Main content

Contributors:

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Depression has robust natural language correlates and can increasingly be measured in language using predictive models. However, despite evidence that language use varies as a function of individual demographic features (e.g., age, gender), previous work has not systematically examined whether and how depression's association with language varies by race. We examine how race moderates the relationship between language features (i.e., first-person pronouns and negative emotions) from social media posts and self-reported depression, in a matched sample of Black and White English speakers in the United States. Our findings reveal moderating effects of race: while depression severity predicts I-usage in White individuals, it does not in Black individuals. White individuals use more belongingness and self-deprecation-related negative emotions. Machine learning models trained on similar amounts of data to predict depression severity performed poorly when tested on Black individuals, even when they were trained exclusively using the language of Black individuals. In contrast, analogous models tested on White individuals performed relatively well. Our study reveals surprising race-based differences in the expression of depression in natural language and highlights the need to understand these effects better, especially before language-based models for detecting psychological phenomena are integrated into clinical practice.

License: CC-By Attribution 4.0 International

Files

Files can now be accessed and managed under the Files tab.

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.