

[conjecture]
Diamond Open Access

[waiting peer review]

The undecidable dynamics generate quantum probabilities

Open Quantum Collaboration*†
September 5, 2021

Abstract

We conjecture a new approach to quantum mechanics that, if confirmed, will explain the wave function from a fundamentally deeper level.

keywords: quantum mechanics, dynamical system, undecidability, many-worlds, Everett, wave function

The most updated version of this white paper is available at https://osf.io/hfc82/download https://zenodo.org/record/5068737

Introduction

1. We present two conjectures as an attempt to explain the quantum wave function.

^{*}All authors with their affiliations appear at the end of this white paper.

[†]Corresponding author: mplobo@uft.edu.br | Open Quantum Collaboration

Many-worlds

- 2. The many-worlds Everettian approach of quantum mechanics (MW) is delightfully explained in this wonderful book [1].
- 3. It is however a hard pill to swallow.
- 4. It has indeed one advantage; it deals with the idea that our universe can rely on rules inaccessible from our limited four-dimensional world.
- 5. I consider (4) a plus side because I often see physicists ruling out very plausible ideas due to inaccessibility grounds.
- 6. Regarding MW, let's suppose two situations:
 - (a) the measurement branches the wave function, creating different material worlds;
 - (b) the measurement branches the wave function, creating different ghostly worlds.
- 7. By material worlds, I mean ordinary spacetime dimensions with regular matter and energy as we are accustomed to.
- 8. By ghostly world, I mean a multidimensional mathematical space with exotic forms of matter and energy.
- 9. Both different material/ghostly worlds are not meant to be accessible to us.
- 10. If MW proves to be correct, I would bet on (6.b).

The undecidability theorem

11. There exists unpredictable algorithms. [1,2]

Assumptions

- 12. The following *conjectures* are meant to hold in the Planck scale.
- 13. Conjecture 1: Quantum undecidability (QU) Quantum fluctuations are originated by undecidable mathematical algorithms.
- 14. Conjecture 2: Quantum dynamics (QD)Quantum probabilities are originated by spacetime's dynamical system.
- 15. QU leads to the indeterminacies that are intrinsic to the quantum realm such as, for instance, not knowing precisely the exact position being measured.
- 16. QD is given deterministically by an iterated mathematical function.

Dynamical systems

17. Consider a discrete dynamical system with the orbit

$$f(x_0) \rightarrow f(f(x_0)) \rightarrow f(f(f(x_0))) \rightarrow ...,$$

where x_0 is the initial condition.

- 18. If spacetime is **discrete**, then it is natural to suppose it is described by *discrete dynamical systems*.
- 19. The Lorentzian symmetry of spacetime suggests either both space and time are discrete or likewise both are continuous.
- 20. Other combinations arise, such as discrete time and continuous space, and continuous time and discrete space, but I believe they are seemingly improbable due to (19).

Undecidability in quantum dynamics

- 21. In the Planck scale, due to the quantum fluctuations (uncertainty principle), one cannot determine exactly a point x_0 in space.
- 22. (13) states that nature operates with undecidable mathematical algorithms beforehand, leading to initial positions x_0 that are intrinsically unpredictable.
- 23. Then a deterministic function iterates x_0 and produces the probabilities of quantum states.
- 24. Each orbit of the mathematical dynamical system depicts the collapse of the corresponding quantum states [3,4].

Final Remarks

- 25. According to our conjectures, quantum spacetime is generated by undecidable mathematical algorithms, which then evolve as a discrete/continuous dynamical system.
- 26. Whether the mathematical dynamical system describing the quantum spacetime is discrete or continuous would depend upon the discreteness of spacetime itself.

Open Invitation

Review, add content, and co-author this white paper [5,6].

Join the Open Quantum Collaboration.

Send your contribution to mplobo@uft.edu.br.

Open Science

The latex file for this white paper together with other supplementary files are available in [7,8].

How to cite this paper?

https://doi.org/10.31219/osf.io/hfc82

https://zenodo.org/record/5068737

Acknowledgements

+ Center for Open Science https://cos.io

+ Open Science Framework

https://osf.io

+ Zenodo

https://zenodo.org

Agreement

All authors agree with [6].

License

CC-By Attribution 4.0 International [9]

References

[1] Carroll, Sean. Something deeply hidden: quantum worlds and the emergence of spacetime. Dutton, 2019.

- [2] Wikipedia. Undecidable problem. https://en.wikipedia.org/wiki/Undecidable_problem
- [3] Lobo, Matheus P. "The Logistics of Quantum Spacetime." OSF Preprints, 10 May 2021. https://doi.org/10.31219/osf.io/s2dnt
- [4] Lobo, Matheus P. "Time Is a Discrete Dynamical System." OSF Preprints, 21 May 2021. https://doi.org/10.31219/osf.io/8f4yg
- [5] Lobo, Matheus P. "Microarticles." *OSF Preprints*, 28 Oct. 2019. https://doi.org/10.31219/osf.io/ejrct
- [6] Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." OSF Preprints, 15 Nov. 2019. https://doi.org/10.31219/osf.io/fk836
- [7] Lobo, Matheus P. "Open Journal of Mathematics and Physics (OJMP)." OSF, 21 Apr. 2020. https://osf.io/6hzyp/files
- [8] https://zenodo.org/record/5068737
- [9] CC. Creative Commons. *CC-By Attribution 4.0 International*. https://creativecommons.org/licenses/by/4.0

The Open Quantum Collaboration

 ${\bf Matheus\ Pereira\ Lobo\ (lead\ author,\ mplobo@uft.edu.br)^{1,2}} \\ {\bf https://orcid.org/0000-0003-4554-1372}$

¹Federal University of Tocantins (Brazil)

²Universidade Aberta (UAb, Portugal)