On the scales of dynamic topography in whole-mantle convection models - preprint version

Contributors:
  1. Nicolas COLTICE
  2. Valentin SEIGNEUR
  3. R. Dietmar Müller

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Mantle convection shapes Earth's surface by generating dynamic topography. Observational constraints and regional convection models suggest that surface topography could be sensitive to mantle flow for wavelengths as short as 1,000 km and 250 km, respectively. At these spatial scales, surface processes including sedimentation and relative sea-level change occur on million year timescales. However, time dependent global mantle flow models do not predict small-scale dynamic topography yet. Here, we present 2D-spherical annulus numerical models of mantle convection with large radial and lateral viscosity contrasts. We first identify the range of Rayleigh number, internal heat production rate and yield stress for which models generate plate-like behaviour, surface heat flow, surface velocities and topography distribution comparable to Earth's. These models produce both whole mantle convection and small-scale convection in the upper mantle, which results in small- (< 500 km) to large-scale (> 10^4 km) dynamic topography, with a spectral power for intermediate scales (500 to 10^4 km) comparable to estimates of present-day residual topography. Timescales of convection and the associated dynamic topography vary from five to several hundreds of millions of years. For a Rayleigh number of 10^7, we investigate how lithosphere yield stress variations (10-50 MPa) and the presence of deep thermochemical heterogeneities favour small-scale (200-500 km) and intermediate scale (500-10^4 km) dynamic topography by controlling the formation of small scale convection and the number and distribution of subduction zones, respectively. The interplay between mantle convection and lithosphere dynamics generates a complex spatial and temporal pattern of dynamic topography consistent with constraints for Earth.

License: Academic Free License (AFL) 3.0

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.