Molecular Dynamics Simulation Study of Mechanical Effects of Lubrication on a Nanoscale Contact Process

Contributors:
  1. Simon Stephan
  2. Martin P. Lautenschläger
  3. Alabd I. Alhafez
  4. Martin T. Horsch
  5. Herbert M. Urbassek
  6. Hans Hasse

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Using molecular dynamics simulation, we study the effect of a lubricant on indentation and scratching of a Fe surface. By comparing a dry reference case with two lubricated contacts—differing in the adsorption strength of the lubricant—the effects of the lubricant can be identified. We find that after an initial phase, in which the lubricant is squeezed out of the contact zone, the contact between the indenter and the substrate is essentially dry. The number of lubricant molecules confined in the tip-substrate gap increases with the lubricant adsorption energy. Trapped lubricant broadens the tip area active in the scratching process—mainly on the flanks of the groove—compared to a dry reference case. This leads to a slight increase in chip height and volume, and also contributes to the scratching forces.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.