
Robotics and Computer-Integrated Manufacturing 43 (2017) 59–67
Contents lists available at ScienceDirect
Robotics and Computer-Integrated Manufacturing
http://d
0736-58

n Corr
E-m
journal homepage: www.elsevier.com/locate/rcim
Full length Article
A statistical analysis of the effects of Scrum and Kanban on software
development projects

Howard Lei n, Farnaz Ganjeizadeh, Pradeep Kumar Jayachandran, Pinar Ozcan
Department of Engineering, California State University - East Bay, Hayward, CA 94542, USA
a r t i c l e i n f o

Article history:
Received 10 April 2015
Received in revised form
16 September 2015
Accepted 9 December 2015
Available online 17 December 2015

Keywords:
Project management factors for software
development
Agile movement
Scrum methodology
Kanban methodology
x.doi.org/10.1016/j.rcim.2015.12.001
45/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail address: howard.lei@csueastbay.edu (H. Le
a b s t r a c t

Traditionally, software development processes have relied on the use of the “Waterfall” and “Vee”
models. Later, Agile methodologies were used to handle the challenges of managing complex projects
during the development phase. Agile methodologies are a group of incremental and iterative methods
that are more effective, and have been used in project management. Kanban and Scrum are two powerful
Agile project management approaches in software development. The objective of Scrum and Kanban is
achieved by optimizing the development process by identifying the tasks, managing time more effec-
tively, and setting-up teams. A review of the literature reveals that there is a lack of statistical evidence to
conclude which methodology is more effective in dealing with the traditional project management
factors of budget handling, risk control, quality of the project, available resources, having clear project
scope, and schedule handling. This research statistically compares the effectiveness of the Scrum and
Kanban methods in terms of their effects on the project management factors for software development
projects. Numerical analysis is performed based on survey responses from those with experience in the
Scrum and Kanban methods. Results suggest that both Scrum and Kanban lead to the development of
successful projects, and that the Kanban method can be better than the Scrum method in terms of
managing project schedule.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

While project management methodologies have been used for
a very long time and date back to the Egyptian era, organizations
adopted the methods only half a century ago. During the mid
1900s, the defense, navy, and space research industries were the
first to adopt effective project management methodologies to
achieve organizational goals. By the early 1990s, with the boom in
hardware and software engineering industries, project manage-
ment methodologies found many takers and have proved effective
in helping organizations achieve tremendous results in its pro-
ducts. Adopting one of the project management methodologies
made organizations more efficient in terms of planning, setting
timelines and budgets, and improving quality of the products that
were produced.

By the late 1950s, there have been many trial-and-error
methods in managing software development projects. The early
methods were used to find better ways of gathering and defining
project requirements, analyzing problems, and conducting sys-
tematic implementations of problems. Some of the methods were
i).
incremental and iterative in nature [1] and others were linear and
sequential, known as “Waterfall Model” [2]. The Waterfall model
assumes that the team has nearly perfect information about the
project requirements, the solutions, and ultimately the goal.
Hence, changes in requirements were not encouraged, and became
an expensive affair. Nevertheless, the sequence of steps in the
Waterfall model is rarely followed in the actual system design [3],
and it had become evident that the approach lacked effectiveness
in addressing the needs of customers, managing rapidly changing
scope, delivery time, and cost of the project [4]. The Vee Process
model is yet another system process model that starts with a user
need and ends with a completed system [3]. In this model, testing
and verification are performed at each stage of the system de-
velopment, starting with the low-level components and ending
with the higher-level components until the entire system has been
verified. In the mid-1990s, other software development methods
evolved due to problems of these so-called “heavyweight software
methodologies,” which are complex and require detailed doc-
umentation and expensive design [5].

In 2001, the Agile movement was introduced in response to the
failures of the Waterfall software development methodology [6].
One of the models based on the Agile movement, known as Scrum,
is based on principles of lean manufacturing [6]. A different
methodology based on the Agile movement is called Kanban,

www.sciencedirect.com/science/journal/07365845
www.elsevier.com/locate/rcim
http://dx.doi.org/10.1016/j.rcim.2015.12.001
http://dx.doi.org/10.1016/j.rcim.2015.12.001
http://dx.doi.org/10.1016/j.rcim.2015.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2015.12.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2015.12.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2015.12.001&domain=pdf
mailto:howard.lei@csueastbay.edu
http://dx.doi.org/10.1016/j.rcim.2015.12.001


H. Lei et al. / Robotics and Computer-Integrated Manufacturing 43 (2017) 59–6760
which was inspired by the Toyota Production System [7] and by
Lean manufacturing [8]. Recently, the Kanban and Scrum meth-
odologies are two powerful methods adopted by organizations for
software development. Although there has been a debate for years
about which of these methods are preferred, there has not been
sufficient evidence based on statistical analysis for selecting a
preferred method. The work of Sjoberg et al. in 2012 attempted to
quantify the effects of Kanban versus Scrum in a case study with
one company, but the authors suggested that their study should be
replicated in other environments [9].

The focus of this research is to provide statistical evidence to
determine if there is a significant difference between the Scrum
and Kanban methods in terms of their effects on different project
management factors. The project management factors examined
in this work are based on the 6-point star model associated with
the Project Management Body of Knowledge [10]. The factors in-
clude project scope, budget, schedule, risk, quality, and resources.

In this work, the data is first collected via a web-based survey.
Each survey question relates to one of the six project management
factors listed above. Next, the correlation between these factors
and the success of a project is verified by a Pearson correlation
analysis. Finally, Kanban and Scrum methodologies are compared
to each other in terms of their effect on the six project manage-
ment factors. Core results of this work have been previously
published and presented at the FAIM 2014 conference in San An-
tonio, Texas [11]. However, this paper describes the history and
backgrounds of the methodologies in greater detail, presents re-
sults in greater detail, and provides additional analysis of the
results.

This paper is structured as follows: Section 2 presents the
history of the Agile movement, and provides background on Scrum
and Kanban theory. Section 3 describes the approach and techni-
ques used in this work, and Section 4 provides a statistical analysis
and discussion of the results. Section 5 gives a conclusion, and
suggests future work.
2. Agile software development methodologies

In this section, the evolution of Agile software development,
the creation of Scrum and Kanban methodologies, and their ap-
plications, are explained. Figures are also included to illustrate
their usage for project development.

2.1. History of Agile software development

Prior to the emerging of “Agile software development,” there
had been many trial-and-error-based methods in software devel-
opment by the late 1950s. These methods were employed to find
better ways of defining the project requirements, analyzing the
problem, and implementing it in a systematic manner. Some of
these were incremental and iterative in nature [1] and others were
linear and sequential, known as the “Waterfall Model” [2]. These
approaches generally lacked the effectiveness in addressing the
needs of customers, managing rapidly changing project scope,
delivery time and cost [4]. In the mid-1990s, other software de-
velopment methods evolved due to the problems of these “hea-
vyweight software methodologies,” which are complex methods
with expensive design [5].

As a response to the heavyweight software methodologies,
lightweight methodologies, including iterative and incremental
methods, had been developed and implemented. Examples of
lightweight (Agile) methodologies are Scrum, Extreme Program-
ming, Dynamic Systems Development Method (DSDM), Feature-
Driven Development (FDD) and Adaptive Software Development
(ASD) [12]. In 2001, these lightweight methodologies had been
discussed and the Manifesto for Agile Software Development had
been published to define the framework and goals of these
methods [13].

2.2. Early history of Scrum

Scrum is a project management methodology for Agile soft-
ware development that uses iteration and incrementation. It has
been designed to manage rapidly-changing project requirements
by improving communication between project developers, project
owners, and other team members. In 1986, Hirotaka Takeuchi and
Ikujiro Nonaka named Scrum the new product development
standard in auto and consumer product companies [14]. Scrum has
been defined, formalized, and published as the first Agile metho-
dology for software development [15]. In 1993, Jeff Sutherland,
John Scumniotales, and Jeff McKenna, at Easel Company, had used
Scrum for software development projects for the first time [16]. In
2002, Schwaber and Beedle wrote the book “Agile with Scrum” to
describe Scrum methodology [17]. Although Scrum had become a
common methodology since then, a study of Agile software de-
velopment shows that only 3% of the existing scientific evidence
on Agile software development focuses on Scrum [18], which this
paper aims to address. The following sections describe Scrum
methodology, including its implementation process and practices.

2.3. Scrum theory

Scrum, based on empirical process control theory, is an itera-
tive and incremental project management methodology to control
risk and optimize the predictability of a project. Transparency,
inspection, and adaptation, which are defined below, are three
important factors in the Scrum process [19].

Transparency: The process must be visible to everyone who is
involved in the project.

Inspection: Scrum users must inspect Scrum artifacts frequently
to detect problems in early stages.

Adaptation: If an inspector determines that some aspects of the
project are unacceptable and outside of the project scope, the
process can be adjusted to avoid further problems.

It should be noted that it is crucial to apply these factors during
different project development phases. Details pertaining to these
factors are presented in the following sections.

2.4. Content of Scrum

Scrum consists of Scrum teams, events, artifacts and rules. The
rules are essential to bind teams, events and artifacts together
during the project. They also provide an agreeable structure for
resolving conflicts within a project. The following sections explain
Scrum team, events and artifacts in detail.

2.4.1. Scrum team
The Scrum team consists of a Product Owner, a Scrum Master,

and Development Team Members. Teams are self-organized and
cross-functional. Therefore, they have control of the project and
know how to accomplish the goals without relying on directions
from people outside the team [19]. The team delivers products
iteratively and incrementally, maximizing the feedback they re-
ceive. Below are descriptions of the different Scrum team roles:

The Product owner is responsible for managing the Product
Backlog, the list of requirements of the product, and maximizing
the value of the project. His roles also include explaining the
Product Backlog items and goals of the project to the Development
Team, ensuring that the team understands these goals and per-
forms at a high level.

The Scrum Master manages the Product Backlog and instructs



H. Lei et al. / Robotics and Computer-Integrated Manufacturing 43 (2017) 59–67 61
the Development Team on creating clear Product Backlog items.
The Scrum Master also communicates with the team to ensure
that the team understands the long-term plans of the project. In
addition, he works with other Scrum Masters to increase the ef-
fectiveness of Scrum in the organization.

The Development Team is responsible for implementing and
delivering the releasable product at the end of each “Sprint,”
which is a period of time (referred to as a time-box) to create a
usable increment of the product. The team controls the im-
plementation of the end-product. Development Team members
manage their own work and are self-organized, and are not
grouped into sub-teams. The size of the team is an important is-
sue; a small team may suffer from problems in the lack of skill,
while a large team may suffer from development complexity. It
has been found that the ideal size of a Development Team is seven
members [19].

2.4.2. Scrum Events
Scrum uses time-boxed events with project development and

project planning phases. Events in Scrum are designed to inspect
artifacts and to adapt new methods for solving the project’s pro-
blems. The goals of these events are to enable transparency,
adaptation, and inspection in the development process [19]. Fig. 1
shows the components of each Scrum Event.

The Sprint is the heart of the Scrum process. It is a time-box to
create a useable, finished product. Each Sprint can be considered
as a one-month project with a plan of what needs to be built, and
how it needs to be built. The development goals of each Sprint,
along with the Development Team, should not be changed during
the course of the Sprint. However, the Product Owner and the
Development Team may redefine project scope as needed. The
Product Owner can also cancel Sprints if any change occurs in the
company direction, market needs, or technology.

The Scrum team plans the goals of each Sprint, along with the
product’s implementation process, in the Sprint Planning Meeting.
The overall goal of each sprint is to create a usable and potentially
releasable product, known as the “Done” product. The Scrum team
members should discuss and have a common understanding of
what constitutes a “Done” product. The Sprint Planning Meeting
duration is usually eight hours, which occurs once a month prior
to each Sprint [19]. In addition to this meeting, there is 15-min
daily Scrum meeting where team members update one another on
their progress, their future goals for the next meeting, and diffi-
culties they have experienced each day.

At the end of each Sprint, a Sprint review meeting is held to
discuss what each team member did during the product-devel-
opment iteration. This meeting can be a product demonstration to
the Product Owner, or occasionally to both the Product Owner and
the customers. After the Sprint Review Meeting and prior to the
next Sprint, a Sprint Retrospective meet is held to inspect how the
last Sprint went in terms of communication, human resources,
process, and tools, and to identify potential improvements for
future Sprints. This meeting usually takes several hours [19].
Fig. 1. Components of a Scrum Event. Figure obtained from: Wikimedia.org.
2.4.3. Scrum artifacts
The Scrum artifacts consist of the Product Backlog, the Sprint

Backlog, and the definition of what a “Done” product is after each
Increment, which is the sum of the Product Backlog items com-
pleted through the Sprints.

The Product Backlog contains the list of requirements, functions,
enhancements, and corrections needed in the product. It shows
the functionality of the product from technical and business per-
spectives. The Product Owner is responsible for the creation of the
list, and explaining the project perspective to the team. The pro-
duct backlog is dynamic, as it evolves whenever progress in the
project is made.

The Sprint Backlog is the list of items in the Product Backlog
that are selected for the specific Sprint. The Development Team
clarifies the functionalities of the product that will be im-
plemented in the next Sprint, and the work that is needed [19].
During the Sprint, if the Development Team realizes that there is
more work required, the team adds the work to the Sprint Backlog.
The remaining work in the Sprint Backlog can be tracked by the
team in order to manage the Sprint's progress.

Fig. 2 shows an example of a project task board based on the
Scrum process. This team uses post-it notes to keep track of the list
of tasks during a Scrum Sprint.

2.5. Kanban theory

In the following sections, Kanban theory is presented to com-
plete the background knowledge that this work is based on.
Kanban is another project management methodology for software
development that emphasizes “just-in-time” delivery. The main
focus of Kanban is to accurately state what work needs to be done,
and when it needs to be done. It does so by prioritizing tasks, and
defining workflow as well as lead-time to delivery [20]. The Kan-
ban process explicitly presents the most important tasks that need
the most attention in order to reduce the risk of their incomple-
tion, and also to increase flexibility amongst other tasks in the
project.
Fig. 2. Scrum task board example. Figure produced by Logan Ingalls (Task
board) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia
Commons.

http://creativecommons.org/licenses/by/2.0


Fig. 4. Kanban card wall example used in a project. Figure produced by Matthew
Hodgson, under the Creative Commons License Attribution-NonCommercial
2.0 Generic license.

H. Lei et al. / Robotics and Computer-Integrated Manufacturing 43 (2017) 59–6762
2.5.1. Kanban principles
The following are the basic principles of Kanban for software

development:

� Limiting Work in Process (WIP).
� Pulling value through the development process.
� Making the development process visible.
� Increasing throughput.
� Using a fixed backlog.
� Embedding quality.

Kanban methodology focuses on having the right work done at
the right time, given the skill sets of the developers. Developers
may have different skill sets and work speeds. Project developers
start by implementing project components that add value to the
project [20]. In addition, project developers do not implement
unnecessary features, do not write more specifications than they
can code, do not write more code than they can test, and do not
test more code than they can deploy. Therefore, Kanban metho-
dology eliminates waste in every step, and is suitable for software
engineering projects [20].

2.5.2. Visualization of the workflow
The visualization of the workflow, which shows the progress of

the project, is a significant aspect of Kanban methodology. The
following sections explain workflow visualization in greater detail.

2.5.2.1. Creating the card wall. The “card wall” is used to visualize
the process, tasks, and goals clearly throughout the Kanban-based
project. All steps required for implementing the project are clearly
identified, and all required tasks are written onto cards or sticky
notes and added to the Kanban backlog. When a task is completed
in a given step, it goes downstream to the next step, and another
task from the backlog is pulled from upstream [21]. The tasks in
the backlog go through a number of steps until they are completed
[21]. In order to deliver the project in a timely manner, limits are
placed on the maximum number of tasks in any given step. If a
step has fewer tasks than what the limits specify, it may accept
more tasks from upstream. Otherwise, it must wait until one of its
tasks completes and moved downstream before accepting another
task. A queue is used to allow for slack between steps. After a given
step of a task completes, it can either be given directly to the next
step, or be put on hold by being placed in a queue before the next
step [21]. An overview of the Kanban process is illustrated in Fig. 3.

2.5.2.2. High project visibility. Kanban methodology allows for high
project visibility by visually presenting the tasks that developers
are working on. The methodology also shows the bottlenecks re-
sulting from overloading, and the gaps between workflows. Using
colored cards or post-it notes enables a team to visualize the
progress of the project. The visuals are helpful for tracking the
time and cost constraints of the project, and for meeting the
Fig. 3. Kanban Process overview.
deadline. A figure containing an example of a card wall used in an
actual project is shown in Fig. 4.

2.6. Similarities of Scrum and Kanban

Kniberg and Skaring stated that Kanban and Scrum are similar
in the following areas: being Lean and Agile, having the ability to
break down the work into smaller pieces, having self-organized
teams, focusing on delivering releasable software early and often,
adapting changes quickly, limiting WIP, using pull-scheduling, and
using transparency [22].

In addition, Keogh notes that both methodologies are more
efficient than the Waterfall method. They contain feedback and
improvement mechanisms, and clearly account for project scope.
They also place importance on project value and on achieving
deliverables [23].

2.7. Differences between Scrum and Kanban

Kniberg's work summarized some main differences between
Scrum and Kanban, which are observational in nature. The dif-
ferences include whether time-boxed iterations are needed,
whether a team commits to a specific amount of work for a given
product iteration, whether cross-functional teams are prescribes,
whether WIP is limited, whether work must be broken down such
that they can be completed within a prescribed period of time,
among others [22].

In addition, Sahota explains the different contexts that Scrum
or Kanban fit. Kanban can handle a lot of project interrupts, sup-
port personnel with specialized roles and different skill sets, and
excel at repeatable work. Kanban also works well for larger teams
since communication and planning overhead are lower. In con-
trary, Scrum is better at projects requiring deep collaboration and
innovation. Scrum works best with small cross-functional teams,
and encourages generalists [24].
3. Research methodology

While similarities and differences of Scrum and Kanban are
given, the existing comparisons are not based on numerical data,
but rather people's experiences and opinions on the im-
plementations of the two methodologies. Furthermore, the com-
parisons are not based on the traditional project input, output, and
process factors described using the popular six-pointed star model
used in project management, shown in Fig. 5.

Traditionally, the factors that affect the success of a project are



Fig. 5. Project management star per PMBOK 4.0. Figure obtained from:
wikipedia.org/wiki/File:TripleConstraint.jpg.

Table 1
Project management factors, survey questions and question numbers.

Factor Survey question Question number

Schedule � Project teams are aware of the project
status.

1.1

� Project teams can adapt the changes
quickly.

1.2

� Project is delivered on time according to
schedule.

1.3

Scope � Project usually has a well-defined scope. 2.1
� PM methodology is effective to make the

scope clearer.
2.2

Budget � Project is delivered within budget. 3.1
� The project provides good Return on

Investment.
3.2

Risk � Project risks and opportunities are
managed.

4.1

� Business objectives are met. 4.2
Resources � Human and material resources are mostly

available.
5.1

� Teams can work well together to achieve
expected results.

5.2

Quality � Quality requirements are met. 6.1
� Client satisfaction is met. 6.2
� The project is successful overall. 6.3

Table 2
Numerical responses corresponding to the Likert scale.

Likert scale response Score

Strongly disagree 1
Disagree 2
Neutral 3
Agree 4
Strongly agree 5

Table 3
Number of respondents using Scrum and Kanban.

Methodology Number of respondents

Scrum 21
Kanban 14

Table 4
Business sectors of survey respondents.

Business sector Number of respondents

Information technology 6
Consultancy 4
Education 3
E-commerce 2
Bank and finance 2
Warranty 2
Web services 1
Tourism 1

H. Lei et al. / Robotics and Computer-Integrated Manufacturing 43 (2017) 59–67 63
Cost, Time, and Scope [25]. Later, the Project Management Body of
Knowledge (PMBOK 4.0) defined an advanced triple-constraint
model based on six factors (schedule, scope, budget, risk, re-
sources, and quality) that are important to the success of a project
[26,27]. The six factors are shown in the six-point star. The factors
of schedule, scope, and budget on one triangle are the input/out-
put factors of the project, while the factors of risk, resources, and
quality on the other triangle are the process factors. The Schedule
factor focuses on on-time project completion. The Scope factor
pertains to the mission and goals of the project and its require-
ments. The Budget factor focuses on meeting the budget require-
ments and on achieving targeted return-on-investment. The Risk
factor relates to how well project risks are managed. The Re-
sources factor pertains to human and material resources available
during the project, and the Quality factor relates to the overall
success of the project. This work aims to statistically compare the
effectiveness of Scrum and Kanban in terms of the six factors.

3.1. Data collection

A web-based survey (using http://www.surveymonkey.com) is
used to collect numerical responses to questions pertaining to
each of the project management factors in the six-pointed star
model for both Scrum- and Kanban-based projects. The survey
was conducted over the period of a month (April 2012–May 2012),
and responses were collected from employees who are involved in
software development projects at companies using Scrum or
Kanban.

Table 1 shows the survey questions that relate to each of the
factors of the six-pointed star model. For each survey question,
participants gave one of five responses according to the Likert
scale: Strongly Disagree, Disagree, Neutral, Agree, and Strongly
Agree. Each Likert scale response is associated with a numerical
score, shown in Table 2, and the scores are used to generate nu-
merical survey response data.

Data collected through the survey are divided into two subsets
– one for data related to Scrum projects, and the other for data
related to Kanban projects. A total of 35 people responded. Among
them, 60% (21 respondents) used the Scrum methodology in their
software development projects, 40% (14 respondents) used Kan-
ban (see Table 3).

Table 4 shows the business sectors of the survey respondents,
while Table 5 shows the company sizes of the respondents. We
also determined that eight of the 35 respondents are project
managers, seven are software engineers, and three are assistant
project managers. 32.4% of the respondents stated that they
worked less than 2 years, 32.4% stated that they worked from 5 to
10 years, and 26.5% stated that they worked from 2 to 5 years.
Respondents were also asked regarding the number of people
working on software projects. 45.7% of the respondents stated that
there are 10 to 20 people working on software projects, and 42.9%
stated that there are less than 10 people.

Table 6 summarizes the survey responses for users of Scrum,
and Table 7 summarizes responses for users of Kanban. The
average scores are also shown for the responses to each question,
computed by first multiplying the number of responses falling into
each Likert scale category (i.e. Strongly Agree, etc.) by the score (1–
5) associated with that category. The products for the five Likert

http://www.surveymonkey.com
http://wikipedia.org/wiki/File:TripleConstraint.jpg


Table 5
Company size of survey respondents.

Size of company Percentage of respondents (%)

Less than 50 25.7
50–100 37.1
100–500 28.6
More than 500 8.6

H. Lei et al. / Robotics and Computer-Integrated Manufacturing 43 (2017) 59–6764
categories are summed, and divided by the number of responses to
the question, to compute the average score for the question.

Tables 6 and 7 show that there are noticeable differences be-
tween the average scores for some of the questions for users of
Scrum compared to users of Kanban. For example, respondents
who used Scrum had an average score of 3.76 for question 1.1
(“Project teams are aware of project status”) while respondents
who used Kanban had an average score of 4.36 for the same
question. This suggests that Kanban users are more aware of
project status. The following sections further analyze and discuss
the results.
4. Results and discussion

This section provides statistical analysis based on the numerical
results from the survey responses, in terms of how the project man-
agement factors relate to one another, and how Kanban and Scrum
affects each of the factors. A discussion of the results is also provided.

4.1. Correlation between project success and project management
factors

The quality factor of the six-point star model is related to the
overall success of the project, since the survey questions for the
quality factor examine whether project quality requirements and
Table 6
Summary of survey responses for Scrum users.

Factor Question (number) Strongly
disagree

Schedule Project teams are aware of project status (1.1) 4.8%
(1)

Project teams can adapt changes quickly (1.2) 4.8%
(1)

Project is delivered on time according to schedule (1.3) 9.5%
(2)

Scope Project usually has well defined scope (2.1) 0.0%
(0)

Project management methodology effective to make scope
clearer (2.2)

4.8%
(1)

Budget Project is delivered within budget (3.1) 9.5%
(2)

Project provides good return on investment (3.2) 4.8%
(1)

Risk Project risks and opportunities are managed (4.1) 4.8%
(1)

Business objectives are met (4.2) 4.8%
(1)

Resources Human/material resources are mostly available (5.1) 4.8%
(1)

Teams work well together to achieve expected results (5.2) 4.8%
(1)

Quality Quality requirements are met (6.1) 4.8%
(1)

Client satisfaction is met (6.2) 4.8%
(1)

Project is successful overall (6.3) 4.8%
(1)
client satisfaction are met, and whether the project is successful
overall. We performed a sanity check to ensure that the quality
factor is positively correlated with the other five project manage-
ment factors for our data. A positive correlation between each of the
other factors with the quality factor suggests that there is merit in
examining how Scrum and Kanban affects each of the individual
factors, which could affect the overall success of the project.

We computed the average score of the 2 or 3 questions per-
taining to each factor for each participant. For example, if a re-
spondent answered “Strongly Agree” (score of 5) for Question 1.1,
“Agree” (score of 4) for Question 1.2, and “Neutral” (score of 3) for
Question 1.3, then the average score for the respondent for the
Schedule factor (with questions 1.1, 1.2, and 1.3) is a 4.0. Table 8
shows the average scores of each factor for all 35 respondents.

Pearson's correlation value is computed between the average
scores of all respondents for the quality factor to the average
scores for the other five project management factors. A correlation
value of 1 indicates perfect correlation, while a value of 0 indicates
no correlation. Table 9 shows the correlation values. Note that all
significance-level values are less than 0.05, indicating that the
correlation is significant at the 95% confidence level.

Correlation results show that the quality factor, which is an
indicator for project success, is positively correlated with each of
the other five factors of the six-star model. The correlation values
are significant, and range from 0.60 to 0.85. This suggests that
examining how Scrum and Kanban affects each of the factors of
the six-star model can provide insight on how the methodologies
affect the overall success of the project.

4.2. Statistical comparison of Kanban and Scrum based on Survey
Results

Lastly, we compared the Scrum versus Kanban methodologies
in terms of how they affect each of the individual project man-
agement factors. Table 10 shows the mean and standard deviation
Disagree Neutral Agree Strongly agree Avg.
score

Response count

9.5% 23.8% 28.6% 33.3% 3.76 21
(2) (5) (6) (7)
14.3% 14.3% 38.1% 28.6% 3.71 21
(3) (3) (8) (6)
9.5% 28.6% 23.8% 28.6% 3.52 21
(2) (6) (5) (6)
28.6% 14.3% 42.9% 14.3% 3.43 21
(6) (3) (9) (3)
4.8% 28.6% 33.3% 28.6% 3.76 21
(1) (6) (7) (6)
0.0% 33.3% 33.3% 23.8% 3.62 21
(0) (7) (7) (5)
0.0% 19.0% 33.3% 42.9% 4.10 21
(0) (4) (7) (9)
4.8% 28.6% 47.6% 14.3% 3.62 21
(1) (6) (10) (3)
0.0% 14.3% 47.6% 33.3% 4.05 21
(0) (3) (10) (7)
14.3% 38.1% 23.8% 19.0% 3.38 21
(3) (8) (5) (4)
0.0% 0.0% 42.9% 52.4% 4.38 21
(0) (0) (9) (11)
0.0% 14.3% 52.4% 28.6% 4.00 21
(0) (3) (11) (6)
4.8% 19.0% 52.4% 19.0% 3.76 21
(1) (4) (11) (4)
0.0% 4.8% 52.4% 38.1% 4.19 21
(0) (1) (11) (8)



Table 7
Summary of survey responses for Kanban users.

Factor Question (number) Strongly
disagree

Disagree Neutral Agree Strongly agree Avg.
score

Response count

Schedule Project teams are aware of project status (1.1) 0.0% 0.0% 14.3% 35.7% 50.0% 4.36 14
(0) (0) (2) (5) (7)

Project teams can adapt changes quickly (1.2) 0.0% 7.1% 0.0% 64.3% 28.6% 4.14 14
(0) (1) (0) (9) (4)

Project is delivered on time according to schedule (1.3) 0.0% 14.3% 21.4% 50.0% 14.3% 3.64 14
(0) (2) (3) (7) (2)

Scope Project usually has well defined scope (2.1) 0.0% 35.7% 28.6% 21.4% 14.3% 3.14 14
(0) (5) (4) (3) (2)

Project management methodology effective to make scope
clearer (2.2)

0.0% 0.0% 7.1% 64.3% 28.6% 4.21 14
(0) (0) (1) (9) (4)

Budget Project is delivered within budget (3.1) 0.0% 14.3% 7.1% 64.3% 14.3% 3.79 14
(0) (2) (1) (9) (2)

Project provides good return on investment (3.2) 0.0% 14.3% 14.3% 50.0% 21.4% 3.79 14
(0) (2) (2) (7) (3)

Risk Project risks and opportunities are managed (4.1) 7.1% 0.0% 42.9% 28.6% 21.4% 3.57 14
(1) (0) (6) (4) (3)

Business objectives are met (4.2) 0.0% 0.0% 7.1% 57.1% 35.7% 4.29 14
(0) (0) (1) (8) (5)

Resources Human/material resources are mostly available (5.1) 0.0% 14.3% 21.4% 64.3% 0.0% 3.5 14
(0) (2) (3) (9) (0)

Teams work well together to achieve expected results (5.2) 0.0% 0.0% 14.3% 35.7% 50.0% 4.36 14
(0) (0) (2) (5) (7)

Quality Quality requirements are met (6.1) 0.0% 7.1% 21.4% 42.9% 28.6% 3.93 14
(0) (1) (3) (6) (4)

Client satisfaction is met (6.2) 0.0% 14.3% 21.4% 35.7% 28.6% 3.79 14
(0) (2) (3) (5) (4)

Project is successful overall (6.3) 0.0% 0.0% 0.0% 64.3% 35.7% 4.36 14
(0) (0) (0) (9) (5)

Table 8
Average scores of each factor for each respondent.

Respondent
number

Schedule
factor
average

Scope
factor
average

Budget
factor
average

Risk
factor
average

Resources
factor
average

Quality
factor
average

1 3.33 3 3 3 3.5 3.67
2 3.33 3.5 3 3.5 3 4.00
3 3.33 3 3 3 3.5 3.33
4 2.33 3 3.5 3.5 3.5 3.33
5 2.67 3 4 4 4.5 3.67
6 2.67 2.5 3 3 4 3.00
7 4.00 3.5 4 4 3.5 4.00
8 1.00 1.5 1 1 1 1.00
9 4.67 4 5 4.5 5 5.00

10 3.67 4.5 5 5 4.5 4.33
11 4.67 4 5 3.5 5 4.00
12 5.00 5 5 5 5 5.00
13 5.00 4.5 4.5 4 4.5 4.33
14 2.67 4 2.5 3.5 4.5 4.33
15 4.33 3.5 5 4.5 3 4.67
16 5.00 4 4 4 4.5 4.33
17 3.00 4.5 4.5 4.5 3.5 5.00
18 4.00 3.5 4 4.5 4 4.33
19 4.00 4.5 4.5 4 4 4.33
20 4.33 4 3.5 4 4 4.00
21 4.00 2.5 4 4.5 3.5 4.00
22 4.00 4 4 3.5 4 4.00
23 4.00 3.5 4 3.5 3.5 4.00
24 3.67 3 3.5 3.5 3.5 3.33
25 3.67 3 3.5 3.5 3.5 3.33
26 2.67 4 3.5 5 3.5 4.00
27 4.33 3 3 3.5 4 4.00
28 4.67 5 5 4 4.5 5.00
29 4.67 4 4.5 4 4.5 4.67
30 4.00 3.5 4.5 4 4.5 3.67
31 4.33 3 3 4 4.5 3.67
32 3.67 5 3 5 4 5.00
33 4.67 3 3.5 3 3 3.33
34 3.67 4 4 4 3.5 4.67
35 4.67 3.5 4 4.5 4.5 3.67

Table 9
Correlation between success of the project and project management factors for
Scrum and Kanban.

Factor Pearson's correlation with quality factor

Scope 0.85
Schedule 0.60
Budget 0.71
Risk 0.81
Resources 0.63

Table 10
Average and standard deviation values of scores for each factor, for both Scrum and
Kanban.

Factor Scrum Kanban

Mean Std. Dev. Mean Std. Dev.

Schedule 3.67 1.20 4.05 0.85
Scope 3.60 1.08 3.68 1.02
Budget 3.87 1.12 3.79 0.92
Risk 3.83 0.99 3.93 0.94
Resources 3.88 1.13 3.93 0.86
Quality 3.98 0.96 4.02 0.87

H. Lei et al. / Robotics and Computer-Integrated Manufacturing 43 (2017) 59–67 65
values of the scores for each survey question across all re-
spondents, separated according to whether respondents used
Scrum or Kanban. Since there are 21 Scrum respondents, and there
are 2 or 3 questions pertaining to each factor, a total of 42 or 63
scores are used to compute the average and standard deviation
value of each factor for Scrum. There are 14 Kanban respondents,
implying that a total of 28 or 42 scores are used to compute the
average and standard deviation values of each factor for Kanban.

A significance-level test for differences between the means
given the standard deviations for each factor in Table 10 suggests
that the means are not significantly different at the 95% confidence



Table 11
Averaged scores for questions pertaining to the Schedule factor, based on company
size, and usage of Scrum or Kanban.

Company size Schedule factor average for
Scrum

Schedule factor average for
Kanban

Less than 50 3.72 4.22
50–100 3.56 4.08
100–500 4.00 4.00
More than 500 3.33 3.67

H. Lei et al. / Robotics and Computer-Integrated Manufacturing 43 (2017) 59–6766
level. However, interesting observations can nevertheless be made
based on the results.

The results suggest that Kanban is better than Scrum for the
Schedule factor (mean of 4.05 for Kanban versus 3.67 for Scrum),
which correspond to the following survey questions:

� Project teams are aware of the project status.
� Project is delivered on time according to schedule.
� Project teams can adapt the changes quickly.

We performed additional analysis examining the effect of
company size on the performance of Scrum versus Kanban for the
Schedule factor. Survey scores for all questions pertaining to the
Schedule factor (questions 1.1, 1.2, and 1.3) are averaged separately
for respondents working on Scrum- and Kanban-based projects for
company sizes of less than 50, 50–100, 100–500, and more than
500. Results are shown in Table 11.

Results suggest that Kanban leads to better performance for the
Schedule factor for smaller company sizes (less than 50, and 50–
100). For companies of less than 50, Kanban has an average score
of 4.22 for questions pertaining to the Schedule factor, while
Scrum has an average score of 3.72. For larger company sizes, there
is less difference between Scrum and Kanban. Section 2 mentions
that one advantage of Kanban is that it reduces planning overhead
and works well for teams where members have specialized roles
and different skill sets. This could be the case for those survey
respondents who worked in the smaller companies.

With the exception of the Budget factor, the mean scores for
Kanban are also consistently slightly greater than the Scrum scores
in Table 10. Examining the standard deviation values suggest that
there is generally greater variance to the Scrum scores compared
to Kanban scores, which means that there is greater variance in
the answers to the survey questions for Scrum users. For the
Schedule, Budget, and Resources factors, the standard deviations
for Scrum is at least 0.2 higher than the standard deviation for
Kanban. This suggests that projects using the Kanban methodol-
ogy can experience greater consistency in terms of the project
management factors.

Overall, our findings indicate that both Kanban and Scrum
approaches can lead to successful software development projects,
with average scores of around 4.0 for the quality factor (3.98 for
Scrum, 4.02 for Kanban). Thus, on average, the survey respondents
responded with the “Agree” response to questions pertaining to
the quality factor. Whether Scrum or Kanban ought to be used
likely depends on the context, practical needs, and resources of the
project.
5. Conclusion

There has been a debate for years about whether Scrum or
Kanban is more efficient than the other, and a review of literature
indicates that there is a lack of statistical evidence on this topic.
This research was conducted to see if there is a statistically-ver-
ifiable difference between these two methodologies impacting the
a set of six project management factors for software-development
projects: budget handling, risk control, quality of the project,
amount of available resources, clear project scope, and schedule
handling. These factors were chosen as they were listed as factors
to be monitored and managed in the Project Management Body of
Knowledge (PMBOK 4.0).

In order to compare the effectiveness of Kanban versus Scrum
on software projects, a survey was designed to include various
questions about the company, software projects, project manage-
ment methodology, implementation, and project feedback. Mean,
standard deviation, and correlation results were computed to
compare the effects that Scrum and Kanban have on the factors.
While the results imply that there is no statistically significant
difference at the 95% confidence level between Kanban and Scrum
for the factors, the results do suggest that Kanban performs better
than Scrum in terms of managing project schedule (i.e. the sche-
dule factor). Results also suggest that projects using the Kanban
methodology can experience greater consistency in terms of the
project management factors. Results also suggest that overall, both
Scrum and Kanban lead to successful software projects, where on
average, the survey respondents responded with the “Agree” re-
sponse to questions pertaining to the quality factor. Companies
should be aware of the differences in the practical implementation
of these methodologies, and choose one or the other based on the
context, practical needs, and resources of the project.

In the future, we plan to consider the impact of additional non-
quantitative techniques, such as team commitment, work organi-
zation, schedule managing, allocation of resources, and visibility.
We will also consider collecting additional survey responses to
questions pertaining to all project management factors.
References

[1] C. Larman, V.R. Basili, Iterative and incremental development: a brief history,
IEEE Comput. Soc. 36 (6) (2003) 47–56, http://dx.doi.org/10.1109/
MC.2003.1204375.

[2] H.D. Benington, Production of large computer programs, in: Proceeding of the
Navy Symposium on Advanced Programming Methods for Digital Computers
Office of Naval Research, Department of the Navy Washington, DC, 1956, pp.
15–28.

[3] B. Blanchard, W. Fabrycky, Systems Engineering and Analysis, 4th ed., Prentice
Hall, Upper Saddle River, NJ, 2011.

[4] R.T. Futrell, D.F. Shafer, L. Shafer, Selecting software development life cycles,
Quality Software Project Management, 1st ed., Prentice Hall, Upper Saddle
River, NJ (2002), pp. 101–161.

[5] M.A. Awad, A Comparison between Agile and Traditional Software Develop-
ment Methodologies (Unpublished honours programme's dissertation), School
of Computer Science and Software Engineering, The University of Western
Australia, Crawley, WA, Australia, 2005.

[6] M. James, Scrum Methodology 〈http://scrummethodology.com〉, 2009 (re-
trieved 8.04.15).

[7] T. Ohno, Toyota Production System: Beyond large-scale production, Pro-
ductivity Press, Portland, Oregon (1988), p. 29.

[8] J.P. Womack, T.J. Daniel, R. Daniel, The Machine That Changed the World: The
Story of Lean Production, Harper Collins, New York, NY, 1990.

[9] D. SjØberg, A. Johnsen, J. Solberg, Quantifying the effect of using Kanban
versus Scrum: a case study, in: IEEE Software, September/October, 2012.

[10] Project Management Institute, Project Management Proccesses for a Project, A
Guide to the Project Management Body of Knowledge, Newtown Square, PA:
Project Management Institute (2008), p. 47.

[11] F. Ganjeizadeh, H. Zong, P. Ozcan, E. Olivar, Effectiveness comparison between
Kanban and Scrum on software development projects, in: Proceedings of the
24th International Conference on Flexible Automation and Intelligent Manu-
facturing (FAIM), 1, 2, 2014, pp. 607–615.

[12] J. Highsmith, Adaptive software development, Agile Software Development
Ecosystems, Addison-Wesley Professional, Indianapolis, IN (2002), pp.
309–321.

[13] M. Fowler, J. Highsmith, The Agile Manifesto. From Agile Alliance: 〈http://agi
lemanifesto.org〉, 2001 (retrieved 14.06.12).

[14] H. Takeuchi, N. Ikujiro, The new product development game, Harv. Bus. Rev. 64
(1) (1986), http://dx.doi.org/10.1016/0737-6782(86)90053-6 137-14.

[15] J. Sutherland, Agile can scale: inventing and reinventing Scrum in five com-
panies, Cut. IT J. 14 (2001) 5–11.

[16] J. Sutherland, Agile development: lessons learned from the first scrum, Cut.

http://dx.doi.org/10.1109/MC.2003.1204375
http://dx.doi.org/10.1109/MC.2003.1204375
http://dx.doi.org/10.1109/MC.2003.1204375
http://dx.doi.org/10.1109/MC.2003.1204375
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref2
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref2
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref3
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref3
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref3
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref3
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref4
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref4
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref4
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref4
http://scrummethodology.com
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref5
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref5
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref6
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref6
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref7
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref7
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref7
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref8
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref8
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref8
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref8
http://agilemanifesto.org
http://agilemanifesto.org
http://dx.doi.org/10.1016/0737-6782(86)90053-6
http://dx.doi.org/10.1016/0737-6782(86)90053-6
http://dx.doi.org/10.1016/0737-6782(86)90053-6
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref10
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref10
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref10
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref11


H. Lei et al. / Robotics and Computer-Integrated Manufacturing 43 (2017) 59–67 67
Agil. Proj. Manag. Advis. Serv. 5 (2004) 20, Executive Update.
[17] M. Beedle, K. Schwaber, Get Ready for Scrum! Agile Software Development

with Scrum, 1st ed., Prentice Hall, Upper Saddle River, NJ (2002), pp. 23–30.
[18] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a sys-

tematic review, Inf. Softw. Technol. 50 (9–10) (2008) 833–859, http://dx.doi.
org/10.1016/j.infsof.2008.01.006.

[19] K. Schwaber, J. Sutherland, The Scrum Guide, the Definitive Guide to scrum:
The Rules of the Game. From 〈http://www.scrum.org/Portals/0/Documents/
ScrumGuides/Scrum_Guide.pdf〉, 2011 (retrieved 14.06.12).

[20] D. Anderson, Kanban-Successful Evolutionary Change for Your Technology
Business, WA: David J. Anderson & Associates Inc, Seattle, 2010.

[21] D. Joyce, Kanban for Software Engineering, Kanban Images. From 〈http://lea
nandkanban.files.wordpress.com/2009/04/kanban-for-software-engineering-
apr-242.pdf〉, 2009 (retrieved 14.06.12).

[22] H. Kniberg, M. Skarin, Kanban vs Scrum: How to Make the Most of Both. From
C4media: 〈http://www.infoq.com/minibooks/kanban-scrum-minibook〉, 2009
(retrieved 14.06.12).

[23] L. Keogh, Scrum and Kanban both the Same, only Different. from 〈http://liz
keogh.com/2011/11/20/scrum-and-kanban-both-the-same-only-different/〉,
2011 (retrieved 14.06.12).

[24] M. Sahota, Scrum or kanban? yes!. From 〈http://agilitrix.com/2010/05/scrum-
or-kanban-yes〉, 2010 (retrieved 14.06.12).

[25] C. Chatfield, T. Johnson, Microsoft Office Project 2007 Step by Step. From
〈http://office.microsoft.com/en-us/project-help/a-short-course-in-project-
management-HA010235482.aspx#BMtime〉, 2007 (retrieved 14.07.12).

[26] W.R. Duncan, Project management processes, A Guide to Project Management
Body of Knowledge, MD: Automated Graphic Systems, White Plains, (1996),
pp. 27–39.

[27] K. Schwaber, Agile Project Management with Scrum, Microsoft Press, Red-
mond, WA, 2004.

http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref11
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref12
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref12
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref12
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://www.scrum.org/Portals/0/Documents/ScrumGuides/Scrum_Guide.pdf
http://www.scrum.org/Portals/0/Documents/ScrumGuides/Scrum_Guide.pdf
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref14
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref14
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref14
http://leanandkanban.files.wordpress.com/2009/04/kanban-for-software-engineering-apr-242.pdf
http://leanandkanban.files.wordpress.com/2009/04/kanban-for-software-engineering-apr-242.pdf
http://leanandkanban.files.wordpress.com/2009/04/kanban-for-software-engineering-apr-242.pdf
http://www.infoq.com/minibooks/kanban-scrum-minibook
http://lizkeogh.com/2011/11/20/scrum-and-kanban-both-the-same-only-different/
http://lizkeogh.com/2011/11/20/scrum-and-kanban-both-the-same-only-different/
http://agilitrix.com/2010/05/scrum-or-kanban-yes
http://agilitrix.com/2010/05/scrum-or-kanban-yes
http://office.microsoft.com/en-us/project-help/a-short-course-in-project-management-HA010235482.aspx#BMtime
http://office.microsoft.com/en-us/project-help/a-short-course-in-project-management-HA010235482.aspx#BMtime
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref15
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref15
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref15
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref15
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref16
http://refhub.elsevier.com/S0736-5845(15)30159-9/sbref16

	A statistical analysis of the effects of Scrum and Kanban on software development projects
	Introduction
	Agile software development methodologies
	History of Agile software development
	Early history of Scrum
	Scrum theory
	Content of Scrum
	Scrum team
	Scrum Events
	Scrum artifacts

	Kanban theory
	Kanban principles
	Visualization of the workflow
	Creating the card wall
	High project visibility


	Similarities of Scrum and Kanban
	Differences between Scrum and Kanban

	Research methodology
	Data collection

	Results and discussion
	Correlation between project success and project management factors
	Statistical comparison of Kanban and Scrum based on Survey Results

	Conclusion
	References




