Main content

Contributors:

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: https://doi.org/10.1017/S1366728921000079 This paper introduces the generalized additive mixed model (GAMM) and the quantile generalized additive mixed model (QGAMM) through reanalyses of bilinguals’ lexical decision data from Dijkstra et al. (2010) and Miwa et al. (2014). We illustrate how regression splines can be used to test for nonlinear effects of cross-language similarity in form as well as for controlling experimental trial effects. We further illustrate the tensor product smooth for a nonlinear interaction between cross-language semantic similarity and word frequency. Finally, we show how the QGAMM helps clarify whether the effect of a particular predictor is constant across distributions of RTs.

Files

Loading files...

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.