both of these insights—that some theories are impossible or
impractical to distinguish from one another and that the more
parsimonious explanation is preferable—from the philosophy of

1And should the authors be wrong on this account, the celestial teapot can easily be amended to
be sentient, timid, and having the ability to make itself invisible.
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Fig. 1. The existence of a number of unlikely creatures such as lake monsters and
the sasquatch has gradually become falsified over the last decade or so as mobile
cameras have become ubiquitous. The implication is that, if such creatures did
exist, clear photographic evidence would be available by now with high probability.
By contrast, if they did not exist, any photographic evidence would be unclear and
unconvincing as it always has been. Since clearer photographs have not emerged, and
there are no strong prior reasons to believe in these phenomena, we may reasonably
conclude that lake monsters, flying saucers, ghosts, and Bigfoot do not exist. However,
the jury is still out on the Grinch, Whos, and other snowflake-dwellers. This drawing is
titled “Settled” and is ©Randall Munroe (xkcd.com/1235).

science are independently codified by probability theory, as we will
demonstrate.

Jeffreys’s Platitude As cell phone cameras have become more
ubiquitous, the likelihood that Bigfoot exists has gradually dwindled.
Similarly, as telescopes grow more and more powerful, we gradu-
ally falsify the existence of Russell’s Teapot. However, an important
realization in falsifying the existence of some phenomenon is that
the “mere existence” hypothesis is often underspecified. Suppose,
for example, that Russell had specified that his teapot is approx-
imately the size of Mars, and that it always resides close to the
red planet. This particularisation of the teapot theory, while valid,
is clearly falsified by the available data (because such an object
would be visible to the naked eye). There is a clear distinction be-
tween the questions “Does the celestial teapot exist?” and “Does
a celestial teapot with a volume of about 1.6 × 1011 km3 exist?”

Jeffreys’s Platitude (Jeffreys, 1939) is, to paraphrase slightly,
“Answers depend on questions.” In the context of statistical testing,
it should be a platitude that if we change the definition of a statistical
model (including changes in the prior knowledge regarding which
values parameters can and do take; such as the supposed volume
of a teapot), it should not come as a surprise that the evidence for
or against this model may change as a result.

Statistical inference We have stressed above that the crux of in-
ference is formulating the scientific question of primary interest. We
then must construct a statistical model to represent our scientific
problem and identify the quantities of interest (e.g., what repre-
sents a “meaningful” or “practically relevant” effect?), before seeing
how our data inform the probability of these quantities. Within
the framework of Bayesian inference this process is essentially
automatic, following naturally from probability theory and using
Bayes’ theorem in particular.

We will not go into the finer details here (see Kass & Raftery,
1995) except to point out that the probabilistic framework is used to
update the prior probability of a theory (i.e., its plausibility before the
data are seen) into its posterior probability (after the data are seen).
The change in the relative probability of any two models after
seeing the data is captured by the Bayes factor (Jeffreys, 1961).
Specifically, we multiply the prior odds in favor of a meaningful

effect with the Bayes factor (B) to obtain the posterior odds in favor
of that effect:

P (meaningful effect)
P (no meaningful effect)︸ ︷︷ ︸

odds before seeing the data

×B = P (meaningful effect|data)
P (no meaningful effect|data)︸ ︷︷ ︸

odds after seeing the data

where the Bayes factor is

B = P (data|meaningful effect)
P (data|no meaningful effect) . [1]

If the Bayes factor is larger than 1, the data increase the odds in
favor of the existence of a meaningful effect, and vice-versa.

The Bayes factor acts to update our prior odds in favor of a
meaningful effect to the posterior odds in favor of a meaningful
effect by comparing the probability the two positions give to the ob-
served data. Below we demonstrate how this can be done across a
number of scenarios, where what constitutes a “meaningful effect”
is determined primarily by context. As a result, it will become clear
that there is no such thing as “the” unique Bayes factor for any
given data set: the Bayes factor expresses a relationship between
the available data on the one hand and the question being asked
on the other (Morey & Rouder, 2011). As we have argued above
in the context of Jeffreys’s Platitude, this is both just and proper,
and we should be highly skeptical of any inferential method that
ignores such important context.

Possible scenarios

One way of putting Jeffreys’ Platitude in context is to draw a dis-
tinction between theoretical positions and model instantiations. A
theoretical position is a verbal statement such as “there is no true
effect” or “there is some true effect.” A statistical hypothesis is an
instantiation of a theoretical position that is sufficiently precise that
it predicts where the data should occur before they are seen. The
verbal statement, “there is some true effect,” fails this prediction
test—one cannot place a probability distribution over where the
data are likely to occur. Rouder, Morey, and Wagenmakers (2016)
note that there are often many ways to instantiate hypotheses such
as “there is no effect” or “there is some effect.” Jeffreys’ Platitude
reminds us that instantiations matter. Rouder et al. (2016) explore
this important observation by positing that several research teams
might instantiate different effect models. Here we expand their
approach to include different effect and null-effect models.

Once competing models have been carefully constructed, we
can activate the Bayesian machinery that allows us to determine
how much evidence there is for each account. As has been argued
elsewhere (e.g., Cox, 1946, Jaynes, 2003), probability theory is
not merely one way of doing this, but indeed it is uniquely suited.
The problem of assigning plausibility to competing hypotheses is
solved exclusively by probability theory.

The point null hypothesis Consider the popular example of “feel-
ing the future” (Bem, 2011). The case of extrasensory perception
(ESP) is such that we have very specific hypotheses about what
its nonexistence would look like. If ESP does not exist, there isn’t
a smidgen of it. Performance at a chance task is at chance. The
null hypothesis that accurately captures this account is a point
null hypothesis. Under this hypothesis the accuracy θ (theta) at
a guessing task with two alternatives is exactly one-half. This hy-
pothesis is visualized in Figure 2 (top) as a spike distribution (i.e.,
a vertical line).

2 of 9 Etz et al.
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and the uniformly positive alternative spans from ½ to 1 (dashed line). Bottom. The
predictions from the point null hypothesis (gold, inverted bars) and the uniformly
positive alternative (blue). The arrows indicate the observed data in a fictional ESP
experiment, and the Bayes factor is the ratio of the heights of the two bars.

What remains is to define an appropriate alternative to which
this point hypothesis is to be compared. Here we run into what
we might call a teapot problem: Any amount of ESP would be a
discovery for the ages but, much like the trepid teapot or the tiny
difference in IQ, it is impossible to devise a test that can detect
an arbitrarily small deviation in θ. We rapidly reach the theoretical
limits of inference. Now what?

One way to address this issue is to thoughtfully craft an alter-
native theoretical account informed by the specific context of the
problem. In just the same way we carefully devise a null hypothesis
that accurately captures what we think the absence of ESP should
look like, we can craft an alternative that captures what ESP would
look like, should it exist. This brings us to one candidate.

The uniformly positive hypothesis One possible conception of
ESP is that a person who has it outperforms chance to some
extent, but all extents are equally likely. Under this alternative
hypothesis, all values for the accuracy θ that exceed one-half
are equally plausible, while all other values are ruled out. This
uniformly positive hypothesis is shown in Figure 2 (top) as a uniform
distribution from ½ to 1 (dashed line).

The Bayes factor

Each of the two models now defined—the null hypothesis as a
point and the alternative as an interval over one half of the range of
possible values—implies a statement about what the data of some

experiment would look like if the model were true. Suppose that we
did some experiment on ESP with 25 trials with two choice options.
Under the null, in such an experiment there is approximately a 10%
chance of getting 10 correct responses, 13% chance of getting
11 correct responses, and so on (Fig. 2, bottom; computations
are in Box 2). Under the alternative, these data outcomes have
a probability of only 1% and 2%, respectively. We say that the
null “predicts,” “expects,” or “supports” these patterns of data more
strongly than does the alternative, but it is important to note that
prediction and expectation here are statistical jargon that have,
for example, nothing to do with temporal order (i.e., a model can
predict or expect observations that have occurred in the past),
which is why some of us prefer “support.”

The inference procedure now proceeds along three steps. First,
if possible, determine the prior probability that the null hypothesis
is true. For illustrative purposes, let’s assume equiprobability: the
prior odds are 1:1. Second, use the data to compute the Bayes
factor. Third, use the Bayes factor to turn the prior odds into the
posterior odds, by multiplying the prior odds with the Bayes factor.

Direct computation of the Bayes factor can be challenging when
dealing with complicated models, often requiring numerical ap-
proximation, but conceptually it is always the relative strength with
which the observed data were expected under each model. Sup-
pose, for example, that we observe a participant get 15 correct
answers (still out of 25). The point null gives this outcome a 9.74%
probability, while the alternative gives it only 6.43% (see the arrows
in the bottom panel of Fig. 2), so the Bayes factor is 9.74/6.43 =
1.51 in favor of the null. Multiplying 1.51 with the prior odds of 1:1
gives 1.51:1 posterior odds, or a posterior probability on the null
hypothesis of just above 60%.

Other possible scenarios

We cannot emphasize enough the importance of Jeffreys’s Plati-
tude to the practice of model selection (and hypothesis testing). For
example, here are two other conceptualizations of the presence
and absence of ESP that we might consider.

The competing-point hypothesis The simplest bet in a game of
American roulette is to pick one color (red or black), which gives
winning odds of 18:20, or approximately a 53% chance of losing.
The 3% difference is called the house advantage, which is the
carefully controlled way in which casinos stack the deck and ensure
profit. Suppose that we think that, if ESP exists, it gives a subtle
edge to the clairvoyant at roulette – just enough to match the house
advantage (i.e. a 3% increment). We might now say that this 53%
is the magnitude at which we expect ESP to express itself in our
new data. This leads to the most informative alternative possible:
an exact specification of the accuracy θ.

The competing-point hypothesis is shown in Figure 3, with the
information about θ under both hypotheses displayed in the top
panel as two spikes, and the associated predictions about the data
in the bottom panel as two overlapping histograms. One salient
observation about this scenario is how similar the predictions are.
Even at the very extreme ends of the possible observations (0/25
and 25/25), the difference in support by the two hypotheses is at
most a factor of 4.7. That is, even the most diagnostic data set of
25 observations imaginable would not deliver very much evidence
to discriminate between these two accounts. We have another
teapot problem, and would need to gather more data (if we really
do care about distinguishing between two so similar hypotheses).

Etz et al. Cognition and Individual Differences lab | University of California, Irvine | cidlab.com | March 3, 2018 | 3



DRAFT

DO
NOT

DIS
TRIB

UTE

DO
NOT

CIT
EFig. 3. Top. The point null (solid line) and point alternative (dashed line) hypotheses

are represented by spikes at 50% and 53%, respectively. Bottom. Predictions from
the two point hypotheses (point null predictions are drawn in gold and inverted; point
alternative predictions in blue) are hard to distinguish, meaning that we will not be
able to obtain much evidence for one over the other.

The positive decaying hypothesis Rouder, Morey, and Province
(2013) instantiated the “there is some effect” position by stipulating
that, under the ESP hypothesis, people should outperform chance.
The probability of how much they do so is not equal: higher perfor-
mances have lower probabilities, so that 51% performance is more
likely than 52% and so on. This is a flexible hypothesis, which
allows for all possible values that are greater than chance, but
prioritizes small effects over larger ones. Because they believe this
hypothesis made reasonable commitments, Rouder et al. (2013)
stressed this positive decaying hypothesis in their meta-analysis of
ESP effects.

The negligible-effect hypothesis We may also choose different
instantiations of the null position. Another aspect to statistical infer-
ence that is often neglected is the practical significance of an effect.
Suppose that, rather than merely establishing that ESP exists, our
goal is to monetize future-telling at a casino – for example at the
roulette table described above. Once again, in order to reliably
outperform the house, a future-teller would have to be at least 53%
accurate. However, we can be a little more clever about beating the
casino, and realize that a future-teller who is reliably less than 47%
accurate is also a useful contributor if we simply play the opposite
color from their prediction.

Hence, we can formulate a new instantiation of the null that does
not, strictly speaking, say that ESP does not exist, merely that its
effect is negligible for (our) practical purposes. Such an hypothesis
involves the definition of what is often called an equivalence region

Fig. 4. Top. The solid line represents the null interval (where the effect would
be considered negligible) and the dashed line its complement (where the effect is
non-negligible). Bottom. Predictions from the two models (predictions from the
negligible-effect hypothesis are drawn in gold and inverted; predictions from the
complement in blue).

(Rogers, Howard, & Vessey, 1993), and we can test it with exactly
the same procedure as before. First, define our smallest non-
negligible departure from chance (in this case 3%), and then define
the negligible-effect hypothesis, which states that only values of
θ between .47 and .53 are plausible (i.e., a region that has a
width of 6%). Next, define a complementary non-negligible effect
hypothesis, which consists of two regions: 0 to .47 and .53 to 1.0.

This comparison is displayed in Figure 4. Here we see more
clearly an interesting effect that was less obvious in previous ap-
plications. Because the non-negligible effect hypothesis is quite
vague—it states that θ can take any value that is sufficiently far
away from 0.5, as in the top panel—and because the total proba-
bility that anything happens under the hypothesis has to remain
exactly 1, the strength of prediction of each individual outcome
(bottom panel) is quite low. That is, to accommodate all the possi-
ble outcomes, the model is spread very thin and there is no strong
prediction anywhere.

The fact that every model has the same fixed amount of prob-
ability to assign to the possible outcomes leads to an automatic
penalty for models that hedge over many different possibilities.
This penalty for model freedom is a direct and unavoidable con-
sequence of probability theory, and is a formal implementation of
Occam’s Razor.

As can be seen in the bars indicated by arrows in Figure 4, the
Bayes factor favoring the negligible-effect hypothesis is about 2.8.
If before seeing these data, we held equal prior odds, then now

4 of 9 Etz et al.
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tive. Bottom. The predictions from the two models. Note how similar the predictions
of the slab hypothesis are to those from the non-negligible-effect hypothesis in the
bottom panel of Figure 4.

our odds are 2.8:1, or a posterior probability of about 74% favoring
the negligible effect.

The spike and slab comparison Adding to these various null and
alternative hypotheses is one particularly common and tempting
comparison: as scientists, we will often be interested in knowing
if there is any effect versus no effect. In so doing, we might wish
to forgo specifying any size of effect and simply proclaim that all
degrees of non-null accuracy are of interest. This is an ability we
have – we may formulate as null a point hypothesis of no effect
(a spike) and as alternative a slab hypothesis that states that all
degrees of accuracy are equally plausible (spike-and-slab is a term
introduced by Mitchell & Beauchamp, 1988)

The spike-and-slab comparison is displayed in Figure 5. How-
ever, it clearly suffers from the same issue as the non-negligible
effect hypothesis above: the slab hypothesis is spread thinly over
the entire range of θ, makes no strong predictions anywhere, and
is outperformed by the point null even at 2/3 observed accuracy.
This shared issue should come as no surprise, since the spike-and-
slab comparison is an extreme case of the comparison between
complementary intervals, where the width of the central interval is
infinitesimally small.

Two directional hypotheses Finally, there is one particular com-
parison that is of occasional interest. While most of the previous
comparisons have been for tests of existence, sometimes we are
willing to stipulate to the existence of an effect and are interested
merely in its direction. This does not seem a desirable approach

Fig. 6. Top. The representation of the two complementary directional hypotheses.
Bottom. The predictions from the models, which look quite different and allow for
faster accumulation of evidence.

to ESP, but there are numerous examples where this might be
of interest – for example, testing a handedness bias, or a bias to
respond this way or that.

The directional comparison is displayed in Figure 6. Note that,
due to the way these hypotheses are clearly separated (in the
parameter space, top panel), their predictions are quite different
as well. Consequently, comparing directional hypotheses will typ-
ically yield stronger discriminative evidence than existence/non-
existence hypotheses. However, it is important to keep in mind that
a comparison between directional hypotheses does not involve
any actual null hypothesis – in this example, both the uniformly
negative hypothesis and the uniformly positive hypothesis assume
the existence of some difference. It is tempting to compare these
two alternatives and conclude that, because the uniformly positive
hypothesis gains much support, there is evidence for a positive
effect and therefore evidence for an effect. This is patently wrong –
the evidence in this case is only for a positive effect over a negative
effect and assuming there is some effect.2 Note especially that this
analysis gives zero prior probability to a null effect – in other words,
the analysis assumes some effect and could not conclude anything
else. One resolution for this problem is discussed in Box 1.

2The confusion between what is tested and what can be concluded, and the resultant impression
that one can seemingly conclude whether an effect exists by testing only the sign, is sufficiently
common that we recently named it the paradox of le Cornichonesque, after a snooty fictional wizard
(Etz & Vandekerckhove, in press). It is, of course, not a true paradox, but rather an illusion that is
resolved by careful consideration of which hypotheses are under consideration (Rouder, Haaf, &
Vandekerckhove, in press).

Etz et al. Cognition and Individual Differences lab | University of California, Irvine | cidlab.com | March 3, 2018 | 5
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Box 1: Evaluating more than two hypotheses at once

Not all inference is binary. There are many scenarios under which more than two hypotheses are pitted against one another.
One useful example was hinted at in the main text: We might want to compare two directional hypotheses, H+ and H−, and
a point null hypothesis, H0, all at once. Nothing prevents us from doing this – except perhaps for the fact that we are not
accustomed to thinking of evidence for one model over two or more others, and this concept is perhaps somewhat more difficult
to communicate. While we can logically and formally work with concepts such as “the odds of H0 : (H+ ∨ H−),” (where ∨
means “or”) this is cognitively taxing and a seemingly poor way to communicate.

On the other hand, we are quite comfortable talking about probabilities as measures of plausibility. We can use the same
predictive probabilities as in Equation 1 to reallocate plausibility across three or more hypotheses. In the case of K hypotheses
H1,H2, . . . ,HK , we would traditionally compute the posterior probability of one of them, say H1, with Bayes’ theorem:

P (H1|D) = P (H1)P (D|H1)
P (D) ,

where D is the observed data and the denominator can be re-written as

P (D) = P (H1)P (D|H1) + P (H2)P (D|H2) + . . .+ P (HK)P (D|HK).

If we divide the numerator and denominator of the right-hand side of Bayes’ theorem by P (D|H1), the probability of the data
given hypothesis H1 (known as the likelihood ; see Etz, in press), we obtain the following useful reformulation of Bayes’ theorem:

P (H1|D) =
P (H1) P (D|H1)

P (D|H1)

P (H1) P (D|H1)
P (D|H1) + P (H2) P (D|H2)

P (D|H1) + . . .+ P (HK) P (D|HK )
P (D|H1)

= P (H1)
P (H1) + P (H2)B2:1 + . . .+ P (HK)BK:1

,

where Bj:i is the Bayes factor of hypothesis j over hypothesis i. This formula lets us combine the Bayes factors with prior
probabilities to obtain posterior probabilities of every hypothesis in a set of any size.

For example, suppose that the data we observe are 15 wins in 25 attempts, and we consider H0, H+, and H−. Following
calculations that are given in Box 2, P (k|H0) = 9.74%, P (k|H−) = 1.26%, and P (k|H+) = 6.43%. Consequently, by
taking the ratios of these, B0:− = 7.73, B0:+ = 1.51, and B+:− = 5.10. If we say that P (H0) = 50%, P (H+) = 25%, and
P (H−) = 25%, then we can combine these with the Bayes factors to obtain P (H0|D) = 71.7%, P (H+|D) = 23.7% and
P (H−|D) = 4.6%. Now we are able to make simultaneous statements about the existence of some effect (28.3%) and its
direction: if the effect exists, the probability that it is positive is 23.7/(23.7 + 4.6) = 83.7%.

Other pairwise comparisons As we hope to have illustrated, hy-
pothesis testing is not limited to a comparison between two par-
ticular values (e.g., 50% vs. 60%). As in many of the examples
above, we can test hypotheses that are statements about ranges
of parameters (e.g., greater than 0.5, or in some small region).

Because in such models the value of θ is not exactly given (in
statistics such a free parameter is sometimes called a “nuisance
parameter”), outside of the simplest cases they cannot be ana-
lyzed with classical statistical methods and a Bayesian approach is
required. Fortunately, in the Bayesian framework these models can
be dealt with just like any other: all inferential steps are canonical
applications of the calculus of probability.

It is hopefully similarly clear that our short list of possible nulls
and alternatives is not exhaustive, but that the only limit to the pos-
sible comparisons is the imagination of the analyst, whose primary
concern should be to match the statistical hypotheses as best they
can to the substantive question at hand. For example, a possibility
we have not discussed is the “interval-and-slab” comparison (of
which the spike-and-slab is an extreme case). Interval-and-slab
comparisons will usually give similar results to those of a spike-and-
slab comparison, as long as the null interval is relatively narrow
compared to the precision afforded by the data—another instance
of the teapot problem (see Berger & Delampady, 1987).

Summary

We have focused on one oddly neglected aspect of hypothesis
testing: the hypotheses themselves. It is important to keep in
mind that while statistical models are only ever surrogates for our
scientific theories, they are the models actually being tested and
it is critical that the statistical models we use accurately capture
our substantive theories about the data at hand (see also Rouder,
Haaf, & Aust, 2018; Vanpaemel, 2010).

We have illustrated with examples that different research ques-
tions translate into different formal models, and that the evidence
for or against an effect can differ, depending on precisely what
is meant by “no effect.” However, once this translation from a
creative scientific theory to a bespoke statistical model is done,
the Bayesian machinery turns and an answer rolls out: We can
evaluate the predictive ability of any well-formulated model, and
hypotheses that predict the observed data gain plausibility, while
hypotheses that do not predict the observed data lose it. The Bayes
factor acts as an automatic Occam’s Razor, penalizing vague hy-
potheses and rewarding precise predictions. If the observed data
are more consistent with the chosen particularization of “null effect”
than with the chosen particularization of “some effect,” then our
belief in the null rationally grows.
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Box 2: Model definitions and equations

For the purposes of statistical inference, a model is defined in sufficient detail if we can compute its predictive distribution
P (data|H). In our ESP example, the data are the number of wins k in a sequence of n trials, so that the predictive distribution is
more precisely Pn(k|H).

The predictive distribution describes the relationship between the model and the data. Determining it is a matter of combining
the relationship between the model and the parameter (i.e., the prior) with the relationship between the parameter and the data
(i.e., the likelihood). Per the sum rule of probability, Pn(k|H) =

∫ 1
0 P (θ|H)Pn(k|θ) dθ.

Both components here are known. Since the data are a number of wins, the likelihood is a Bernoulli distribution:

Pn(k|θ) =
(
n

k

)
θk(1− θ)n−k.

The prior is unique to each model, and is given in the table below alongside the predictive distribution of each model and the
amount of support at the observed data from the toy example (15 wins out of 25). These calculations and their background are
covered more in-depth in Etz and Vandekerckhove (in press).

Name Prior p(θ|H) Predictive distribution Pn(k|H) P25(15|H)

point null hypothesis H0 : θ = 0.5
(

n
k

)
0.5k(1− 0.5)n−k .0974

competing-point hypothesis HA : θ = 0.53
(

n
k

)
0.53k(1− 0.53)n−k .1257

uniformly positive hypothesis H+ : p(θ) = u(θ|0.5, 1.0)
∫ 1

0
u(θ|0.5, 1.0)

(
n
k

)
θk(1− θ)n−k dθ .0643

uniformly negative hypothesis H− : p(θ) = u(θ|0.0, 0.5)
∫ 1

0
u(θ|0.0, 0.5)

(
n
k

)
θk(1− θ)n−k dθ .0126

negligible-effect hypothesis HN : p(θ) = u(θ|0.47, 0.53)
∫ 1

0
u(θ|0.47, 0.53)

(
n
k

)
θk(1− θ)n−k dθ .0974

non-negligible-effect hypothesis HL : p(θ) = 0.5× u(θ|0.0, 0.47)
∫ 1

0
0.5 [u(θ|0.0, 0.47) + u(θ|0.53, 1.0)]

+ 0.5× u(θ|0.53, 1.0) ×
(

n
k

)
θk(1− θ)n−k dθ .0347

slab hypothesis HS : p(θ) = u(θ|0.0, 1.0)
∫ 1

0
u(θ|0.0, 1.0)

(
n
k

)
θk(1− θ)n−k dθ .0385

u(θ|a, b) indicates the uniform probability density between a and b, evaluated at θ.

R code and the Build-A-Bayes app

Accompanying this paper is an online demonstration, available
via https://osf.io/mvp53/. In the app, users can choose from
a selection of pairwise comparisons and change the data and
additional model specifications. This allows readers to interactively
experience the effects of changes in model specification, which
can be large (for example when moving from a spike-and-slab
comparison to a directional test) or surprisingly small (for example
when moving from a narrow region of negligible-effect to a point
null hypothesis). Additionally, Rouder (2016) also provides a similar
development in a blog post titled, “Roll Your Own: How to Compute
Bayes Factors for Your Priors.” In this blog post, R code is provided
to compute Bayes factor in a one-sample design for any hypothesis.

Discussion and recommendations

Scientists are tasked with the difficult job of formulating the appro-
priate scientific question for their context and needs. Once this
job is complete, and the scientific question has been translated
into an appropriate statistical model, Bayesian methods allow us
to compute the evidence for or against a potential claim.

Two steps in this procedure are challenging especially. First,
there is the mapping of a substantive question to a formal model
(Lee & Vanpaemel, in press; Matzke, Boehm, & Vandekerckhove,
in press; Lee & Wagenmakers, 2013; Lee, in press). This requires
expertise, judgment, and a measure of artfulness. Second, there
is the computation of the Bayes factor itself. For many common
cases, researchers are now building and publishing easy-to-use

software (e.g., jasp-stats.org, Wagenmakers et al., in press,
this issue, and BayesFactor, Morey & Rouder, 2015). However,
it will never be the case that all scientific questions will be well
addressed by a small set of pre-defined models. To account for
this, others are producing more generic tools and tutorials (Gronau
et al., in press; Matzke et al., in press; van Ravenzwaaij, Cassey,
& Brown, in press).

The meteoric rise of Bayesian methods in the social sciences is
heartening. The recent crisis of confidence in psychology has
amplified calls for more powerful and flexible methods—including
those with the ability to gather evidence for the nonexistence of an
effect—and Bayesian inference is ideally suited for this challenge.
But flexibility and power come at a price: the more flexible a tool is,
the more extensive its user guide must be. With Bayesian methods,
researchers can test any hypothesis they can sufficiently specify.
However, each test carries with it potentially unique implementation
(i.e., computational) challenges. Here we have illustrated methods
for testing the null for the simplest possible type of data (binary
choice). However, these methods are universal – they apply to all
sets of hypotheses and models that are sufficiently quantified to
make predictions about the data.

The implementation of useful tests and interesting models re-
mains an active field of research and development (e.g., Haaf &
Rouder, 2017; Oravecz & Muth, in press). The main challenge
in this is specifying models that accurately capture theoretical po-
sitions. It is incumbent on researchers to specify such models,
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Box 3: Transitivity of the Bayes factor

The Bayes factor has a convenient property known as transitivity : If we have the Bayes factor between H1 and H2,

B1:2 = P (data|H1)
P (data|H2) ,

and the Bayes factor between H2 and H3,

B2:3 = P (data|H2)
P (data|H3) ,

then the product of B1:2 and B2:3 gives us

B1:2 ×B2:3 = P (data|H1)
P (data|H2) ×

P (data|H2)
P (data|H3)

= P (data|H1)
P (data|H3)

= B1:3 .

That is, the Bayes factor between hypothesis i and hypothesis j can be obtained from their respective pairwise Bayes factors
with a common comparison hypothesis k. This property is often useful when multiple models are compared to one reference
model, such as in the case of Bayesian ANOVA (Rouder, Morey, Speckman, & Province, 2012).

justify them, and understand how much our particular specification
affects our conclusions. These activities are, in our opinion, how
analysts add value in uncovering the structure in data (Rouder et
al., 2016). Model specification is a creative, nuanced, intellectual
activity that relies on scientists’ substantive expertise. We believe
that the field of psychology is up to this challenge.
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