Equation of State for the Lennard-Jones Truncated and Shifted Fluid with a Cut-off Radius of 2.5 σ based on Perturbation Theory and its Applications to Interfacial Thermodynamics

Contributors:
  1. Michaela Heier
  2. Simon Stephan
  3. Jinlu Liu
  4. Walter G. Chapman
  5. Hans Hasse
  6. Kai Langenbach

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: An equation of state is presented for describing thermodynamic properties of the Lennard-Jones truncated and shifted (LJTS) potential with a cut-off radius of 2.5 σ. It is developed using perturbation theory with a hard-sphere reference term and labelled with the acronym PeTS (perturbed truncated and shifted). The PeTS equation of state describes the properties of the bulk liquid and vapour and the corresponding equilibrium of the LJTS fluid well. Furthermore, it is developed so that it can be used safely in the entiremetastable and unstable region, which is an advantage compared to existing LJTS equations of state. This makes the PeTS equation of state an interesting candidate for studies of interfacial properties. The PeTS equation of state is applied here in two theories of interfaces, namely density gradient theory (DGT) and density functional theory (DFT). The influence parameter of DGT as well as the interaction averaging diameter of DFT are fitted to data of the surface tension of the LJTS fluid obtained from molecular simulation. The results from both theories agree very well with those from the molecular simulations.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.