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Abstract 45 

Category learning and visual perception are fundamentally interactive processes, such that 46 

successful categorization often depends on the ability to make fine visual discriminations between 47 

stimuli that vary on continuously valued dimensions. Research suggests that category learning can 48 

improve perceptual discrimination along the stimulus dimensions that predict category 49 

membership, and that these perceptual enhancements are a byproduct of functional plasticity in 50 

the visual system. However, the precise mechanisms underlying learning-dependent sensory 51 

modulation in categorization are not well understood. We hypothesized that category learning 52 

leads to a representational sharpening of underlying sensory populations tuned to values at or near 53 

the category boundary. Furthermore, such sharpening should occur largely during active learning 54 

of new categories. These hypotheses were tested using fMRI and a theoretically constrained model 55 

of vision to quantify changes in the shape of orientation representations while human adult subjects 56 

learned to categorize physically identical stimuli based on either an orientation rule (N = 12) or an 57 

orthogonal spatial frequency rule (N = 13). Consistent with our predictions, modeling results 58 

revealed relatively enhanced reconstructed representations of stimulus orientation in visual cortex 59 

(V1–V3) only for orientation rule learners. Moreover, these reconstructed representations varied 60 

as a function of distance from the category boundary, such that representations for challenging 61 

stimuli near the boundary were significantly sharper than those for stimuli at the category centers. 62 

These results support an efficient model of plasticity wherein only the sensory populations tuned 63 

to the most behaviorally relevant regions of feature space are enhanced during category learning. 64 

 65 

 66 

 67 
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Significance Statement 68 

Poisonous or edible? Friend or foe? Quickly grouping objects into appropriate categories is critical 69 

to our survival. Many category decisions are supported by the presence of one or more defining 70 

features – for example, the shape and color of a banana can easily distinguish it from other fruits 71 

at the store. Other decisions require highly precise perceptual representations – which exact shade 72 

of yellow determines whether a banana is ripe? We tested the hypothesis that ongoing learning of 73 

new visual categories leads to more precise sensory representations, especially where precision is 74 

likely to improve categorization performance. Our results bore this out: active category learning 75 

can lead to rapid and specific improvements in the way early visual cortex represents relevant 76 

features. 77 
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Category learning enables us to predict the behavioral relevance of novel stimuli. In the visual 103 

domain, this is made possible by selectively attending to the specific features that lead to 104 

successful categorization. For example, noting whether an organism has wings is useful for 105 

distinguishing birds from mammals, but uninformative when classifying bird species. Instead of 106 

discrete features, bird watchers are better served by attending to continuous dimensions such as 107 

color or texture. Learning to categorize such stimuli can lead to improved perception of subtle 108 

differences across relevant dimensions, especially for physically similar stimuli that nonetheless 109 

belong to distinct categories (Rosch, et al., 1976; Curby & Gauthier, 2010; Diamond & Carey, 110 

1986; Tarr & Gauthier, 2000; Seger et al., 2015; Hamm & McMullen, 1998; Jolicoeur et al., 111 

1984; Zeithamova & Maddox, 2007).  112 

Dimensional relevancy is a likely catalyst for this improved perceptual sensitivity. For 113 

instance, categorizing size- and brightness-varying objects by size makes small size differences 114 

easier to distinguish, but not brightness differences (Goldstone, 1994). This may be due to 115 

perceptual stretching along the relevant dimension, where small feature value differences 116 

become exaggerated (Goldstone & Steyvers, 2001; Folstein et al. 2013; Folstein et al., 2015). 117 

Neuroimaging and single-unit recording studies support the hypothesis that category learning 118 

leads to warped neural representations of relevant exemplars (Sigala & Logothetis, 2002; 119 

O’Bryan et al., 2018a, 2018b; but see Jiang et al., 2007), and such neural plasticity may directly 120 

support perceptual discrimination (Folstein et al., 2012; Folstein et al., 2013). 121 

Dimension wide perceptual stretching can account for a broad range of results (Nosofsky, 122 

1986). Nonetheless, open arguments suggest category learning should produce localized 123 

enhancement for a subset of features along an attended dimension (sometimes termed 124 

categorical perception). Perceptual noise leads to particularly high classification error rates near 125 
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category boundaries (Aha & Goldstone, 1992; Maddox & Ashby, 1993), and as such, precise 126 

perceptual representations for these exemplars may be uniquely crucial. If so, classifying visually 127 

similar between-category exemplars should lead to enhanced neural representations at or around 128 

the boundary – especially during learning when internal boundaries are inherently noisy.  129 

The behavioral evidence for such localized representational enhancement effects have been 130 

mixed (Juárez et al., 2019; Folstein et al., 2014; Van Gulick & Gauthier, 2014), where most 131 

studies search for demonstrations of persistent perceptual improvements outside of active 132 

categorization. However, localized representational enhancement is consistent with the known 133 

neurobiology of feature-based selective attention. When nonhuman primates attend to specific 134 

feature values (e.g., red), sensory neurons tuned to the most task-informative values exhibit 135 

elevated firing rates, whereas responses from neurons tuned to uninformative values (e.g., blue) 136 

within the same feature space are often suppressed (Sigala & Logothetis, 2002; Martinez-Trujillo 137 

& Treue, 2004; Yang & Manusell, 2004), leading to enhanced representations of relevant 138 

sensory input (Ling et al., 2009). Importantly, the perceptual learning literature indicates this 139 

representational enhancement is task-dependent, especially in early visual cortex (Byers & 140 

Serences, 2014).  141 

Most visual categorization studies have focused on parietal, prefrontal, and extrastriate 142 

regions with the expectation that they are uniquely sensitive to learning effects (Freedman & 143 

Assad, 2016; Uyar et al., 2016). Few studies have examined the possible downstream effects of 144 

category learning on retinotopically organized regions of visual cortex, with the recent exception 145 

of Ester et al. (2020). Despite relatively sparse research, there is ample evidence to suggest that 146 

V1 may play an integral role during category learning, analogous to its role in perceptual 147 

learning.   148 
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We address this question using fMRI and an encoding model to reconstruct orientation 149 

representations within early visual cortex while subjects actively learn to categorize grating 150 

stimuli based on an orientation (line angle) rule or an orthogonal spatial frequency (line width) 151 

rule. We predicted orientation representations should be enhanced among orientation learners to 152 

optimally support boundary acquisition and minimize prediction error during learning. 153 

Furthermore, these sensory modulations should be most pronounced for exemplars that border 154 

subjects’ assigned category boundaries, consistent with an efficient model of plasticity. 155 

 156 

Methods 157 

Subjects 158 

 Twenty-six healthy adult human subjects (age range: 18 – 32 years; 13 females, 12 males, 159 

and 0 nonbinary) with normal or corrected-to-normal vision were recruited from the Texas Tech 160 

University community. Data from one subject was removed due to excessive movement in the 161 

scanner, which resulted in considerable loss of visual cortex coverage. All subjects provided 162 

written informed consent before participating in accordance with the Declaration of Helsinki. 163 

Subjects were paid $20/hr for the fMRI scanning sessions, and $10/hr for behavioral training 164 

completed outside of the scanner. This study was approved by the Texas Tech University IRB.  165 

 166 

Materials  167 

 Visual stimuli were rendered using MATLAB (v.9.1, MathWorks) and presented via 168 

Psychophysics Toolbox (v.3.3; Kleiner et al., 2007) on a desktop PC running Windows 10. For a 169 

pre-scan training session, stimuli were displayed on a 1920 x 1080 pixel resolution BenQ 170 

XL2430T monitor measuring 58 cm wide and set to a 100 Hz refresh rate. During all fMRI 171 
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scans, stimuli were presented on a 1024x768 resolution projection screen measuring 19 cm wide 172 

and at a 60 Hz refresh rate.   173 

 174 

Categorization Task 175 

 The primary goal of this experiment is to characterize modulations in orientation-176 

selective population responses while subjects actively learn categories, where orientation is 177 

either a category-relevant or irrelevant stimulus dimension. To accomplish this goal, subjects 178 

learned to classify grating stimuli into one of two categories via trial and error. Subjects were 179 

assigned to one of two experimental conditions based on their subject number: categorization 180 

based on either an orientation rule (N = 12) or a spatial frequency rule (N = 13). This group 181 

sample size was determined based on related studies obtaining medium to large within-group 182 

effects sizes with samples ranging between 8-13 (Scolari et al., 2012; Byer & Serences, 2014; 183 

Ester et al., 2020). Assignment to these conditions was performed pseudo-randomly (based on 184 

subject number) to ensure an approximately equal number of subjects in each group. 185 

 Subjects were not aware of the rule they would learn prior to beginning the categorization 186 

task. However, they were informed that the categorization rule may be based on either the 187 

orientation or spatial frequency dimensions of the gratings. Critically, all subjects encountered an 188 

identical stimulus set over the course of the experiment regardless of their assigned 189 

categorization rule; the task differed between subjects only with respect to the categories to 190 

which each stimulus belonged.   191 

 Procedurally, each trial of the categorization task began with a 3 s grating stimulus. 192 

Gratings were presented centrally on a middle gray background with a radius of 8 degrees of 193 

visual angle and flickered at a rate of 5 Hz to drive responses in early visual cortex. During both 194 
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stimulus presentation and inter-stimulus intervals (ISIs), subjects were instructed to maintain 195 

fixation on a black point in the center of the screen. Fixation was monitored in real time by the 196 

experimenter via an MRI-compatible eye tracker (Eyelink 1000 Plus; SR Research, Ontario, 197 

Canada) to ensure that the retinotopic location of stimuli was consistent both within and between 198 

subjects across task conditions.  199 

 Subjects responded with a button press corresponding to “Category A” or “Category B” 200 

during the 3 s stimulus presentation period. During the last 1 s of the trial, feedback was 201 

administered via a color change at central fixation (green and red for correct and incorrect, 202 

respectively) while the grating stimulus remained on the screen. Following the 3 s combined 203 

stimulus presentation, response, and feedback window, the grating was removed from the screen 204 

and subjects encountered a fixation-only inter-stimulus interval (ISI). The duration of each ISI 205 

was pseudo-randomly jittered with a mean of 4 s and drawn from a distribution ranging between 206 

2 – 6 s in 500 ms steps (resulting in 9 possible ISI durations encountered equally often during 207 

each scanning run). Subjects completed 6 categorization scanning runs of 54 trials each, with a 208 

run time of 6 min 20 s.   209 

 The exemplars encountered during the experiment varied on the two critical dimensions. 210 

Each exemplar took on one of 18 possible values in orientation space, ranging from 5° to 175° in 211 

10° steps. Similarly, exemplars expressed one of 18 possible values in spatial frequency space, 212 

ranging from 0.44 cycles/degree to 1.25 cycles/degree in .045 cycle/degree steps. The values for 213 

each dimension were randomized throughout the experiment.  214 

 For all subjects assigned to learn the spatial frequency rule, the category boundary was 215 

defined as the midpoint of the constrained spatial frequency space, with the 9 highest spatial 216 

frequencies belonging to Category A and the 9 lowest spatial frequencies belonging to Category 217 
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B. For subjects assigned to learn an orientation rule, one of four possible category boundary pairs 218 

was assigned based on subject number (20°/110°, 40°/130°, 60°/150°, and 80°/170°). In 180° 219 

orientation space, boundary pairs are required because orientation space is circular (Fig. 1).  220 

Within the week prior to their scheduled fMRI scans, subjects attended a brief (< 30 221 

minutes) training session outside of the scanner where they completed two practice blocks of a 222 

categorization task. The task employed the same stimuli and response mappings used in the 223 

primary fMRI experiment. Critically, however, the categorization rule for these practice blocks 224 

was identical across all participants, using a 45/135 degree orientation boundary pair that was not 225 

assigned to any subjects for the scanning session. Subjects were told that the categorization rule 226 

could be based on either the spatial frequency (line width) or the orientation of the gratings, but 227 

were not explicitly informed to which rule they were assigned. The rationale for this brief 228 

practice session was to sufficiently familiarize participants with the task procedure and stimuli, 229 

and ultimately was expected to support more rapid learning when the categorization task was 230 

completed in the scanning environment. On the day of the scanning session, subjects were 231 

reminded that they would encounter a new, random rule defined by either the spatial frequency 232 

or orientation of the gratings. 233 
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 234 

Figure 1. Experimental design. For the primary categorization task, subjects learned to 235 
categorize grating stimuli according to either an orientation rule based on one of four possible 236 
boundary pairs (top-left; 60°/150° boundary pair depicted) or a spatial frequency rule based on a 237 
midpoint boundary (top-right). Stimuli and the time course for an example trial are depicted in 238 
the bottom row. Note that the trial structure was identical for the contrast discrimination task. 239 
 240 

Orthogonal Contrast Discrimination Task 241 

 To allow for tightly controlled within-subjects comparisons, subjects completed 6 242 

scanning runs of an orthogonal contrast discrimination task made up of the same flickering 243 

stimuli used in the categorization task. Here, subjects were required to discriminate between 244 

slight increases and decreases in grating contrast. We reasoned that discriminating contrast 245 

changes would provide a strong control condition, because this requires that subjects attend to 246 

the grating to successfully complete the task (thus matching the presumed spatial extent of 247 

attention across tasks).  248 
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 Once in each trial, the contrast of the grating either decreased or increased for 100 ms 249 

(within a single flicker cycle). Subjects were instructed to press a button with their index finger 250 

to indicate a perceived decrease in contrast, and with their middle finger to indicate a perceived 251 

increase in contrast. As with the categorization task, feedback was administered in the form of a 252 

red or green fixation point appearing on the screen for the final 1 s of the 3 s stimulus 253 

presentation window. Each trial was separated by a jittered ISI with the same parameters used in 254 

the categorization task described above.  255 

To allow enough time for subjects to respond and receive feedback during the 3 s 256 

stimulus presentation window, the brief contrast changes were applied at pseudo-random 257 

intervals within the first 1.5 s of stimulus onset. For the first run of the contrast task, the 258 

magnitude of contrast changes (both increases and decreases) started at a default of 20%. After 259 

the first run, task difficulty was manually titrated by the experimenter on a run-by-run basis to 260 

approximately match expected performance in the categorization task by increasing or 261 

decreasing the magnitude of contrast change for each run in 5-10% increments.  262 

Importantly, all contrast scans were run first to ensure subjects did not engage in 263 

orientation or spatial frequency categorization during the task. The same contrast changes were 264 

then implemented on a scan-by-scan basis during the categorization task to perfectly equate all 265 

stimulus properties across the two study phases, but these changes were irrelevant during 266 

categorization. 267 

 268 

Retinotopic Mapping  269 

 All subjects recruited for the study completed a separate, standard retinotopic mapping 270 

scan. This procedure is used to identify and map early visual cortical areas (V1, V2, and V3) 271 
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unique to each subject. The scans required passive fixation on a rotating checkerboard stimulus, 272 

subtending 60° of visual angle and flickering at a rate of 8 Hz (Engel et al., 1994; Sereno et al., 273 

1995; Swisher et al., 2007; Arcaro et al., 2009). To ensure that subjects were attentive throughout 274 

the scan, they were instructed to press a button with their right index finger when they detected a 275 

gray segment that periodically appeared in the stimulus display. The functional datasets were 276 

later projected onto an inflated representation of cortex for each subject to demarcate the 277 

functional borders between visual areas V1v, V1d, V2v, V2d, V3v, and V3d.  278 

 279 

fMRI Data Acquisition and Preprocessing 280 

 Imaging data were acquired on a 3.0 T Siemens Skyra MRI scanner at the Texas Tech 281 

Neuroimaging Institute. MPRAGE anatomical scans (two collected during the retinotopy scan 282 

session; one collected during the experimental scan session) provided high-resolution structural 283 

images of the whole brain in the sagittal plane for each participant (TR = 2.5 s; TE = 1.7 ms; θ = 284 

7°; slice thickness = 1 mm, slices = 172). Functional images were acquired using a single-shot 285 

T2*-weighted gradient echo EPI sequence (TR = 2 s; TE = 40 ms; θ = 72°; FoV= 256 mm; 286 

matrix = 128 x 128 mm; number of axial slices = 25, voxel size = 2x2x3 mm with 0.5 mm gap), 287 

and slices were oriented to cover the full extent of the occipital lobe. 288 

 Data preprocessing was carried out using AFNI and SUMA with custom time series 289 

analysis routines for slice-time correction, between- and within-scan motion correction, and 290 

high-pass temporal filtering (3 cycles/run). Voxel time series were normalized (z-scored) within 291 

run to correct for differences in mean signal intensity across voxels, and trial-level activation in 292 

each voxel was demeaned to ensure that evidence of orientation selectivity can be attributed to 293 
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the activation patterns in orientation-selective cortex as opposed to mean changes in the BOLD 294 

response across voxels that may be evoked by different orientations.  295 

 296 

fMRI Analysis  297 

 For the primary categorization task and orthogonal contrast discrimination task, 3 s trial-298 

level BOLD responses were estimated using block regressors in AFNI’s 3Ddeconvolve program. 299 

Estimates for the amplitude of the BOLD response on each trial served as input for the inverted 300 

encoding model described below to generate estimates for the reconstructed orientation 301 

representations associated with each task condition. Data were spatially smoothed using a 4 mm 302 

FWHM Gaussian kernel. Prior to training the inverted encoding model, a voxel selection 303 

procedure was performed to identify subsets of voxels in V1, V2, and V3 that best distinguished 304 

between differing orientation values. To do so, F-values for a one-factor ANOVA with 305 

orientation as the single factor were computed for all voxels in each independent training set, 306 

where the top 25% of orientation-selective voxels were then used for the given model training 307 

and testing iteration. 308 

Inverted Encoding Model Analyses 309 

 The BOLD responses observed for identified orientation-selective voxels represent the 310 

summed activity of many individual orientation-selective neurons. Although the neurons 311 

contributing to the BOLD signal in each voxel may be associated with different underlying 312 

orientation preferences, research suggests that voxels in early visual cortex exhibit small but 313 

reliable biases in orientation sensitivity (e.g., Kamitani & Tong, 2005; Serences et al., 2009; Jia 314 

et al., 2011). These consistent biases can be leveraged to make quantitative predictions about 315 

how representations of stimulus orientation have changed across visual cortex as a result of task 316 
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demands or voluntary attention. This approach was adopted under the premise that learning 317 

categories defined by an orientation rule may lead to shifts in the amplitude, slope, and/or 318 

bandwidth of population-wide response functions (Byers & Serences, 2014), particularly for 319 

challenging stimuli falling near the category boundaries.  320 

 To generate these predictions, we employed an inverted encoding model (Brouwer & 321 

Heeger, 2009; 2011; Scolari et al., 2012; Byers & Serences, 2014; Sprague et al., 2018; Ester et 322 

al., 2020). Encoding models make theoretically motivated assumptions about how relevant 323 

features are represented in the brain. When subjects encounter visual features represented in this 324 

model, the resulting BOLD response can be used to weight voxels according to the similarity 325 

between their true response and the theoretical response for each feature. Finally, the model is 326 

“inverted,” such that the voxel weights associated with each feature are used to reconstruct 327 

channel response functions (CRFs) using independent task data.   328 

 Functions used for the theoretical basis set in the model were based on well-established 329 

single-unit tuning functions in V1 associated with orientation perception. Specifically, the model 330 

assumes each orientation tuning function to be half-sinusoidal in shape and raised to the 9th 331 

power, where the half-bandwidth of orientation selective neurons spans 20° of orientation space. 332 

The model requires a minimum number of evenly spaced functions such that the entire 180° 333 

space is covered, and the maximum number of functions should not exceed the number of unique 334 

features presented in order to avoid overfitting. To both satisfy these criteria and to maintain 335 

consistency with previous studies (Scolari et al., 2012), we used a basis set of 10 evenly 336 

distributed orientation functions in the current experiment.  337 

 The a priori model parameters described above were incorporated into an encoding model 338 

first described by Brouwer and Heeger (2009; 2011) with the goal of reconstructing orientation 339 
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representations associated with different task conditions. Formally, the model requires input 340 

parameters for the number of voxels selected (m), the number of trials in the training or testing 341 

datasets (n), and the number of pre-defined orientation channels (k, where k = 10 for the current 342 

study). B1 and B2 represent m × n matrices used to denote the training and testing datasets. The 343 

datasets were defined using a leave-one-out approach where the model was trained using data 344 

from 10 total scanning runs-- five from the contrast discrimination task and five from the 345 

categorization task-- with one run from each task used separately as the test dataset for each 346 

iteration of the model. The training data (B1) was mapped on to the full rank matrix of 347 

hypothetical channel outputs (C1, k × n) using a weight matrix (W, m × k) estimated from the 348 

training data using a GLM:  349 

    B1 = WC1,               (1) 350 

Where the ordinary least-squares estimate of W is computed as follows:  351 

       Wfitted = B1C1’(C1C1’)-1                          (2) 352 

The channel responses C2 for each trial were then estimated for the test data B2 by applying the 353 

fitted weights from equation 2:  354 

                                C2 fitted = (Wfitted’ Wfitted)-1 Wfitted’B2              (3) 355 

Channel responses corresponding to each of the 10 specified orientation channels were then 356 

circularly shifted for each trial and projected into 180 degree orientation space, such that the 357 

orientation of each presented stimulus is depicted at the center of the resulting CRF. After 358 

iteratively performing the leave-one-out cross validation approach with each pair of scanning 359 

runs as the test datasets, the CRFs estimated for each scanning run were averaged across all runs 360 

for each task condition (e.g. orientation categorization; spatial frequency categorization; contrast 361 

discrimination) for statistical comparison. These CRFs were then binned according to the 362 
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distance between the presented stimulus and subjects’ assigned orientation boundaries to test the 363 

hypotheses of a graded representational enhancement as stimuli approached the category 364 

boundaries in the orientation rule condition. 365 

 Finally, each subject’s averaged CRF was fit with the following exponential cosine 366 

function (Byers & Serences, 2014; Ester et al., 2020): 367 

𝑓𝑓(𝑥𝑥) =  𝛼𝛼�𝑒𝑒𝑘𝑘(cos(𝜇𝜇−𝑥𝑥)−1)� +  𝛽𝛽 368 

where x corresponds to the channel responses, α is the vertical scaling (restricted to a range of 0 369 

to 3), k is the concentration (which determines the width; restricted to a range of 0.125 to 100), μ 370 

is the function’s center (restricted to a range of 0 to pi), and β is the baseline (restricted to a range 371 

of -3 to 3). These model fits were then used to quantify the shape of the reconstructed 372 

representations. To test our hypotheses about whether learning to categorize oriented gratings 373 

leads to stronger, sharper, and/or more precise representations of orientation values, we report 374 

amplitude (the difference between the maximum and minimum estimated values); slope; 375 

bandwidth (the inverse of concentration); and center shifts (the absolute difference between the 376 

presented orientation and the estimated center).  377 

 378 

Inverted Encoding Model Predictions 379 

 Our task design afforded us the opportunity to test for possible changes in orientation 380 

representations both within and between subjects. First, the orthogonal contrast detection task 381 

served as a stimulus-matched comparison condition to determine if learning to categorize stimuli 382 

based on orientation enhances the neural representation of behaviorally relevant feature values in 383 

visual cortex. We anticipated that the reconstructed representations of stimulus orientation 384 

should be relatively enhanced during the categorization task compared to the contrast 385 
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discrimination task for subjects assigned an orientation rule. This enhancement could take the 386 

form of higher amplitudes, steeper slopes, and/or narrower bandwidths. Such enhanced 387 

representations may be most beneficial when they are centered on or near the presented 388 

orientation value, especially during early learning when participants are engaged in active 389 

exploration of the category space. Thus, we might also expect the estimated function centers to 390 

be closer to the presented orientation value during orientation categorization compared to 391 

contrast discrimination. Conversely, we expected no differences in any of these measures 392 

between the categorization and contrast tasks among the spatial frequency group.  393 

 We furthermore predicted that subjects learning to categorize stimuli based on orientation 394 

would exhibit enhanced orientation representations that are specifically relevant to categorization 395 

decisions. In particular, we expected representational enhancement to be most prominent for 396 

stimuli near subjects’ assigned category boundaries in the orientation group compared to 397 

exemplars at the center of each category.  398 

 Offline, we randomly applied one of the four orientation boundary pairs to each of the 399 

spatial frequency learners’ data to accommodate between-subject comparisons of orientation 400 

representations for near and far boundary trials. Importantly, we used the same boundary pairs 401 

that were assigned to the orientation group, so that the boundaries were fully matched between 402 

groups. For the spatial frequency group, we expected the shape of the resulting CRFs to be 403 

uniform, as no significant representational differences should occur for stimulus values that are 404 

near or far from arbitrarily assigned orientation boundaries.  405 

 It is possible that boundary-specific enhancement effects emerge at a specific stage of 406 

learning. For example, enhanced sensory representations of stimuli may only be beneficial 407 

during early learning when many errors are committed around the category boundary. 408 
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Alternatively, such effects may instead emerge only after an adequately high level of 409 

performance is achieved in the task. To address these possibilities, we divided the data into early 410 

(blocks 1 and 2) and late (blocks 5 and 6) learning stages to test whether learning duration 411 

differentially modulates the shape of reconstructed representations for near- and far-boundary 412 

stimuli.  413 

 414 

Results 415 

Learning Performance 416 

 To ensure the spatial frequency categorization task was an appropriate control for 417 

orientation categorization, we first compared mean task accuracy and asymptotic learning 418 

between both groups. Mean categorization accuracy was well above chance among both the 419 

orientation (M = 83.0%, SD  = 11.8%) and spatial frequency (85.1%, SD  = 4.1%) groups across 420 

the 6 categorization blocks. Critically, all subjects learned their respective category rules as 421 

indicated by accuracy on the last two learning blocks (orientation: range = 62.0% - 96.3%; 422 

spatial frequency: range = 75.9% - 92.6%), including the worst-performing subject whose 423 

accuracy remained significantly above chance, t (107) = 2.57, p = .006.  424 

 To ensure that category learning was well matched between groups, we used a linear 425 

mixed model with factors for learning block, categorization group, and their interaction. The 426 

model revealed a significant main effect of block on accuracy, F (5, 115) = 6.94, p < .001, while 427 

neither the main effect of group, F (1, 23) = .35, p = .56, nor block × group interaction, F (5, 428 

115) = .60, p = .70, were significant. Taken together, these results suggest that the accuracy of 429 

both groups improved significantly over the course of the 6 learning blocks, and that these 430 
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improvements did not differ between categorization rules (see Fig. 2a). Thus, the spatial 431 

frequency rule served as an appropriate control condition to the orientation rule.   432 

 Secondary within-subject comparisons were carried out to assess performance on the 433 

stimulus-matched perceptual discrimination task relative to categorization. Mean accuracy for 434 

contrast discrimination was somewhat lower than that observed for the categorization task in 435 

both the orientation (M = 74.9%, SD = 15.1%) and spatial frequency groups (M = 79.5%, SD = 436 

6.2%). Linear mixed models with accuracy as the outcome variable and factors for task (contrast 437 

vs. categorization), block, and their interaction revealed a significant main effect of task for the 438 

orientation group, F (1, 11) = 7.42, p = .02, with categorization accuracy being higher than 439 

contrast discrimination accuracy on average (Fig 2b). For the spatial frequency group, a 440 

significant task × block interaction was observed, F (5, 120) = 3.54, p = .005, such that relative 441 

differences in accuracy were larger for spatial frequency subjects on the categorization task 442 

relative to the contrast task for early blocks, but not late blocks (Fig 2c). Importantly, mean 443 

performance on the contrast discrimination task did not significantly differ between the 444 

orientation and spatial frequency subjects, t (23) = -.99, p = .33, d = 0.43. These results suggest 445 

that the orthogonal contrast discrimination task was slightly more difficult than the subsequent 446 

categorization tasks completed by both groups, but critically, that these differences were largely 447 

equated between the experimental groups.  448 
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  449 

Figure 2. Learning curves. Red points correspond to the orientation group, and blue points 450 
correspond to the spatial frequency group. Solid lines indicate accuracy (proportion correct) 451 
during the categorization task, whereas dotted lines indicate accuracy during the contrast task. a) 452 
Orientation versus spatial frequency categorization. b) Orientation categorization versus contrast 453 
discrimination. c) Spatial frequency categorization versus contrast discrimination. Error bars 454 
reflect standard error of the mean (SEM). 455 
 456 

Channel response functions for categorization vs. contrast discrimination tasks 457 

 We predicted relative increases in amplitude and slope, as well as possible decreases in 458 

bandwidth and center shift of orientation CRFs, when comparing the orientation categorization 459 

task to the orthogonal, physically matched contrast discrimination task. This prediction is based 460 

on the broader theory that fine perceptual discriminations between continuously valued stimuli 461 

may be supported by stronger (e.g., higher amplitude) and/or more specific (e.g., steeper slopes) 462 

neural representations of task-relevant features in the sensory populations responsible for their 463 

perception (Byers & Serences, 2014; Scolari et al., 2012). We were particularly interested in 464 

testing the interaction between task (contrast vs. categorization) and category learning condition 465 

(orientation vs. spatial frequency), as evidence of representational enhancement.  466 
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 Linear mixed models including factors for categorization condition (orientation and 467 

spatial frequency), task phase (contrast discrimination and categorization), and their interaction 468 

were performed with each CRF measure as the outcome variables for both V1 and V2/V31. 469 

Consistent with our predictions, the model revealed a significant crossover interaction between 470 

categorization dimension and task phase in amplitude within area V1, F (1, 23) = 9.87, p = .003. 471 

Amplitudes were significantly higher during categorization compared to the contrast 472 

discrimination task among orientation rule learners, t (11) = 2.33, p = .04, d = 1.18. The spatial 473 

frequency group showed a trend in the opposite direction: amplitude on the contrast 474 

discrimination task was slightly greater and did not significantly differ from the categorization 475 

task, t (12) = -1.47, p = .17, d = 0.62 (Fig. 3). Between groups, orientation rule learners exhibited 476 

significantly higher amplitudes than spatial frequency rule learners during categorization, t (23) 477 

= 2.85, p = .01, d =1.25, but not during the orthogonal contrast discrimination task, t (23) = -478 

1.33, p = .20, d = 0.53. Directionally consistent, albeit less reliable, patterns were observed in 479 

V2/V3 (categorization dimension × task phase interaction: F (1, 23) = 3.52, p = .07; 480 

categorization vs. contrast task: orientation rule learners: t (11) = 1.39, p = .19, d = 0.48; spatial 481 

frequency rule learners: t (12) = -.79, p = .44, d = 0.26; orientation vs. spatial frequency rule 482 

learners: categorization task: t (23) = 2.21, p = .04, d = 0.55; contrast task: t (23) = -.13, p = .90, 483 

d = .03).  484 

 Within V1, we similarly observed a significant two-way interaction between 485 

categorization dimension and task phase within slope, F (1, 23) = 4.21, p = .046. Slopes were 486 

significantly steeper in the categorization task compared to the contrast discrimination task for 487 

 
1 The results for areas V2 and V3 were closely matched across statistical comparisons, so the CRFs were averaged 
across both regions for all analyses.  
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the orientation group, t (11) = 2.78, p = .02, d =1.36, while they did not reliably differ for the 488 

spatial frequency group, t (12) = 1.08, p = .30, d = .50. Likewise, slopes were steeper for 489 

orientation rule learners compared to spatial frequency rule learners during categorization, t (23) 490 

= 2.94, p = .007, d = 1.27, but did not differ between the two groups during the contrast 491 

discrimination task, t (23) = .56, p = .58, d = 0.23. Once again, the slope patterns in V2/V3 were 492 

consistent but weaker than what was observed in V1 (categorization dimension × task phase 493 

interaction: F (1, 23) = 3.23, p = .08; categorization vs. contrast task: orientation rule learners: t 494 

(11) = 2.28, p = .04, d = 0.79; spatial frequency rule learners: t (12) = .66, p = .52, d = 0.18; 495 

orientation vs. spatial frequency rule learners: categorization task: t (23) = 2.72, p = .01, d = 496 

0.68; contrast task: t (23) = .33, p = .74, d = .09).  497 

In addition to amplitude and slope, we tested the effects of category learning on 498 

orientation CRF center shift and bandwidth. Center shift reflects the relative precision of 499 

orientation representations, where absolute values indicate how close the peak of the CRF is to 500 

the true orientation presented on a given trial. Bandwidth reflects the specificity of the 501 

representation in orientation space. We found a marginally significant two-way interaction 502 

between categorization dimension and task phase for center shift within V1, F (1, 23) = 3.81, p = 503 

.06. Pairwise comparisons revealed that the CRF centers were significantly closer to 0° during 504 

category learning than during the contrast discrimination task among orientation rule learners, t 505 

(11) = -3.25, p = .008, d = 0.98. This pattern, however, was absent among the spatial frequency 506 

rule learners, t (12) = -.82, p = .43, d = 0.23. CRF centers for the orientation group were also 507 

significantly closer to 0° when compared to the spatial frequency group during the categorization 508 

task, t (23) = -2.32, p = .03, d = 0.62, while the groups did not differ during the contrast 509 

discrimination task, t (23) = .69, p = .50, d = 0.19. This suggests that orientation rule learners 510 
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exhibited more precise representations of presented orientations than spatial frequency rule 511 

learners specifically during category learning. This pattern was restricted to V1, however 512 

(V2/V3: interaction term: F (1, 23) = .94, p = .34). In contrast to the other measures, bandwidth 513 

was not significantly modulated by categorization condition or phase in either V1, F (1, 23) = 514 

.60, p = .45, or V2/V3, F (1, 23) = .14, p = .71.  515 

Thus far, we have compared reconstructed representations of stimulus orientation across 516 

visually matched tasks. Taken together, the results suggest that neural representations of 517 

orientation were enhanced during active categorization, and only when orientation was the 518 

category-relevant dimension (Fig. 3). This was largely true in all tested areas (V1 and V2/V3), 519 

albeit stronger and more reliable in primary visual cortex. 520 

 521 

 522 
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 523 

Figure 3. Effects of categorization and contrast discrimination on orientation CRFs. a) Mean 524 
orientation CRFs and parameter means for V1 and b) V2/V3. On the x-axes, 0° (center) 525 
corresponds to the true orientation value of the stimulus presented on a given trial. “O-cat” (red, 526 
solid lines) = orientation group, categorization task. “O-con” (faded red, dashed lines) = orientation 527 
group, contrast task. “SF-cat” (blue, solid lines) = spatial frequency group, categorization task. 528 
“SF-con” (faded blue, dashed lines) = spatial frequency group, contrast task. Error bands in the 529 
line plots reflect within-subject SEM. Error bars in the point plots reflect between-subject SEM. 530 
** = p < .01, * = p < .05. 531 
 532 

Channel response functions for near-boundary orientations vs. central exemplars 533 

 In the analyses thus far, we have considered all stimulus orientation values together. 534 

However, we hypothesized that representational enhancement should be most pronounced for 535 

difficult-to-classify stimuli that border the category boundary, where stronger and/or more 536 

specific perceptual representations would benefit performance the most. To test these 537 
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predictions, we created two groups of trials: ones containing orientation values near the assigned 538 

boundary (5° offset), and ones containing orientation values far from the boundary (35° and 45° 539 

offset).  540 

 Four linear mixed models with factors for categorization condition (orientation and 541 

spatial frequency), orientation offset from the category boundary (near and far), and their 542 

interaction were carried out for each tested visual area with amplitude, slope, center shift, and 543 

bandwidth as the respective outcome variables.  The amplitude model revealed a significant 544 

interaction effect in V1 between category rule and stimulus distance from the boundary, F (1, 23) 545 

= 5.56, p = .03 (but not in V2/V3: F (1, 23) = .62, p = .44). Reconstructed representations of 546 

stimulus orientation had higher amplitudes for stimuli bordering the category boundary relative 547 

to those far from the boundary within the orientation group, t (11) = 4.06, p = .002, d = 0.76, but 548 

not the spatial frequency group, t (12) = 1.38, p = .19, d = 0.45.  549 

The same interaction was significant within the slope of V1 CRFs, F (1, 23) = 11.9, p = 550 

.002: Within orientation rule learners, near-boundary stimuli elicited steeper slopes than those far 551 

from the boundary, t (11) = 4.32, p = .001, d = 0.88, an effect that was not present for spatial 552 

frequency rule learners, t (12) = -1.15, p = .27, d = 0.48 (Fig. 4). As with amplitude, this effect 553 

was largely restricted to V1 (V2/V3: F (1, 23) = .71, p = .41).  554 

A converging albeit marginally significant two-way interaction between categorization 555 

task and distance from the boundary was present in center shift within V1, F (1, 23) = 3.72, p = 556 

.07 (but not in V2/V3: F (1, 23) = .02, p = .90). Consistent with predictions, CRFs were centered 557 

closer to the presented stimulus on near-boundary trials compared to far-from-boundary trials 558 

among orientation rule learners, t (11) = -2.60, p = .02, d = 0.45. At the same time, the centers 559 

did not significantly differ across distances from the arbitrary orientation boundaries among 560 
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spatial frequency rule learners, t (12) = .76, p = .46, d = 0.19. Furthermore, the mean center shift 561 

was significantly closer to 0 on near-boundary trials among the orientation group compared to 562 

the spatial frequency group, t (23) = -2.77, p = .01, d = 0.72. Consistent with our contrast 563 

discrimination results (Fig. 3), categorization group and distance from the boundary did not 564 

reliably modulate bandwidth in either V1, F (1, 23) = .89, p = .35, or V2/V3, F (1, 23) = 2.70, p 565 

= .11.   566 

Taken together, our results across amplitude, slope, and center shift converge in strong 567 

support of the hypothesis that sensory representations within V1 were made stronger and more 568 

precise for task-relevant stimulus dimensions in response to learning. Moreover, this 569 

enhancement was primarily applied to the most behaviorally relevant features in the space (in 570 

this case, orientations flanking the category boundary). 571 

 572 
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 573 

Figure 4. Categorization group and boundary effects on orientation CRFs. a) Mean orientation 574 
CRFs and parameter means for V1 and b) V2/V3. On the x-axes, 0° (center) corresponds to the 575 
true orientation value of the stimulus presented on a given trial. “O-near” (red) = orientation group, 576 
near-boundary stimuli. “O-far” (magenta) = orientation group, far-from-boundary stimuli. “SF-577 
near” (blue) = spatial frequency group, near-boundary stimuli. “SF-far” (cyan) = spatial frequency 578 
group, far-from-boundary stimuli. Error bands in the line plots reflect within-subject SEM. Error 579 
bars in the point plots reflect between-subject SEM. ** = p < .01, * = p < .05.  580 
 581 
 582 

Effects of Learning on Reconstructed Representations of Orientation  583 

 Over the course of 6 blocks of a categorization task, we demonstrated that category 584 

learning enhances the sensory representation of task-relevant features. One question that remains 585 

is whether and how these representations change over the course of learning. For example, it is 586 

possible that the boundary-specific enhancement of orientation representations in primary visual 587 
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cortex only emerges after asymptotic learning, when subjects have successfully detected and 588 

established the location of the category boundaries. Alternatively, representational sharpening 589 

may be driven by prediction error during active learning, and thus more apparent during the early 590 

stages of the task when subjects may engage in explicit hypothesis testing to determine the 591 

category rule (Choi et al., 1993; Johansen & Palmeri, 2002; Medin & Schaffer, 1978). Finally, a 592 

third possibility is that the boundary-specific enhancement holds stable across the course of 593 

learning. Most subjects across both categorization conditions reached a performance asymptote 594 

by the fourth task block (see Fig. 2). Thus, to isolate possible early and late learning effects in 595 

the present study, we compared reconstructed representations in blocks 1 and 2 of the 596 

categorization task to those in blocks 5 and 6. Notably, the model training procedure was 597 

identical for early- versus late-learning scanning runs. 598 

 To test whether the boundary-specific representational sharpening observed in V1 was 599 

differentially modulated early or late during the learning process, we extended the previous 600 

model to include a categorical predictor for early vs. late learning, with particular interest in the 601 

3-way interaction between categorization condition, distance from the boundary, and learning 602 

stage. In amplitude, this 3-way interaction was not significant, F (1, 46) = .01, p = .97. However, 603 

the model revealed a significant 2-way interaction between categorization condition and 604 

early/late learning, F (1, 46) = 8.32, p = .005. This interaction reflects the fact that across all 605 

stimulus values, amplitudes were significantly higher in late versus early learning for the 606 

orientation group, t (11) = 2.66, p = .02, d = 0.34, whereas learning duration was associated with 607 

a significant decrease in amplitude among the spatial frequency group, t (12) = -2.20, p = .048, d 608 

= 0.63. This inverse effect in amplitude between the two groups occurred independently of 609 

boundary effects: The difference in amplitude for near vs. far from boundary exemplars within 610 
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the orientation group did not differ between learning stages, t (11) = .01, p = .99, d = .001. 611 

Neither the 3-way interaction effect, F (1, 46) = .19, p = .66, nor any marginal effects reached 612 

significance when slope was used as the outcome variable. 613 

Interestingly, orientation CRF bandwidths were also modulated in response to category 614 

learning, reflected in a two-way interaction between categorization condition and learning stage, 615 

F (1, 46) = 5.80, p = .02. Independent of category boundaries, bandwidths were relatively 616 

narrower in late learning compared to early learning in the orientation group, t (11) = -1.91, p = 617 

.08, d = 1.02, albeit not significantly so. At the same time, we observed a learning effect trending 618 

in the opposite direction for the spatial frequency group, t (12) = 2.01, p = .07, d = 0.69, whereby 619 

bandwidths widened over the course of learning. Across the board, patterns in V2/V3 were once 620 

again directionally consistent with V1, but largely unreliable (see Fig. 5). 621 

The combined amplitude and bandwidth modulation observed for V1 suggests that 622 

representations of category-relevant stimulus dimensions are enhanced, especially at later stages 623 

of learning. At the same time, boundary-specific representational changes emerged relatively 624 

early in learning and remained consistent after subjects reached asymptotic performance.   625 

  626 

   627 
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 628 

Fig. 5. Categorization group and boundary effects on orientation CRFs divided into early and 629 
late learning stages. a) Mean orientation CRFs and parameter means for V1 during early 630 
learning, b) V1 during late learning, c) V2/V3 during early learning, and d) V2/V3 during late 631 
learning. Error bands in the line plots reflect within-subject SEM. Error bars in the point plots 632 
reflect between-subject SEM. ** = p < .01, * = p < .05. 633 
 634 

Association Between Task Accuracy and Reconstructed Representations of Orientation 635 

 Finally, we were interested in testing whether differences in behavioral performance 636 

between subjects during the scanning session were associated with the shape of their 637 

reconstructed representations of orientation specifically for boundary-adjacent exemplars. On 638 

one hand, it is possible that representational sharpening was most pronounced for high-639 

performing subjects who had more time to narrow their attentional focus on the category 640 

boundaries after quickly establishing the category rule. Alternatively, it is possible that the 641 

representational sharpening observed for near-boundary exemplars in the orientation group is an 642 

error-driven effect, such that individuals who were committing more errors in this perceptually 643 

challenging region of the feature space would exhibit the strongest sharpening effects as a 644 

compensatory mechanism.  645 
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To address this question, we performed Pearson correlations between mean 646 

categorization accuracy and subject-level differences in CRF parameters associated with near- 647 

versus far-from-boundary stimuli (e.g., near amplitude − far amplitude). Because all observed 648 

patterns were stronger and more reliable in primary visual cortex, we expected any significant 649 

associations with behavior to occur in this area. We found that orientation subjects’ 650 

categorization accuracy was significantly associated with relatively higher CRF amplitudes in 651 

V1 for near-boundary stimuli, r = .59, t (10) = 2.31, p = .04, in addition to relatively steeper 652 

slopes for near-boundary stimuli, r = .68, t (10) = 2.90, p = .02. Among spatial frequency 653 

learners, the associations between task accuracy and indices of near-boundary representational 654 

enhancement were negative and non-significant (amplitude: r = -.46, t (11) = -1.71, p = .12; 655 

slope: r = -.10, t (11) = -.33, p = .75). We found no significant associations between learning 656 

performance in V1 center shift or bandwidth, nor among any individual CRF parameters in 657 

V2/V3.  658 

Collectively, the results suggest that learning category rules defined by orientation not 659 

only led to sharper representations of orientation than learning an orthogonal rule, but that the 660 

strength and specificity of the reconstructed representations in V1 for challenging near-boundary 661 

(5°) exemplars track individual differences in categorization accuracy. Higher-performing 662 

orientation subjects exhibited more relative enhancement of near-boundary orientation 663 

representations than lower-performing subjects who nonetheless learned the category rules. 664 

 665 

Discussion 666 

  Learning to categorize visual stimuli leads to improved perceptual representations 667 

(Hamm et al., 1998; Jolicoeur et al., 1984; Zeithamova & Maddox, 2007; Soto & Ashby, 2015), 668 
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but a clear consensus has not been reached on how and when this occurs. We hypothesized that 669 

category learning is supported by a representational enhancement of near-boundary exemplars 670 

within sensory cortex, and that this effect should be most pronounced during learning, especially 671 

if it serves to facilitate exploration and discovery of the boundaries that define one category from 672 

another. Using task manipulations that matched all aspects of the visual display, we found 673 

evidence of stronger and sharper orientation representations during a categorization task 674 

compared to an orthogonal contrast discrimination task and only for orientation rule learners. 675 

Moreover, reconstructed representations of near-boundary exemplars within V1 exhibited higher 676 

amplitudes, steeper slopes, and smaller shifts from the presented orientation compared to those 677 

far from the boundary. This suggests that visual category learning is accompanied by rapid, 678 

feature-specific functional plasticity in early visual cortex to support more challenging category-679 

relevant perceptual discriminations.  680 

Whether neural plasticity generalizes to early visual cortex during categorization has been 681 

largely ignored or discounted in most neuroscientific investigations (Freedman & Assad, 2016). 682 

Although the importance of accounting for learning-related attentional flexibility has long been 683 

recognized across theoretical accounts of categorization (Nosofsky, 1986; Kruschke, 1992), most 684 

neuroimaging research has focused on higher-order visual areas (Li et al., 2007; Meyers et al., 685 

2008; Folstein et al., 2013; Mack et al., 2013; Uyar et al., 2016; O’Bryan et al., 2018). Collectively, 686 

these demonstrations show that extrastriate occipital, temporal, parietal, and frontal regions exhibit 687 

greater sensitivity to stimuli along attended, diagnostic dimensions relative to those that do not 688 

predict category membership. Similarly, patterns in ventral occipitotemporal cortex contain abstract 689 

representations that distinguish between learned categories over and above sensory properties alone 690 

(Li et al., 2007; Meyers et al., 2008).  691 
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Mounting evidence indicates that attentional control can exert modulatory effects in early 692 

visual cortex, including V1 (Kamitani & Tong, 2005; Scolari et al., 2012; Scolari & Serences, 2009; 693 

Serences et al., 2009), leaving open the possibility that V1 may contribute to category learning 694 

despite its limited treatment in the literature. Moreover, perceptual learning elicits sensory 695 

modulation in early visual cortex by increasing gain for attended features, suggesting that such 696 

learning may directly support behaviorally relevant perceptual discriminability (Byers & Serences, 697 

2014).  698 

In line with these findings, the current study provides another demonstration that neural 699 

representations in early, sensory-driven regions can be rapidly and robustly modified to optimize 700 

behavior in a learning context. Our results compliment recent work by Ester and colleagues (2020), 701 

who used an inverted encoding model to test for categorization-related sensory modulation in visual 702 

cortex. Participants in their study were trained to ceiling performance on an orientation 703 

categorization task prior to scanning, such that their fMRI results reflect perceptual representations 704 

following, but not during the acquisition of category rules. The results revealed that the 705 

reconstructed representations of stimulus orientation were shifted towards the mean of the category 706 

they correctly belonged to after learning was complete, suggesting that increasing within-category 707 

similarity in sensory populations supports generalization of learned categorization.  708 

This study extends the previous findings by providing novel support for localized 709 

representational enhancement during ongoing category learning. Stimuli bordering orientation 710 

rule learners’ assigned boundaries elicited stronger (via increased amplitude), more specific (via 711 

steeper slope), and more faithful (via center shift) representations of orientation values in visual 712 

cortex than far-from-boundary stimuli. This was especially true in V1. This representational gain 713 

implies a stretching of the feature space that is specific to difficult-to-classify exemplars. For 714 
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example, small offset differences near an orientation category boundary should be more 715 

neurobiologically separable (and by extension, perceptually separable) than an identical 716 

difference between exemplars near a category center. Moreover, among orientation rule learners, 717 

the reconstructed representations for stimulus orientation falling at least 35 degrees from a 718 

boundary did not significantly differ from those observed in two orthogonal tasks (contrast 719 

discrimination; spatial frequency categorization) where stimulus orientation was irrelevant to 720 

task performance. These results suggest that representational sharpening – at least for orientation 721 

perception – can be a highly specific effect. 722 

Categorization behavior is regularly modeled with great success, especially via exemplar 723 

models, which posit that observers classify new stimuli based on their similarity to memory 724 

representations of previously encountered category exemplars (Rodrigues & Murre, 2007). The 725 

most widely used exemplar-based computational models apply attentional weights uniformly across 726 

feature values depending on dimensional relevancy (Goldstone & Steyvers, 2001; Op de Beeck et 727 

al., 2003; Gureckis & Goldstone, 2008; Nosofsky, 2011; Ashby & Rosedahl, 2017). Strong, 728 

positive attentional weighting then leads to dimension-wide perceptual stretching-- an outcome that 729 

has received support among behavioral studies that fail to detect localized perceptual effects 730 

(Folstein et al., 2012; Folstein et al., 2014; Van Gulick & Gauthier, 2014). Nonetheless, few studies 731 

have demonstrated that more flexible models which allow for exemplar-specific attentional 732 

modulation may do a better job of accounting for human behavior in certain categorization tasks 733 

(Aha & Goldstone, 1992; Rodrigues & Murre, 2007). Our data provide evidence that, in the context 734 

of a categorization task, flexible modulation is possible. However, in a departure from traditional 735 

models, we demonstrate this may not operate solely on memory representations, per se, but 736 
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involves low-level sensory areas. This might be especially true for stimuli that can be classified 737 

based on feature values within a single, continuous dimension. 738 

Participants may initially apply top-down attention during early category learning in 739 

service of explicit hypothesis testing, especially in the context of simple (unidimensional) rules 740 

(Choi et al., 1993; Johansen & Palmeri, 2002; Medin & Schaffer, 1978). This is consistent with 741 

our interpretation of the current data. Johansen and Palmeri further demonstrated that as learning 742 

progresses, participants tend to switch from a rule-based approach to an exemplar-based one. 743 

Because we assessed orientation representation during learning, it is possible the boundary-744 

specific enhancement we observed would dissipate after participants settled on a precise 745 

categorization rule. This may then give way to a representational shift towards category center 746 

exemplars (Ester et al., 2020) to maximize accurate classification of novel members. Although 747 

we did not observe this same center shift in the current study, our results did reveal a relative 748 

increase in amplitude for central exemplars during late learning stages, which could potentially 749 

serve as a precursor to an exemplar-based approach.  750 

Relatedly, more research is needed to establish how categorization-related perceptual 751 

enhancements transfer to orthogonal tasks and novel stimuli after subjects are no longer actively 752 

engaged in category learning. Different studies attempting to characterize such sensory 753 

modulations at the neural and behavioral levels have tested their predictions during the learning 754 

process (Goldstone & Steyvers, 2001; Sigala & Logothetis 2002), following asymptotic learning 755 

(Ester et al., 2020; Folstein et al., 2012; 2013; Jiang et al., 2007), and using interleaved 756 

categorization and discrimination tasks (Gureckis & Goldstone, 2008). Future studies should 757 

seek to contrast these different approaches to establish which scenarios best facilitate transfer 758 
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between category learning and discrimination performance, or neural indices of perceptual 759 

sensitivity. 760 

Behavioral perceptual effects associated with category learning may reflect either 761 

plasticity in sensory populations tuned to relevant stimulus features (sensory modulation; Sigala 762 

& Logothetis, 2002; Treue & Martinez-Trujillo, 2004; Yang & Manusell, 2004), a more efficient 763 

transmission of visual information to higher-level regions implicated in executing decisions 764 

based on sensory input (enhanced readout; Dosher & Lu, 1999, 2009; Lu & Dosher, 1999; Law 765 

& Gold, 2008; Freedman & Assad, 2016), or both. Here, we have provided evidence of task-766 

specific modulations within early visual cortex in support of category learning, and this may be 767 

supported by attentional control guidance from frontoparietal cortex and/or signals from frontal 768 

regions that are routinely activated during categorization tasks (e.g., rostrolateral prefrontal 769 

cortex; Davis, et al., 2017; O’Bryan et al., 2018b; Paniukov & Davis, 2018). Future research 770 

should further explore whether and how higher-order regions interact with sensory cortex in 771 

support of category learning.  772 

 In conclusion, our data support the prediction that visual category learning is associated 773 

with a representational sharpening in sensory populations that are tuned to category-relevant 774 

stimulus dimensions. We additionally showed that such sharpening was uniquely observed for 775 

challenging stimuli that bordered subjects’ category boundaries. Collectively, these results 776 

suggest that learning-related changes to the human visual system may be implemented more 777 

flexibly and efficiently than previously thought.  778 

 779 

 780 

 781 
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