
Superiority Bias and Communication Noise 

Can Enhance Collective Problem Solving 
 

Amin Boroomand	! *, Paul E. Smaldino	!,#,$   

	!Quantitative and Systems Biology Graduate Group, University of California, Merced 

	#Department of Cognitive and Information Sciences, University of California, Merced 

	$Santa Fe Institute 

*aboroomand@ucmerced.edu 

 

Abstract 
Error affects most human judgments and communications. Here we consider two types of error: 

unbiased noise and directional biases, and consider their effects in the context of collective 

problem solving. We studied an agent-based model of networked agents collectively searching 

for solutions to simple and complex problems on an NK landscape. We implemented superiority 

bias as a reluctance to adopt solutions used by others unless they were substantially better than 

one’s own solution. We implemented communication error by injecting noise into solutions learned 

from others.  

These factors both reduce the short-term efficiency of social learning, as individuals are less likely 

to faithfully copy superior solutions. We find that when a team faces complex problems, both 

communication noise and superiority bias have a positive effect on the overall quality of the team’s 

collective solution, at the cost of increased time and resource usage. We find that  when a team 

faces simple problems, a moderate level of communication noise leads to a decrease in the 

required time and resources for a team. We discuss these results in terms of tradeoffs between 

the quality of a collective solution and the time and resources needed to reach that solution.  
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Introduction 
Cooperative teams can often search for solutions more effectively and efficiently than individuals 

searching in isolation. A large body of research has identified a number of factors that affect the 

performance of problem-solving teams, including problem complexity (Levinthal 1997; Rivkin 

2000; Lazer and Friedman 2007), restrictions on available resources (Kanfer and Ackerman 1989; 

Porter et al. 2010), the characteristics and strategies of individual team members (Barkoczi and 

Galesic 2016; Yahosseini and Moussaïd 2020; Baumann et al. 2019; Boroomand and Smaldino 

2021), as well as the characteristics of the overall team such as its  size, diversity, and network 

structure (Lazer and Friedman 2007; Derex and Boyd 2016; Gomez and Lazer 2019; Boroomand 

and Smaldino 2021). 

 

We follow much of this work by modeling collective problem solving as a population of networked 

agents searching for solutions on high-dimensionality solution space represented by an NK 

landscape (Lazer and Friedman 2007). While many variants on this model have been explored, 

most studies have made two strong assumptions about how agents communicate and process 

social information. First, they assume that communication is error-free, such that individuals 

always receive perfect information about others’ solutions. And second, they assume that 

individuals are purely greedy and unbiased problem solvers, such that they will always adopt a 

solution that is even the slightest bit better than their current solution. In this paper, we investigate 

the effects of relaxing these assumptions. In particular, we study the effects of communication 

noise, in which transmitted solutions contain errors, and superiority bias, in which individuals 

refrain from adopting a superior solution they have learned from others unless it is a substantial 

improvement over their current solution.  Both of these factors introduce error at the individual 

level. We will show that, when teams are solving complex problems, these errors can actually 

improve the quality of team solutions, though at the cost of prolonging the time to consensus.  

 

We build directly on previous research (Boroomand and Smaldino 2021) in which we explored 

variation in individual search strategies on collective problem solving, focusing on agents that 

were either hard working (and could explore more solutions per unit time) or risk taking (and could 

entertain large deviations from their current solution, rather than relying on single-move hill 

climbing). That study found that both these strategies could improve solutions to complex 

problems, with risk taking proving the larger benefit at the cost of increased time to consensus.  

We show here that although a team expressing superiority bias needs more time and resources 



to achieve consensus, adopting a risk-taking strategy can help to reduce the time and resources 

needed to reach consensus. Finally, we consider how errors affect collective solutions on different 

network architectures. Previous work has shown that, in the absence of error, sparser networks 

improve collective problem solving (Lazer and Friedman 2007; Fang et al. 2010).  Here we 

likewise find that densely connected networks reduce the quality of solutions, but also that they 

can reduce the time and resources for the teams to reach a consensus. 

 

In the remainder of the paper, we review the literatures on communication noise and superiority 

bias, which form the basis for our model extension, and then briefly review the use of the NK 

landscape as a model of problem space. We then describe our model, present the results of our 

agent-based simulations, and discuss the implications of our results for understanding factors 

affecting collective problem solving.  

Communication Noise 

A main advantage of solving problems in teams is that individuals can take advantage of 

information obtained by others. High quality solutions can therefore spread rapidly as individuals 

avoid the costs of trial and error learning (Kendal et al. 2018) . When problems are complex, 

however, and problem components interact non-additively, overreliance on social learning can 

lead a population to converge too quickly on a suboptimal solution (Smaldino et al. 2022). In 

particular, although increasing the communication efficiency in a team improves the diffusion of 

solutions, it can also limit the team’s capacity to generate innovative solutions (Diehl and Stroebe 

1987; Fang et al. 2010; Lazer and Friedman 2007; Shore et al. 2015). Approaches that maintain 

the diversity of solutions allow individuals to explore possible solutions for longer time periods and 

give them more opportunities to find better solutions (Smaldino et al. 2022). Mediating information 

flow by using an inefficient communication network is one of the common approaches to maintain 

the solutions diversity (Derex and Boyd 2016; Lazer and Friedman 2007). 

 

Previous studies have focused on “communication efficiency” primarily in terms ofnetwork density. 

This factor operates at the level of team organization. Here, our focus is on a mechanisms that 

operate at the level of individuals or dyads—errors in the transmission or learning of solutions 

Empirical studies indicate that allowing  individuals to learn only partial solutions from one another 

can maintain higher solution diversity (Derex et al. 2015; Caldwell et al. 2016). In our modeling 

approach, we introduced errors into the solutions learned from other individuals during copying.  



Superiority Bias 

Superiority bias, or overrating one’s positive qualities and abilities, has been discussed under 

many names, including: “superiority complex” (Adler 1927), “superior conformity of the self” 

(Codol 1975), “leniency error” (Meyer 1980), “sense of relative superiority” (Headey and Wearing 

1988), the “better-than-average-effect” (Dunning et al. 1989; Zell et al. 2020), the Dunning-Kruger 

effect (Dunning 2011), and  “illusory superiority” (Hoorens 1993). Empirical studies show that self-

evaluations are often distorted in a direction favorable to oneself (Dunning 2012; Alicke and 

Sedikides 2011; Judge et al. 2009; Sutin et al. 2009). In most models of collective problem solving, 

individuals can readily identify the quality of a considered solution, and agents greedily adopt any 

solution that is at all better than their current solution. We operationalize superiority bias by 

introducing a threshold, such that a solution adopted by someone else must be better than the 

agent’s current solution by at least that threshold amount in order to be copied.  

 

It might seem that superiority bias would be detrimental to collective problem solving, as agents 

stubbornly refuse to abandon their own solutions in favor of ones that are demonstrably better. 

Certainly, it will increase the time required for team consensus. But superiority bias also allows 

for a greater diversity of solutions to persist for longer in the population, which is likely to improve 

overall solution quality (Smaldino et al. 2022). Evidence for this hypothesis was recently provided 

by Gabriel and O'Connor (2021), who studied networked agents using both individual and social 

learning to solve a two-armed bandit problem using Bayesian updating. Their agents exhibit 

“confirmation bias,” in which they are unlikely to incorporate evidence that is at odds with their 

prior beliefs. This design differs from ours in terms of how we model learning and problem space, 

but it is functionally similar to our model in that agents are less likely to learn about, and therefore 

adopt, information about superior solutions.  We therefore investigate here whether superiority 

bias, which restricts individuals’ likelihood of adopting better solutions in the short run, may 

nevertheless improve solutions at the team level in the long run.  

Representing Solutions to Collective Problems 

We model the problems that our teams of agents tackle as NK landscapes (Kauffman and 

Weinberger 1989; Lazer and Friedman 2007). This widely used model allows for a 

multidimensional solution structure, in which problem elements can exhibit interdependencies. It 

is possible to represent the complexity of a problem by mapping the entire set of possible solutions 



to that problem into an evaluation space (also called a fitness landscape) which indicates the 

quality of each solution (Wright and Others 1932; Levinthal 1997). Indeed, the extent to which the 

contribution of each solution element depends on the other elements is often described as the 

problem’s complexity, such that the simplest problems are those in which each solution element 

can be optimized independently (Siggelkow and Levinthal 2003; Levinthal and March 1981). 

Simple problems correspond to “smooth” landscapes, as they can be solved via simple hill 

climbing, while complex problems are akin to “rugged” landscapes, as multiple simultaneous 

changes may be needed to improve one’s solution. In the NK model, the variable N represents 

the number of elements in each solution, while K represents the number of interdependencies 

involved in those solutions. We describe the model in more detail below (see also Csaszar 2018).  

 

The NK model has widely been used to study collective problem-solving (Yahosseini and 

Moussaïd 2020; Shore et al. 2015; Lazer and Friedman 2007; Barkoczi and Galesic 2016; 

Boroomand and Smaldino 2021). In our model, individuals explore the landscape independently 

but can also compare solutions with those in their social networks and thereby adopt superior 

solutions. We compare the performance of teams of agents who exhibit various levels of 

superiority bias and communication noise in solving complex and simple problems. 

Model 
We modeled the process of collective problem-solving as a team of networked agents searching 

over a smooth or rugged NK landscape for the highest quality solution. Each agent is initialized 

with a  random solution at the beginning of each simulation. Agents typically searched the  solution 

space by making small changes to their current solution, a search strategy often referred to as 

hill climbing. As is typical in these models, we assumed that agents’ solutions were observable to 

other agents with whom they shared network ties. The ability to learn socially allows populations 

to achieve solutions unlikely to be found by individual hill climbing alone. An agent always employs 

only one solution (a location on the NK landscape) at a time, represented as an N-dimensional 

binary vector associated with a score. The same solution can be employed by several agents 

simultaneously. Agents are not able to see the entire landscape, and indeed have no memory—

they can only compare other possible solutions with their current solution. The simulation 

proceeds discrete time steps. In each simulation, in a random order, agents consider whether to 

adopt a new solution based on social or individual learning.  

 



Our work builds directly on the analyses presented in Boroomand and Smaldino (2021). This 

model included agents employing hard working and risk taking search strategies (described 

below). We include these strategies here to understand how individual search strategies might 

interact with communication noise and superiority bias. Unless otherwise stated, we used a ring 

lattice network with degree four as the communication network for our team of agents. Past 

research has indicated that densely connected networks may perform best for simple problems 

while sparsely connected networks perform best for complex problems (Fang et al. 2010; Lazer 

and Friedman 2007).  We will compare the results from our moderately connected ring network 

with a more sparsely connected linear network (equivalent to a ring lattice of degree 2 and one 

broken link) and a more densely connected complete graph (in which all nodes are connected).  

 

Below, we describe the model incrementally, describing first the behaviors of individual agents, 

followed by a detailed description of the NK landscape, and concluding with a description of our 

implementation of communication noise and superiority bias. We then discuss our outcome 

metrics before presenting the results of our agent-based simulations.  

Agent Behavior 

Agents can engage in either social learning (i.e., by adopting a better solution from other agents) 

or individual learning (i.e., generating new solutions). Employing a conditional social learning 

strategy, agents imitate a a neighbor's solution if it is better than their own current solution, 

otherwise they try individual learning to find a better solution. A complete flowchart describing 

agent behavior is shown in Figure 1.  

 

At each time step, an agent initially attempts social learning, in which the score of the current 

solution is compared to that of each of their network neighbors. If any neighbors have a better 

solution, the agent adopts the solution with the highest score. If no neighbors have a better 

solution than the one the agent currently uses, the agent employs individual learning and 

generates one or more new solutions to consider. If any of these solutions are better than the 

current solution the agent adopts the solution with the highest score. If neither social nor individual 

learning yields a better solution, the agent maintains its current solution. By involving social 

learning first, and if this fails, then involving individual learning, agents can be viewed as trying to 

avoid the cost of individual learning, which is often described as a major contributor to the 

evolution of social learning (Boyd and Richerson 1985; Kendal et al. 2018). 



 
Figure 1. Conditional social learning flowchart indicating the agent's decision-making algorithm at each time step.  

Agent Type 

Following Boroomand and Smaldino (2021), we consider three behavioral strategies for individual 

learning: normal, hard working, and risk taking agents (Figure 2).  

 



 
 

Figure 2. Different types of agents employ different strategies for individual learning. In this example the solution contains five 

dimensions N=5. In each run of individual learning, normal agents generate only one solution by altering one randomly chosen 

dimension of their current solution. Hardworking agents, generate H new solutions by altering one dimension of their current solution 

(H>1). Risk-taking agents first select a random number from 1 to R and call it r. Then they generate one solution by randomly picking 

a solution's dimension and alerting it and repeating the procedure for r times. The resource that an agent uses in the individual learning 

in each time step is equal to the number of changes (flipped elements) occurring in the solution in the time step. The resource usage 

of each round of individual learning for normal agents is 1; for hardworking agents is H; and for risk-taking agents is r.  

 
Hardworking agents generate multiple new solutions simultaneously and choose the solution with 

the highest score. They generate solutions by altering only one dimension of their current solution 

at a time, resulting in a set of new solutions that all have a Hamming distance of 1 from the agent's 

current solution. The number of new solutions a hardworking agent generates in each round of 

individual learning is determined by its hardworking level H > 1.  

 

Risk-taking agents alter multiple solution elements at once, which reduces the correlation in score 

between their current and considered solutions. The extent of risk taking is given by the integer 

R > 1. At each time step, the agent selects a random integer  r !" #$%"R], and explores a new 

solution by flipping r randomly chosen elements of its current solution. If r > 1, a given element 

may be flipped more than once. The Hamming distance between the current solution and the 

consider solution can therefore vary between zero and r.   

 

 

Normal agents explore the landscape in each run by randomly selecting one dimension of its 

current solution and altering it. This is how individual learning is usually implemented in models 



of collective problem solving employing NK landscapes. Normal agents are equivalent to 

hardworking or risk-taking agents with H = R = 1.  

 

All teams eventually reach consensus on a shared solution, at which point the simulation ends.  

The consensus solution is not necessarily the global maximum solution (the best possible 

solution), as they may instead get stuck on a suboptimal local maximum. Because risk-taking 

agents are capable of escaping from local maxima, they will always eventually find the global 

maximum, though this can take an arbitrarily long time (Boroomand and Smaldino 2021). In many 

cases, managers look for a “good enough” solution (Johnston et al. 2002) and allow teams to stop 

exploring when they reach that level. Therefore, the simulations stop when either (A) the team 

reaches the global maximum or (B) a total of 200 time steps have passed. We chose 200 because 

in our previous analyses, teams generally reached a long-term consensus well before 200 time 

steps (Boroomand and Smaldino 2021). 

NK Landscape 

The NK landscape is essentially a function or look-up table that evaluates a solution's score. A 

solution S is a binary vector (a string of 0’s and 1’s) length N:  

S=[𝑆!, 𝑆#, . . . , 𝑆%], 𝑆& ∈ {0,1}. (1) 

	
At the start of each simulation run, each solution is assigned a score, which remains constant 

during the simulation. Each solution can be considered a location on the NK landscape. Two 

locations are adjacent neighbors if the Hamming distance of their associated solutions is 1 (they 

differ in only one dimension). When there is no interdependency between solution dimensions 

(K=0), the contribution of each element to the solution score does not depend on the state of other 

elements. Otherwise, the contribution of each element to the solution score is determined by its 

own state (0 or 1) as well as the states of K other elements which are randomly chosen at the 

beginning of a simulation and kept unchanged during the simulations. In this study, we fix N = 20 

and define simple problems as K = 0 and complex problems as K = 10.  

 

To compute the score of a solution, we create N interdependency vectors (𝑉&), one for each 

element of the solution (𝑆&). Each interdependency vector contains the solution element and K 

other randomly chosen elements. The contribution value of a solution element is determined by 

the score of each interdependency vector. To calculate the score of an interdependency vector 



(𝑉&), we consider the consecutive elements of the vector as the digits in a binary number and then 

transform it to base 10. This latter number represents the position index in the score list, a list of 

random integers drawn from a uniform distribution in the range of 0 to 1000 at the start of each 

run. The score of each interdependency vector is the value chosen by the position index from the 

score list. The average score of all interdependency vectors of a solution determines the score of 

that solution. An example of calculating a solution score is demonstrated in the appendix. To 

expand the score distribution and better identify high scores from low scores, we raised all scores 

to the power of 8 in accordance with previous studies (Lazer and Friedman 2007; Barkoczi and 

Galesic 2016; Boroomand and Smaldino 2021). We standardized the results in [0, 1], with one 

being the maximum possible score in a particular run, in order to allow comparisons of scores 

across simulation runs.  

Modeling Communication Noise  

When an agent engages in social learning, it compares the score of its current solution to those 

of its network neighbors. If a neighbors' solution is better than his own current solution, it adopts 

the neighbor’s solution with the highest score. Here we consider the possibility that the 

communication of this solution is not always 100% transparent. We define the communication 

noise C as the probability that each element of an agent’s current solution remains unchanged 

(and therefore is not influenced by the copied solution) during social learning. Figure 3 illustrates 

an example with N=6 and C = 0.5.  

 
Figure 3. In the presence of 50% communication noise through the social learning, the probability of copying each element of a better 

solution is 50%. 



Modeling Superiority Bias 

In the absence of superiority bias, agents engaging in social learning will copy another agent’s 

solution as long as it has a higher score than the agent’s current solution. Agents with superiority 

bias copy their neighbors’ solutions only when the neighbor’s score is sufficiently better than the 

agent’s current solution. Superiority bias is characterized by the quantity BMax. At initialization, 

each agent is assigned its own characteristic bias, Bi, which is a real random number drawn from 

the uniform distribution [0, BMax]. Whenever an agent considers copying another agent’s solution, 

it does so only if the difference between the scores of its current solution and its neighbor’s 

solution is greater than Bi. This dynamic is illustrated in Figure 4.  

 
 
Figure 4. When superiority bias exists, the agents do not accurately perceive their scores and understand their scores to be higher 

than they actually are. The bias (𝐵!) is a random number in the range of 0 to “superiority level” (BMax) that adds to the actual score 

when it comes to the agent’s perception of his own score. The superiority level is a number between 0 and 1 which should be set by 

the user. In Group A, agents take part in social learning without superiority bias (and noise). Agent A-1 adopts the solution of agent 

A-2, because his current solution was lower than the solution of Agent A-2. In Group B, participate in social learning with the presence 

of superiority bias. Although the score of Agent B-2 is better than agent B-1, Agent B-1 does not imitate Agent B-2, because he 

perceives his score is higher than the score of Agent B-2 due to superiority bias. 

Model Evaluation 

We evaluate the performance of teams in three ways. First, by the highest score they reach (either 

at consensus or 200 time steps); second, the time it takes for them to reach consensus (truncated 

at 200 times steps); and finally, the resources they use to explore the problem space. The first 

two metrics are fairly self-explanatory. The third metric is based on the idea that search can be 



costly in terms of both time and the resources needed to try to solutions (e.g., building new 

technologies). Agents involved in individual learning generated new solutions for the problem by 

flipping elements (bits) of their current solution. We define the resources that an agent consumes 

during each time step as the number of elements flipped during individual learning (Figure 1). This 

will vary depending on the search strategy used by an agent. For example, for normal agents, it 

is equal to one, for hardworking agents it is equal to H, and for risk-taking agents it is equal to r 

in individual learning. The total resource usage is the sum of resource usage for all agents across 

the length of the simulation.  

Computational Experiments 
For all our runs we used teams of n = 100 agents. We modeled  solution space as a landscape 

with N = 20, where K = 0 or K = 10. We ran simulations with normal, hardworking,and risk-taking 

agents, using H = 5 for the hardworking agents and R = 5 for the risk-taking agents. 

 

We varied both superiority bias (BMax)  and communication noise (C) from 0 to 0.5 . We ran 100 

simulations for each combination of parameters tested, and report the average metrics from 

across these simulations. Table 1 summarizes the model parameters and displays the default 

values used in our computational experiments. The NetLogo code is available at: 

https://www.comses.net/codebases/bc594be6-53dc-415b-859f-7d716edabaf1/releases/1.0.0/ 
 
 

Parameter Definition Default value 

n Team size 100 

N Number of problem elements 20 

K Problem complexity {0, 10} 

H Hardworking level {0, 5} 

R Risk-taking level {0, 5} 

BMax Superiority bias [0, 0.5] 

C Communication noise [0, 0.5] 
 

Table 1.  Model parameters and their default values.  



Results 

Superiority Bias 
Higher levels of superiority bias led to teams reaching solutions with higher scores when solving 

complex problems (Figure 5, top row). Because agents only copied solutions from a neighbor 

when that neighbor's solution score was better than the agent's own score by at least 𝐵&. 

Increasing the superiority bias level decreased the probability of social learning in the team. This 

maintained the diversity of solutions for longer and gave agents more opportunities to learn via 

individual learning and avoid reaching consensus too soon. Accordingly, increasing superiority 

bias also increased the time needed to reach consensus and the number of element changes 

explored during individual learning (the resource usage). As in Boroomand and Smaldino (2021), 

we found that risk-taking and hardworking agents could reach higher scores than normal agents, 

in that order, and we found that these effects were approximately additive when combined with 

superiority bias. For simple problems that can be solved via hill climbing, superiority bias 

increased the time and resources needed to reach consensus without yielding any advantage in 

solution quality (Figure 5, bottom row).  

 
 
Figure 5. The top row illustrates the score (left), time (middle), and recourse usage (right) of teams when they face complex problems, 

and the bottom row illustrates it when teams face simple problems. The points connected to lines show the average result of 100 

simulations. The pale points (not connected to lines) show the results of single simulations.  

 



Superiority Bias and Network Structure 
We compare the performance of the model on a linear network, a ring lattice, and a fully-

connected network. In accordance with many other studies of dynamics on networks (Lind and 

Herrmann 2007), we find that teams converge faster when the communication network is more 

connected. A more connected communication network leads a team to spend less time and 

resources reaching consensus (Figures 6 and 7, middle and bottom rows). When teams face 

simple problems, all teams can reach the global maximum (Figure 7). When teams face complex 

problems, a more connected communication network leads to a decrease in the quality of the 

solution converged upon (Figure 6). In general, superiority bias has a negative effect on the 

required time and resources to reach a consensus solution, and these effects seem to be more 

severe in sparse networks.  

 
Figure 6. The plots in the top row illustrate the final score of teams with different individual-learning strategies; risk-taking (left), 

hardworking (in the middle), and normal (in the left) when teams utilize networks with different connectivity densities. The middle and 

bottom row plots indicate the time and resource (respectively)required for teams. All plots are results of simulations when teams solve 

complex problems (K10). The connected points illustrate the average results of 100 simulations, and the unconnected pale point 

illustrates the result of a single run simulation. 
 



 
Figure 7. All plots are for when a team faces simple problems. The left column of plots illustrates the score (top), time (middle), and 

resource (bottom) of a team with a risk-taking individual-learning strategy. The middle column and right column indicate score, time, 

and resources for teams with hardworking and normal strategies, respectively. These plots are the result of simulations when teams 

face simple problems. The connected points illustrate the average results of 100 simulations, and the unconnected pale point illustrates 

the result of a single run simulation. 

 

Communication Noise  
Increasing the communication noise level, C,  increased teams; final scores for complex problems 

(Figure 8, top left). This is because communication noise impeded teams from quickly reaching 

consensus, and allowed them to engage in more exploratory (and less purely greedy) search. On 

the other hand, Teams with  noisier communication required more time and resources to reach 

consensus (Figure 8, top row). In a situation with low communication noise, a hardworking team 

could consume fewer resources than risk-taking teams, while this relationship was reversed for 

higher communication noise (Figure 8, top right). As usual, teams could always reach the global 

maximum solution for simple problems. We find that increasing the communication noise could 

have a U-shaped effect on the time and resources required for teams to reach consensus (Figure 

8, bottom row). This is due to a similarly-shaped relationship communication noise and the 

diversity of solutions. We explain this result below.  

 



 
Figure 8. The top row plots illustrate the score (left), time (middle), and resource (right) of teams with various levels of communication 

noise when they face complex problems (K10). The bottom row shows off the simple problems (K0).The connected points illustrate 

the average results of 100 simulations, and the unconnected pale point illustrates the result of a single run simulation. 

 

Communication noise slows the process that leads to team consensus, which increases the 

probability that the team will find a higher quality solution.   We illustrate this in Figure 9, which 

shows that in all cases, communication noise helps teams to maintain a larger number of unique 

solutions and therefore explore a wider area of the solution landscape. The effect holds 

regardless of problem complexity or individual search strategy.  

 

 
 

 



Figure 9. The plots illustrate the unique number of solutions in every time steps of the first 20 time steps of simulations. The plots 

compare the unique number of solutions for each time step when there is zero communication noise, a medium level of noise (20%), 

and a high level of noise (50%). The top rows illustrate the simulation results of teams that solve complex problems (K10), and the 

bottom rows show the simulation results of teams that solve simple problems (K0). The left column of plots indicates the results of 

teams with a risk-taking strategy, the middle column is for teams with a hardworking strategy, and the right column of plots is for a 

team with a normal individual-learning strategy. The connected points illustrate the average results of 100 simulations, and the 

unconnected pale point illustrates the result of a single run simulation. 

 

Recall that for teams solving simple problems, a moderate level of communication noise reduced 

the required time and resources to reach consensus. Here we explain this result and also the U-

shaped relationship between communication noise and time to consensus for simple problems. 

To characterize the diversity of the solutions considered by team members at any given time step, 

we calculated the average Hamming distance between all pairs of solutions. The results of this 

analysis are shown in Figure 10. Notice that a noise level of C = 0.2 decreases this diversity faster 

than either zero noise or maximum noise (C = 0.5). This is likely because small levels of noise 

enabled agents to take larger leaps toward the global maximum.  

 
Figure 10. The plots illustrate the average Hamming distance of all solutions in a team solving simple problems (K=0) , at every time 

steps, for risk-taking (left), hardworking (middle), and normal (right) teams. 

 

We once again find that more connected communication networks lead to faster and less 

resource-intensive consensus to the global optimum, regardless of communication noise  (see 

Figure A5).  However, the relationship between communication noise and network structure is 

more complicated when teams solve complex problems (Figure 11). With low communication 

noise, we reproduce the result that sparse networks allow for higher quality solutions, as before. 

However, as communication noise increases, it takes over the role in maintaining greater diversity 

of solutions previously achieved by network sparseness. Sparse networks then become so 

inefficient that the team often ran out of time before it could reach consensus or even find a high-

quality solution (Figure 11, middle row). Accordingly, the effect of communication noise is stronger 

denser networks, and with high levels of communication noise, dense networks can actually 



outperform sparse networks, since they allow more efficient percolation of high quality solutions 

and the communication noise acts to maintain solution diversity. This result echoes previous 

studies that found that dense networks are preferable to sparse networks for collective solving of 

complex problems when other mechanisms that prolong solution diversity are present, including 

conformist learning (Barkoczi and Galesic 2016) and strong prior beliefs (Zollman 2010). As 

communication noise increases and thereby maintains greater diversity of solutions in a team 

(Figure A6), teams reach better solutions but increase the required time and resources needed 

to reach consensus.  
 

 
Figure 11. Performance of teams with different network structures and communication noise when teams face complex problems (See 

Figure A6 for simple problems) The plots in the top row illustrate the final score of teams with different individual learning strategies; 

risk-taking (left), hardworking (in the middle), and normal (on the left) when teams utilize networks with different connectivity densities. 

The middle and bottom row plots indicate time and resources, respectively, which are required for teams. All plots are results of 

simulations when teams solve complex problems (K10). The connected points illustrate the average results of 100 simulations, and 

the unconnected pale point illustrates the result of a single run simulation. 

 

Discussion  
Superiority bias and communication noise both make social learning less efficient in the short 

term. Agents exhibiting superiority bias ignore information about solutions that are marginally 

better than their current solutions, only switching when switching carries a large benefit. Agents 

experiencing communication noise fail to correctly copy better solutions, introducing random error 

that is likely to decrease rather than increase the quality of their solution. Yet each of these 

mechanisms, when operating at the group level, lead teams to reach consensus on higher quality 



solutions than they reach when the mechanisms are absent. Each mechanism, though 

procedurally distinct at the psychological or communicative level, creates a benefit in the same 

way: by prolonging the diversity of solutions in the population and allowing a wider area of the 

solution space to be explored, they increase the chance that the team will discover a high-quality 

solution. This work contributes to an increasingly larger literature on collective problem solving, 

spread across several disciplines and using several different models, showing that nearly any 

mechanism that increases the transient diversity of solutions will increase the quality of solutions 

to complex problems discovered by cooperative teams (reviewed in Smaldino et al. 2022).      

 

The contributions of superiority bias or communicative noise are not, however, unequivocally 

positive. For simple problems in which hill climbing approaches work well and for which a 

determined individual is likely to reach the optimal solution, diversity-increasing processes simply 

prolong the time and resources needed to reach that solution. This is related to the well-known 

tradeoff between speed and accuracy in the judgment and decision making literature, though that 

work usually focuses only on individual-level processes. It is also the case that the contribution of 

either superiority bias and communicative noise may interact with other mechanisms that increase 

or prolong diversity, including the sparseness of the social network. When added together, too 

much diversity may prevent a team from reaching consensus in a timely fashion—a point 

previously made by Zollman (2010) in his study of networked Bayesian learners solving a two-

armed bandit problem. Here we conceptually replicate this result for NK landscape models of 

collective problem solving.   

 

It is unclear how actionable the conclusions of this paper are at this time. While communication 

noise can be controlled to some extent, changing superiority bias is likely to be more difficult, as 

it reflects psychological characteristics of individual team members. Our results also only apply to 

cases for which our broad model assumptions hold. These include the assumptions that problems 

are well-defined with a finite space of possible solutions, that solutions are readily assessable and 

rankable, and that team members share goals and will therefore readily share information. These 

assumptions are common to many models of collective problem solving (Smaldino et al. 2022), 

but nevertheless do not always hold in real life problem solving conditions. For example, agents 

may have competing interests, and the quality of a solution is not always immediately apparent. 

So-called “wicked” problems (Buchanan 1992) may not even be easily defined in the first place, 

and so do not lend themselves to the sort of meandering search processes modeled here. Our 

model also ignores the roles of leadership, hierarchy, division of labor, and creativity that often 



guide collective problem solving. Nevertheless, this work helps to flesh out work modeling factors 

that contribute to our understanding of collective problem solving.  

Acknowledgements 
We appreciate the constructive feedback from Suzanne Sindi, Alexander Petersen, and Justin 

Yeakel. This work was partly funded by a grant from the Templeton World Charity, TWCF0715. 

Computational experiments were run on the Multi-Environment Computer for Exploration and 

Discovery (MERCED) cluster at UC Merced, which were funded by the National Science 

Foundation (NSF) Grant ACI-1429783. We thank Joshua Becker for publicly sharing the NetLogo 

code that formed the basis for our model code. 

 

Appendix 

Example of computing a solution’s score.   

 

N = 6   K = 2 
The Solution:    
 

S = {1,1,0,0,1,1}.	   (2) 

Interdependency vectors 𝑉&:  
 

𝑉!	=	{1,1,1}., 𝑉#	=	{1,0,1}., 𝑉$	=	{0,1,1}., 𝑉)	=	{0,1,0}., 𝑉*	=	{1,1,0}., 𝑉+	=	{1,0,0}.			 (3) 

						 
 
We consider each interdependency vector as a binary number:   
 

𝑉& ⇒ 	𝑏𝑖𝑛𝑎𝑟𝑦	𝑛𝑢𝑚𝑏𝑒𝑟																												 𝑉! 	⇒ 	111 (4) 

 
We convert the binary number of each interdependency vector into a decimal number:  
 

𝑉& ⇒ 	𝑏𝑖𝑛𝑎𝑟𝑦	𝑛𝑢𝑚𝑏𝑒𝑟	 ⇒ 	𝑑𝑒𝑐𝑖𝑚𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟													𝑉! 	⇒ 	111 ⇒ 7 (5) 

 
The score contribution of 𝑉! is 143, which is the 7th element of the score in the list (indices 

starting at zero). The score list is a list of 2,-! random numbers from 0 to 1000.    



 
Score list: {14, 406, 341,459,520,831,721, 143}. (6) 

 

𝑉!	 ⇒ 143 (7) 

 
 

The score contribution of all interdependency vectors:  
 

𝑉! 	⇒ 	111 ⇒ 7 ⇒ 143 
𝑉# 	⇒ 	101 ⇒ 5 ⇒ 831 
𝑉$ 	⇒ 	011 ⇒ 3 ⇒ 459 
𝑉) 	⇒ 	010 ⇒ 2 ⇒ 341 
𝑉* 	⇒ 	110 ⇒ 6 ⇒ 721 
𝑉+ 	⇒ 	100 ⇒ 4 ⇒ 510 

(8) 

 
 

The solution score is the average score of all the interdependency vectors: 
 

1
𝑁#	

!

"

𝑉# =
143 + 831 + 459 + 341 + 721 + 510

6 = 500.83 
(9) 

	
 

We raise all scores to power 8 and normalize them in the range of 0 to 1. With this range, we 

compute the scores of all solutions in the NK landscape and consider the highest score as 1.  

Inferiority bias 

Inferiority bias is the perception of an individual belief of being inferior to others (Association and 

Others 2007). We modeled inferiority bias by adding a bias to the solution’s score of neighbor 

agents through social learning (Figure A1). In the social learning process, the agent considers its 

neighbor’s score as its actual score plus bias value (𝐵&). 𝐵& is a random number between 0 and 

the perception level (BMax). P is determined by the user. Each agent has its B. 



 
Figure A1. The illustration shows the social learning process without bias (left) and social learning with an inferiority bias (right). 

Agent 1 compares its score with Agent 2 to adopt the solution of Agent 2 if it is a solution with a better score. With the inferiority 

bias, the bias value (𝐵!) is added to the neighbor’s score. 𝐵! is a random float between 0 and P (set by user) that is selected from a 

uniform distribution.  

 

The inferiority bias dramatically decreases individual learning. In most cases, agents can find a 

neighbor with a score they perceive better than their scores (Figure 6). Therefore, agents adopt 

their neighbor’s solution and are not confident enough to explore the landscape through 

individual learning. This leads a team to converge quickly.  

 
Figure A2. The agent could avoid social learning and perform individual learning if the agent’s score was larger than the summation 

of the neighbors’ score and the bias value(B). Only cohorts D and E had the chance to be in the individual learning. In cohorts A, B, 

and C, the agent’s score is not larger than the summation of its neighbor’s score and the bias (𝐵!). Therefore, agents in cohorts A, B, 

and C are not involved in individual learning.  

 

With inferiority bias, it is less likely for an agent who has already done social learning to be 

involved in individual learning (Figure A2). No two neighbors with the same score can be involved 

in individual learning because they perceive their neighbor (each others) better than themselves 



and imitate it (Figure A3). In our model, we consider the time as the first time a team reaches its 

highest score. The team score does not always increase with an inferiority bias (Figure A3, A4).  

 

 
Figure A3.  The figure showed social learning and individual learning with the different levels of inferiority bias (B). When B is 

relatively large (B = 0.5), individual learning does not happen, and agents will involve in social learning and imitating each other. 

When B is relatively small (B = 0.1), the team converges quickly. When inferiority bias is absent (B = 0), agents are involved in 

individual learning.  

 

 
Figure A4. Score, time and resource usage of teams with different levels of inferiority bias. The top three plots show the score, time, 

and resources used by the teams with different levels of inferiority bias (Others superiority bias) when they face complex problems 

(K10). The three plots at the bottom illustrate when teams face simple problems (K0).  
 



 
Figure A5. Number of unique solutions in each time step for teams with different levels of connectivity. The plots illustrate the unique 

number of solutions in each time step of the first 20 time steps of simulations for teams solving complex problems (K10). The top row 

illustrates the results of teams that are communicating via a linear structure network (low-connected network structure), and the bottom 

row shows the result of teams that communicate via a fully connected network. The plots compare the unique number of solutions for 

each time step when zero communication noise exists, a medium level of noise (20%) exists, and a high level of noise (50%) exists. 

The left column indicates the results of teams with a risk-taking strategy, the middle column represents the teams with a hardworking 

strategy, and the right column represents a team with a normal individual-learning strategy. The connected points illustrate the average 

results of 100 simulations, and the unconnected pale point illustrates the result of a single run simulation. 

 
Figure A6. These plots are the result of simulations of teams that are facing simple problems with different network structures. The 

left column of plots illustrates the score (top), time (middle), and resource usage (bottom) of a team with a risk-taking individual-



learning strategy. The middle and right columns indicate score, time, and resources for teams with hardworking and normal strategies, 

respectively. The connected points illustrate the average results of 100 simulations, and the unconnected pale point illustrates the 

results of a single run simulation. 
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