Before this session, please:
* Install [faux](https://debruine.github.io/faux/) in R `devtools::install_github("debruine/faux")`
* Install `tidyverse`, `lme4`, `afex`, `broom`, `broom.mixed`, `kableExtra` and `GGally` (from CRAN)
* Look over the lessons [Simulating Data](https://debruine.github.io/tutorials/sim-data.html) and [Simulating Mixed Effects](https://debruine.github.io/tutorials/sim-lmer.html)
* Download the files for these lessons
- [01_sim_intro_code.Rmd](https://osf.io/2tsgd/) (intro with code & exercises with answers)
- [01_sim_intro_stub.Rmd](https://osf.io/vpxhs/) (intro without code & exercises)
- [03_sim_data_code.Rmd](https://osf.io/36tv9/download) (lesson 1 framework with code)
- [03_sim_data_stub.Rmd](https://osf.io/2tqha/download) (lesson 1 framework without code)
- [04_sim_lmer_code.Rmd](https://osf.io/3fpv4/download) (lesson 2 framework with code)
- [04_sim_lmer_stub.Rmd](https://osf.io/7j94v/download) (lesson 2 framework without code)
In the lessons, we'll be using tidyverse functions and pipes. Have a look at my [pipes tutorial](https://debruine.github.io/tutorials/pipes.html) if you've never used pipes and want a quick intro.
Optional:
* Download the [app](https://osf.io/h3uvn/files/) folder
* Install `shiny`, `shinyjs`, and `shinydashboard`
### Resources
* [Data Skills for Reproducible Science](https://psyteachr.github.io/msc-data-skills/) open source textbook introducing tidyverse for psychologists
* [Understanding mixed effects models through data simulation](https://osf.io/3cz2e/) (preprint, code, and shiny apps)